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SUPPLEMENTARY FIGURES
SUPPLEMENTARY FIGURE 1: Quantification of fluorescence preservation in cleared tissue

Supplementary Figure 1: Quantification of fluorescence preservation in cleared tissue. (a-f) Optical sections
through an CLARITY-cleared adult mouse hypothalamus expressing H2B-GFP in all bsx neurons. Fluorescence
is preserved throughout the clearing procedure. However, the signal is degrading with imaging depth and can
typically be recorded up to 1 – 2 cm into the sample, depending on the tissue type and the quality of the clearing
process limiting the size of the sample that can be acquired from a single orientation. Brightness and contrast
was adjusted individually. (g) Quantification of image quality using (relative) Fourier Ring Correlation ([r]FRC,
see Online Methods) in BigStitcher. Note that FRC produces high values for the camera patterns if no signal is
present. The rFRC accurately measures image quality as illustrated by the position of the panels (a-f). As part
of this publication similar experiments were performed 4× with comparable clearing results (Fig. 1n, 3b, 3d).
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SUPPLEMENTARY FIGURE 2: Quantification of automatic illumination selection

Supplementary Figure 2: Automatic illumination selection. (A) A small 166GB multi-view, dual-illumination,
multi-tile dataset specifically acquired for verification purposes, here to quantify the properties of automatic
illumination selection. Shown is a slice through the first of two angles, where six tiles and two illumination
directions are highlighted. We manually confirmed that the left three tiles need to be assigned to left illumination,
and the right three tiles to right illumination. (B) compares the distinction power of the methods Mean intensity,
Gradient magnitude, and Relative Fourier Ring Correlation (see Online Methods) by their respective quality
scores. All methods correctly predict the assignment, while the Relative Fourier Ring Correlation distinguishes
the illumination directions best. Note that Mean intensity almost produces an error for tile 8 of the second angle
(180 degrees) (C) Another example of best illumination for three consecutive tiles (left to right), selected based
on Mean intensity for each tile. Close-ups shows the specified region for both illumination directions. (A,C) As
part of this publication automatic illumination selection was performed on 4 datasets (see also Fig. 1d, 3b, 3d).
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SUPPLEMENTARY FIGURE 3: Chromatic aberration correction

Supplementary Figure 3: Chromatic aberration correction. If sufficient autofluorescent signal is in common
between channels the ICP refinement on an affine model can be used to approximately correct chromatic aber-
rations are within the range of a few pixels. Here, the 488 and 561 channels are shown in magenta and green,
respectively. Zoom-ins (i) – (iv) illustrate the correction on one example image tile 1920×1920 pixels in size. In
the bottom right the interest points (all points of the entire stack are shown for one slice) used for alignment are
shown. Please note that for example the point in zoom-in (ii) was not used for alignment. If aberrations are sig-
nificantly bigger than illustrated in this example or if not enough common autofluorescence between channels
exist, images can be preprocessed with dedicated chromatic aberration software before import into BigStitcher
(see Limitations section in Online Methods). Chromatic aberration correction was applied to all 26 image tiles
of this dataset (Supplementary Video 3) as well as to all cleared samples that were acquired with 2 channels
(Supplementary Table 1).
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SUPPLEMENTARY FIGURE 4: Spherical aberration correction

Supplementary Figure 4: Spherical aberration correction. (A-C) show the same area a cleared adult mouse
hypothalamus expressing H2B-GFP in all bsx neurons where the corners of 4 image tiles of the same wave-
length overlap. Zoom-ins (i)–(iv) show the alignment quality by overlaying different colors (1st row), after image
fusing using blending (2nd row), and the sobel-filtering of the blending fusion (3rd row). (A) shows results for
stitching, (B) when using affine refinement, and (C) when using affine refinement on re-blocked images. Note
that affine, and split-affine improve the alignment quality. Blending-fusion can reduce artifacts as it reduces the
contribution of pixels close to image borders. Arrows outline cases where artifacts persist after blending-fusion.
E.g., the artifact visible in the fusion in (iii) stems from misalignments of the pink and red tile, since the green
tile is almost invisible after fusion. (A-C) Spherical aberration correction using affine transformations achieving
similar results was applied to all 26 tiles of the dataset, as well as the datasets shown in (Fig. 1n, 3b-d).
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SUPPLEMENTARY FIGURE 5: Manual alignment

Supplementary Figure 5: Interactive manual alignment of tiled images. The BigStitcher GUI offers various ways
of manually (pre-)aligning tiled images after import. (A) images can be moved to a regular grid with a given tile
order and overlap. (B) image locations can also be read from a simple tile configuration text file. (C) selected
image(s) can be moved along axes via sliders. (D) all changes will be displayed in the BigDataViewer window
immediately (D) for quick verification.
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SUPPLEMENTARY FIGURE 6: Flat-field correction

Supplementary Figure 6: On-the-fly flat-field correction. The BigStitcher offers correction for camera offsets,
fixed pattern noise or uneven illumination. (A) Simulation of the effects of a constant background offset and
Gaussian illumination/detection efficiency (C) on tiled images. By subtracting the dark image and modulating
with the inverse relative intensity of the bright image, such artifacts can be corrected easily (B). The correction
is calculated virtually, with optional caching, to allow for immediate inspection of the results. (A-C) Flatfield
correction as illustrated in this figure is a feature supported by BigStitcher, but has not been applied to any of
the datasets shown in this publication.
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SUPPLEMENTARY FIGURE 7: Automatic quantification of image quality

Supplementary Figure 7: Automatic Quantification of Image Quality. (a-d) Four different z-planes from a volume
that overlays the results of the relative Fourier Ring Correlation (rFRC, see Online Methods) computed in
128×128 blocks using a spacing of 10 pixels (magenta) and cleared image data (same as Supplementary Fig.
1). The rFRC robustly detects areas with high image quality. Note that (a) is deepest inside the tissue and (d)
is at the surface of the sample. See Supplementary Video 8 for an animation of the entire stack. The rFRC
was successfully applied to all cleared datasets in this publication (Supplementary Table 1), results are also
shown in Supplementary Fig. 1, 8 and Supplementary Video 8,9.
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SUPPLEMENTARY FIGURE 8: Quality estimation in whole-brain mouse acquisition

Supplementary Figure 8: Quality Estimation in Whole-Brain Mouse Acquisition. Application of our relative
Fourier Ring Correlation (rFRC, see Online Methods) to the reconstruction of an entire adult mouse brain.
The rFRC was computed in 512×512 blocks using a spacing of 256 pixels and transformed and rendered
as the reconstructed volume (see Fig. 3d). (a,b,c) single slice through rFRC volume based on image data
acquired with left illumination (a), right illumination (b), and both overlaid (c), dotted lines outline the orthogonal
shown views in (d-h). (d-h) orthogonal views to (a-c) highlighting the contribution in image quality from different
illumination directions and acquisition angles. (i) illustration of the color scheme used in (h) and the type of
data displayed in (d-g). See Supplementary Video 9 for an animation of the entire stack. The rFRC was
successfully applied to all cleared datasets in this publication (Supplementary Table 1), results are also shown
in Supplementary Fig. 1, 7 and Supplementary Video 8,9.
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SUPPLEMENTARY FIGURE 9: Affine refinement via ICP

Supplementary Figure 9: Illustration of different steps for multi-tile alignment (A) Four randomly colored, over-
lapping image tiles show the typical error when using microscope metadata only. (B) Shows the same image
tiles as (A), but without random color coding. (C) Quality of the registration after applying the phase-correlation
based stitching with downsampling 4 and two-round global optimization. (D) Result after applying the automatic
ICP refinement for tile alignment, spherical and chromatic aberration correction. (A-D) Insets highlight spe-
cific areas to better appreciate quality differences. (A-D) ICP-refinement using affine transformations achieving
similar results was applied to all 26 tiles of the dataset, as well as the datasets shown in (Fig. 1n, 3b-d).
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SUPPLEMENTARY FIGURE 10: Global optimization

Supplementary Figure 10: Global optimization of pairwise registration in sparse datasets connected by ”empty
tiles” (noise only) . (A) Simulation of a tiled image dataset with sparse objects: tiled images of multiple translated
Julia fractals moved to a grid according to approximate metadata (with too high overlap). Centers of images for
which pairwise shifts can be determined via phase correlation are connected by green lines, whereas centers
of neighboring tiles for which no meaningful shift can be calculated are linked by dashed grey lines. Manually
measured distances between distinct points in the three fractals are shown in red. (B) performing global opti-
mization with absolute shifts (as it is done BigStitcher’s predecessor, the ImageJ Stitching plugin) will correctly
align images within connected components of the link graph but place all fractals close to the origin. (C) by
using relative shifts, BigStitcher will leave disconnected objects at their initial location while still aligning within
connected components. (D) as registrations are not propagated between unconnected tiles, distances between
neighboring objects might change. By running a second round of optimization to align connected components
according to metadata shifts and applying the results to the in-component registrations, distances between
neighboring objects are preserved as-good-as-possible. (A-D) Two-round global optimization as illustrated in
this figure is a feature supported by BigStitcher, which has been applied to all datasets used in this publication.
Especially the dataset shown in Fig. 1d,e and Fig. 3d profits from it since it contains empty tiles.
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SUPPLEMENTARY FIGURE 11: Pairwise registration by phase correlation

Supplementary Figure 11: Pairwise registration by phase correlation. (A,B) Central slices of image stacks
from a tiled acquisition (non-regular tiling) of a cleared adult mouse hypothalamus. (C) Phase correlation matrix
(PCM) calculated from the two images shows a single, distinct peak above nearly constant background. The
peak location corresponds to the relative translation t of both tiles. (D) Central slice through the images aligned
according to t, as displayed in interactively during the reconstruction process. (A-D) The pairwise registration
using phase correlation was used as a first step in the alignment of all cleared and expanded samples used in
this publication (Supplementary Table 1).
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SUPPLEMENTARY FIGURE 12: Downsampling with different SNR

Supplementary Figure 12: Effects of downsampling on simulated data with different SNR. (A) Simulated im-
age stacks of spheroid-like objects deteriorated by anisotropic sampling, light attenuation, convolution with an
anisotropic PSF, and pixel intensity generation using Poisson processes to archive desired signal-to-noise-ratios
(SNRs). A central slice through 3d volumes is shown. (B,C,D) Effects of downsampling on the simulated im-
ages. The effects of Poisson Shot Noise are gradually reduced by the blurring of increasing downsampling. (A)
For quantification of the alignment quality using these simulations, 300 independent simulations were run for
each combination of SNR and downsampling (see Supp. Fig. 13 – 15).
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SUPPLEMENTARY FIGURE 13: Downsampling statistics 1

Supplementary Figure 13: Processing times and overall errors. (A) Processing times for sub-pixel precise
identification of overlap between simulation spheroids. With increasing downsampling, the computation time
drops significantly. Red dots show individual measurements, note the log-scale. Average (StDev) of computing
time is 7122 (2224) msec, 1910 (681) msec, 271 (155) msec, and 62 (80) msec for downsampling 1, 2, 4 and
8, respectively. The speed increments are computed as the ratio of the average compute times, i.e. 1×, ∼4×,
∼26×, and ∼115×, respectively. Compute times were measured in a single thread on a Intel Xeon E5-2640 v4.
(B) Average errors including their standard deviation for all combinations of SNR and downsampling. (A,B) All
errors are in units of the input images (no downsampling). For each combination of SNR and downsampling
300 independent simulations were run to compute the values.

SUPPLEMENTARY FIGURE 14: Downsampling statistics 2

Supplementary Figure 14: Errors for different downsamplings at SNR=8. (A-D) Histograms showing the distri-
butions of error of the simulations. Errors initially decrease due to the smoothing effect of the downsampling. All
errors are in pixel units of the original resolution (DS1). Each histogram consists of 300 independent simulations.
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SUPPLEMENTARY FIGURE 15: Downsampling statistics 3

Supplementary Figure 15: Absolute distance errors at SNR=8. (A-D) Histograms showing the absolute dis-
tances between computed and known shift between two simulated spheroids, split by dimension. It illustrates
a normal distribution of the error made during the pairwise phase correlation. All errors are in pixel units of the
original resolution (DS1). Each histogram consists of 300 independent simulations.
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SUPPLEMENTARY FIGURE 16: Interactive inspection and curation of pairwise links

Supplementary Figure 16: Interactive visualization of links in the link explorer. The BigStitcher GUI offers to
explore and modify calculated links between corresponding tiles in the link explorer menu. (A) tiles containing
links are displayed in yellow and can be selected. (B) display corresponding tiles of the selected view. Single
links can be removed manually or through available filtering options. (C) corresponding links of the selected
view are displayed in real-time in the BigDataViewer.
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SUPPLEMENTARY FIGURE 17: Quantification of image registration quality

Supplementary Figure 17: Quantification of Image Registration Quality. A multi-view, dual-illumination, multi-tile
dataset specifically acquired for verification purposes was used to quantify the registration error (see Online
Methods, Fig. 2k-m, and Supplementary Fig. 2). (A): Schematic description of the quantification process for
registration accuracy. Interest points are first automatically detected in all images of the dataset (1). Of those, a
subset of truly corresponding points interest points was selected for each pair of images (2). After registration
with BigStitcher using various transformation models (translation, affine, split-affine, non-rigid), the remaining
distance between the manually curated point pairs is used as a measure of registration error (3), actual errors
are shown in Fig. 2m. (B) All interest points detected in two images of the example dataset overlaid on a
slice view (left), manually selected corresponding points (middle, note the ”doubling” of the paired points as
they are not yet aligned, arrows indicate examples) and the same points after registration (right). (C) Time
required for registration (left) and fusion (right) of the dataset, for a single angle (top) or both angles (bottom).
The single angle values are averages of both angles. Fusion was done at full resolution, preserving original
data anisotropy. Multi-resolution pyramids of the images were computed beforehand. Processing was done on
2 Intel Xeon E5-2680v4 processors and 256GB RAM, data was loaded from SSDs in RAID0 configuration. This
error quantification was performed only on this specifically acquired dataset.
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SUPPLEMENTARY FIGURE 18: Bounding-box definition

Supplementary Figure 18: Interactive definition of bounding boxes. The BigStitcher GUI offers the possibility
of defining or modifying regions of interest via the creation of bounding boxes. (A) Choose the method used to
define a new bounding box. In this case the interactive mode is selected. (B) manually define the bounding box
range (C) Preview the size of the specified bounding box in the BigDataViewer in real-time.
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SUPPLEMENTARY FIGURE 19: Virtual fusion of large Image

Supplementary Figure 19: Virtual Fusion. Screenshot of a Fiji instance running with 1.25GB of RAM success-
fully fusing and saving a 787GB volume 5818×12414×2925 pixels in size. This is achieved through virtual
fusion combined with virtual, cached loading of blocked, multi-resolution input images. Red boxes highlight
memory consumption, size, and progress. During the fusion process, the BigStitcher and BigDataViewer are
interactively accessible.

21



SUPPLEMENTARY FIGURE 20: Interest point visualization

Supplementary Figure 20: Interactive visualization of interest points. The interest points explorer allows the
visualization of interest points and corresponding interest points between views. (A) select desired interest
points for visualization. (B) preview the interest points overlaid in the BigDataViewer. Red dots intersect with
the current image plane, green dots are projections from different z-planes. The white box marks the zoom-in
shown in (C). (C) Zoom-in into the region outlined in (B).
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SUPPLEMENTARY FIGURE 21: Manual transformation of multi-view datasets

Supplementary Figure 21: Interactive transformation of views. Different transformation models can be applied
to one or more views and simultaneously visualized in the BigDataViewer. (A) Choose transformation model
grouping. (B) Further define the transformation model. In this case a rotation around the axis is selected. (C)
Select rotation axis and angle. (D) Visualize rotation of the view in the BigDataViewer.
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SUPPLEMENTARY FIGURE 22: Expansion microscopy reconstruction

Supplementary Figure 22: Expansion microscopy stitching (A) All tiles (randomly colored) of one view of
the expanded Drosophila central nervous system. Dotted lines highlight orthogonal sections in (B) and (C).
(B,C) Alignment of an orthogonal view showing at two different cut planes. Red scalebar takes expansion into
account. (A-C) Expansion microscopy alignment using phase correlation followed by ICP refinement using
affine transformations was performed only on this dataset.
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SUPPLEMENTARY FIGURE 23: Principles of non-rigid alignment

Supplementary Figure 23: Principle of Non-Rigid Alignment. The non-rigid alignment applies a different affine
transformation to each pixel of each transformed image. This continuous transformation space is defined by cor-
responding interest points between overlapping images. We therefore first identify all sets of all corresponding
interest points that belong to each other as defined by pairwise correspondences (see Example Correspon-
dences). Each individual set of correspondences across n images then define a unique point, of which typically
hundreds to thousands per image exist. The left part of the figure illustrates a single unique point, which is
defined as the average position of all corresponding interest points. Once all unique points are assigned to
each correspondence, the non-rigid transformation can be individually computed for each transformed image.
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SUPPLEMENTARY TABLE 1: Summary of all datasets used in this publication.

Dataset Size Microscope & Acquisition settings

Coronal slice from a adult
mouse brain expressing H2B-eGFP
under the neuronal BSX promoter
(Figure 3a + Supplement)

1920×1920×1039 16 bit stacks
26 tiles from 1 angles (10% overlap)
2 channels, single illumination
0.36 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective, Depth-of-field: ∼25µm
5.37µm LS thickness, 538.3647546µm Confocal parameter
0.915×0.915×2.57425409µm pixels
119.8ms exposure on PCO.edge camera
lasers: 561 nm 100%, 488 nm 80%
filters: EF1 BP 505-545, EF 2 BP 575-615

Whole adult mouse brain
expressing H2B-eGFP in all
BSX-expressing neurons
(Figure 1d-n + Figure 2a,f +
Figure 3d,e + Supplement)

1920×1920×770 16 bit stacks
56 tiles from 2 angles (10% overlap)
2 channels, dual illumination
2.2 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective, Depth-of-field: ∼25µm
5.97µm LS thickness, 665.3906758999999µm Confocal parameter
0.915×0.915×4.929649351µm pixels
119.8ms exposure on PCO.edge camera
lasers: 561 nm 40%, 488 nm 40%
filters: EF1 BP 505-545, EF 2 BP 575-615

1920×1920×645 16 bit stacks
63 tiles from 2 angles (10% overlap)
2 channels, dual illumination
2.1 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective, Depth-of-field: ∼25µm
10.44µm LS thickness, 2034.834282µm Confocal parameter
0.915×0.915×6.203581395µm pixels
119.8ms exposure on PCO.edge camera
lasers: 561 nm 40%, 488 nm 40%
filters: EF1 BP 505-545, EF 2 BP 575-615

Coronal slice through an adult
mouse brain expressing an H2B-eGFP
lineage tracing marker in BSX-expressing
neurons (Figure 3b,e + Supplement)

1920×1920×828 16 bit stacks
35 tiles from 2 angles (10% overlap)
2 channels, dual illumination
1.55 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective, Depth-of-field: ∼25µm
10.44µm LS thickness, 2034.834282µm Confocal parameter
0.915×0.915×4.930096618µm pixels
119.8ms exposure on PCO.edge camera
lasers: 561 nm 50%, 488 nm 50%
filters: EF1 BP 505-545, EF 2 BP 575-615

1920×1920×960 16 bit stacks
35 tiles from 2 angles (10% overlap)
2 channels, dual illumination
1.8 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective, Depth-of-field: ∼25µm
10.44µm LS thickness, 2034.834282µm Confocal parameter
0.915×0.915×4.930916667µm pixels
119.8ms exposure on PCO.edge camera
lasers: 561 nm 50%, 488 nm 50%
filters: EF1 BP 505-545, EF 2 BP 575-615

Continued on next page
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SUPPLEMENTARY TABLE 1: Summary of all datasets used in this publication.

Dataset Size Microscope & Acquisition settings

Coronal slice through an adult
mouse brain expressing an H2B-eGFP
lineage tracing marker in BSX-expressing
neurons (zoomed-out)
(Figure 2k-m + Supplement)

1920×1920×945 16 bit stacks
12 tiles from 2 angles (10% overlap)
1 channel, dual illumination
0.166 TB total size

Lightsheet Z.1 with EC Plan-Neofluar 5x/0.16 objective (0.5× zoom)
Depth-of-field: ∼35µm
10.44µm LS thickness, 2034.834282µm Confocal parameter
1.83×1.83×4.93µm pixels
119.8ms exposure on PCO.edge camera
lasers: 488 nm 50%
filters: EF1 BP 505-545

Whole C. elegans during dauer
with all neuron nuclei expressing tagRFP in
and co-stained with DAPI (Figure 3e,f)

750×1920×40 16 bit stacks
16 tiles from 4 angles (10% overlap)
2 channels, single illumination
0.003 (2,96GB) TB total size

Lightsheet Z.1 with W Plan-Apochromat 20x/1.0 objective (2× zoom)
Depth-of-field: ∼1µm
1.82µm LS thickness, 56.72238239µm Confocal parameter
0.114×0.114×0.8035µm pixels
59.9ms exposure on PCO.edge camera
lasers: DAPI 505 nm 2%, DAPI 561 nm 0.2%, RFP 561 nm 5%
filters: DAPI CAM BS Mirror, RFP CAM BS SBS LP 560, RFP EF 1 BP 575-615

Central nervous system of a Drosophila
1st instar larva with immunostaining
for tubulin (Figure 3c,e + Supplement)

2048×2048×923 stacks
26 tiles from 2 angles (28% overlap)
1 channels, dual illumination
0.188 TB total size

IsoView with SpecialOptics 16x/NA 0.71 objective
Depth-of-field: ∼2µm
4.92µm LS thickness, 416.0µm Confocal parameter
0.4125×0.4125×0.8125µm pixels
20.1ms exposure on Orca Flash 4.0 v2 sCMOS camera
lasers: 488 nm 10.6mW
filters: BP488/10 EX, BP525/50 EM

Note: Depth-of-field was estimated based on the descriptions on this resource Depth of Field and Depth of Focus — MicroscopyU.
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SUPPLEMENTARY TABLE 2: Performance comparison

Supplementary Table 2 Comparison of BigSticher features and performance with other available stitching programs for four different datasets
with different sizes (130 Mb, 63 Gb, 300 Gb, and 1,67 Tb). Benchmarks were performed on a HP Z840 workstation running Windows 10 Pro
with two Intel Xenon E5-2667v4 CPUs and 512 GB memory. The benchmarks for the Arivis software were performed on a HIVE system running
Windows Server 2012 R2 with two Intel Xenon E5-2640v3 CPUs and 256 GB memory. The latest stable version of each stitching program
was used. BigStitcher datasets were stitched using 4× times (x,y) downsampling, and fusion was performed at stated downsampling levels.
Correctness of the stitching could only be confirmed in the BigStitcher due to the flexibility of interactive inspection. Processing of multi-view,
dual-illumination datasets as well as ICP refinement and virtual fusion is only possible in BigStitcher. Note that fusion in BigStitcher also performs
intensity adjustment. All displayed values are averaged from three independent runs of each respective software except those marked with a
black star. Note that image fusion results are not comparable since all other applications fuse datasets using translation-only, which
is a significantly simpler problem that cannot align the datasets sufficiently well while BigStitcher uses affine models. Therefore
translation-only results on dual-illumination datasets are grayed and marked with a red star. A cross indicates that the functionality is not
supported by the software, ’n.a.’ indicates that the dataset did not require this feature.
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SUPPLEMENTARY NOTES

1. Sample clearing
Clearing of brain tissue was performed using the CLARITY protocol.1 Mice were deeply anesthetized by in-
traperitoneal injection of 100 mg/kg Ketamine and 15 mg/kg Xylazine. Mice were exsanguinated by transcardial
perfusion with 25 ml cold PBS followed by whole body perfusion with 25 ml cold monomer solution (4% v/v
acrylamide, 4% w/v Paraformaldehyde (PFA), 0.25% w/v VA-044 in PBS). The brains were collected and fixed
in monomer solution for 2 more days. Next, the whole brains were placed in fresh monomer solution and oxygen
was removed from the tubes by vacuum and flushing the tube with nitrogen gas for 15 minutes. The samples
were then polymerized by placing the tubes in a 37◦C water bath under gentle shaking for 2 hours. Polymerized
brains were placed in clearing solution (4% SDS in 200 mM Boric acid). Brains were incubated in clearing so-
lution for 1 week at 37◦C with daily solution change. Then, the brains were actively cleared using the X-Clarity
setup from Logos Bioscience for 24 hours with a current of 1 A at 37◦C. Cleared brains were washed twice
overnight with 0.1% v/v Triton X-100 in PBS and once with PBS.

2. Expansion microscopy (ExM)
Expansion microscopy sample preparation

For Expansion Microscopy (ExM), the nervous system of a 1st instar Drosophila larva of was extracted, fixed
in 4% PFA/1xPBS/0.1%Triton for 1 hour and washed 2x10 min in 1xPBS/0.1% Triton. Before each antibody
usage, the nervous system and the antibodies were blocked in 5% goat serum/1xPBS/0.1% Triton for one hour.
Following the blocking, the nervous system was incubated overnight at 4◦C in 1:500 monoclonal Anti-α-Tubulin
antibody produced in mouse (Sigma Aldrich T6199 1mg/ml). After 5x10 min washing (1xPBS/0.1% Triton),
the secondary antibody 1:250 Anti-Mouse CFTM488A antibody produced in goat (Sigma Aldrich AB4600387
2mg/ml) was added overnight at 4◦C.

Detailed expansion microscopy protocol

Acryloyl-X, SE (6-((acryloyl)amino)hexanoic acid, succinimidyl ester; here abbreviated AcX; Thermo-Fisher)
was resuspended in anhydrous DMSO at a concentration of 10 mg/mL, aliquoted and stored frozen in a des-
iccated environment. AcX stock solution was diluted in 1xPBS to a final concentration of 0.1 mg/mL AcX.
Specimens were incubated in this 0.1mg/mL AcX solution for >6 h, at RT. Monomer solution (1xPBS, 1M NaCl,
1.84M sodium acrylate, 0.35M acrylamide, 3.2mM N,N’-methylenebisacrylamide) was mixed, frozen in aliquots,
thawed fully, vortexed, and cooled to 4◦C before use. Concentrated stocks of the initiator ammonium persulfate
(APS, 10% w/w), accelerator tetramethylethylenediamine (TEMED, 10% v/w) and inhibitor 4-hydroxy-2,2,6,6-
tetramethylpiperidin-1-oxyl (4-HT, 0.5% w/w) were prepared as concentrated stock solutions, which were frozen
in aliquots and then fully thawed and vortexed before use. Initiator, accelerator and inhibitor stock solutions
were added to the monomer solution at a ratio of 2uL each per 94uL monomer solution to produce complete
monomer solution. Specimens were washed 2x15min in complete monomer solution, on ice with shaking.
Specimens were transferred to 3D-printed gelation chambers sized 1cm x 1cm and 0.3mm deep, along with
30uL of complete monomer solution. Chamber was covered with a cover glass and transferred to a humidified
37◦C incubator for 2hr for gelation and gel curing.

Proteinase K (New England Biolabs) was diluted 1:100 to 8 units/mL in digestion buffer (50 mM Tris (pH 8),
1 mM EDTA, 0.5% Triton X-100, 1 M NaCl) to produce proteinase solution. Gel was recovered from chamber
and incubated fully immersed in proteinase solution overnight at RT, with shaking. The digested gel was next
incubated in at least a 10-fold excess volume of monomer solution with accelerator and inhibitor (no initiator)
2x15min, followed by complete monomer solution 2x15min on ice, with shaking. (Initiator is omitted from the
first two washes to prevent premature gelation.) During incubation, a glass slide and cover glass are coated with
parafilm by laying parafilm with paper backing onto the glass surface (parafilm down) and scraping a razor blade
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across the backing, then removing the backing. A 5mL syringe filled with silicone grease was used to apply four
dabs (approx. 50uL each) of grease to the glass slide, at the corners of a rectangle slightly smaller than the
cover glass. The gel was transferred to the coated slide and excess fluid was removed. The cover glass was
placed over the gel, parafilm side down, contacting the dabs of grease. The cover glass was gently pressed
down, squeezing the grease, until the coverglass contacted and sat flat across the gel. Excess complete
monomer solution was backfilled into the resulting chamber to impede access of atmospheric oxygen to the gel.
The completed chamber was moved to the 37◦C humidified incubator for 2hr for gelation and curing.

The resulting doubly-gelled specimen was recovered from the chamber, and excess gel was trimmed away.
The trimmed double gel was washed in excess volumes of doubly deionized water for 0.25-2 h to expand. This
step was repeated 3-5 times in fresh water, until the size of the expanding sample plateaued.

3. Imaging strategies
3D images of cleared mouse brains were imaged using the Zeiss Lightsheet Z.1 microscope. Each sample
was attached to the sample holder using a cyanoacrylate-based glue. The mounted sample was placed in
the FocusClear pre-filled imaging chamber. Images were acquired using the EC Plan-NEOFLUAR 5×/NA 0.16
objective together with the LSFM 5×/NA 0.1 illumination objectives on a Zeiss Light-sheet Z.1. The data was
acquired using dual side illumination and from different angles. Images were collected with two 1920×1920
pixel sCMOS cameras and stored in the Zeiss CZI file format.

Fixed C. elegans dauer larvae were embedded in 1.2% agarose containing fluorescent beads and imaged
using the same microscope in a water-filled sample chamber. Imaging was performed using the 20×/NA 1.0
objective with additional 2× zoom.

3D images from a cleared and expanded central nervous system of a Drosophila 1st instar larva were ac-
quired using an IsoView light-sheet microscope2 that has been modified for multi-tile acquisition. To prepare the
sample for imaging, excess gel surrounding the expanded sample was removed using a scalpel, leaving four
flat and smooth gel surfaces for imaging. Some extra gel was left underneath the sample for mounting, and the
sample was affixed to a cylindrical post using a cyanoacrylate-based glue. The mounted sample was placed
in the imaging chamber filled with deionized water. Orthogonal views for each tile of the sample were acquired
sequentially by switching the illumination and detection orders in IsoView. Images were acquired using Spe-
cialOptics 16×/NA 0.71 objectives and recorded using full frames (2048×2048 pixels, pixel pitch of 0.4125 µm
in sample space) of Orca Flash 4.0 v2 sCMOS cameras. The sample was held stationary during multi-view
acquisition of each tile, and depth-sectioned images were acquired every 0.8125 µm by translating the detec-
tion piezos over a range of 750 µm. A tile for each view thus covered a field of 832 µm (X), 832 µm (Y), and
750 µm (Z). Automated tiling across the entire sample was achieved by moving the sample in predefined steps
of 600 µm in X, Y, and Z until full coverage was achieved. Bi-directional light-sheet illumination was achieved
using opposing SpecialOptics objectives and the illumination NA was chosen to be 0.0315 for a confocal pa-
rameter of approximately 416 µm. The light-sheets from opposing arms were shifted approximately by their
Rayleigh length (208 µm) toward the illumination objectives so that each light-sheet provided uniform coverage
of the respective half in the acquired image.

A summary of the most important acquisition parameters can be found in Supplementary Table 1.

4. Data import
Import of data

Microscopy acquisitions are saved in a multitude of vendor-specific formats, custom formats, and general for-
mats such as TIFF stacks. We developed an extendable, user-friendly interface that automatically imports
almost any format and extracts relevant metadata such as illumination directions, sample rotation, and approx-
imate image positions using Bioformats.3 The assignment of attributes to the image stacks in the raw data is
usually automatic, or can be achieved with minimal interaction from the users. Therefore, the importer supports
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interactive placement of image tiles using regular grids or text file-based definitions (Supplementary Fig. 5).
BigStitcher accesses image data through memory-cached, virtual loading,4 optionally combined with virtual flat-
field correction (Supplementary Fig. 6 and Supplementary Note 5). Performance is optimal when images are
stored using a multiresolution, blocked, compressed format enabling interactive visualization, processing and in-
teraction with terabyte-sized image datasets. The importer therefore suggests by default to resave single-block
images (e.g. TIFF) into the BigDataViewer HDF5 format.5 Alternatively, by making use of cached ImgLib2 data
structures, we support virtual loading of image planes from the raw files including caching of already loaded
planes.

Data import is described in detail on the BigStitcher Wiki https://imagej.net/BigStitcher_Define_new_
dataset. We additionally added an example youtube video that illustrates how the most generic import from
TIFF stacks works in BigStitcher: https://youtu.be/aUofNP6V0lg. In case direct import from a custom format
fails, we therefore suggest to manually re-save data as TIFF stacks and subsequently importing them into
BigStitcher. It is important to preserve the calibration of the image stacks in the process.

SpimData data format
We internally represent our image data and metadata using an extended version of the SpimData data format
of BigDataViewer.5 Each image stack is defined by a (ViewSetup, TimePoint)-combination. We extend the
format by giving each ViewSetup the following attributes: Channel to represent color channels, Illumination to
represent illumination directions, Angle to represent multi-view acquisition angles and finally Tile, representing
(local) x,y points in a multipoint acquisition.

In addition to those attributes, we store detected interest points, bounding boxes (named sub-volumes in
which we can fuse or deconvolve images), point spread functions for deconvolution and pairwise registrations
(that have yet to be used in global optimization) for each (ViewSetup, TimePoint) view. For each image stack,
we also store its registration (i.e. the transformation from pixel to world coordinates) as a list of affine transform
matrices. The registration steps described below will typically prepend another transformation matrix to this list.
Finally, the SpimData is associated with an ImgLoader object that can make image pixel data available as an
ImgLib24 RandomAccessibleInterval given a (ViewSetup, TimePoint) view id.

The SpimData data structure can be saved as an XML project file, allowing users to manually edit it with
any text editor. We automatically save previous versions of the project file to provide the user with the ability to
un-do registration steps.

5. Flat-field correction
Flat-field correction is the process of correcting for image artifacts due to uneven illumination or detection ef-
ficiency or fixed-pattern noise. Aside from being visually unpleasing, especially in tiled acquisitions, these
artifacts can also effect image registration and downstream quantitative image analyses. We therefore offer
simple on-the-fly correction for a dark image (which might be nonzero due to e.g. camera offset) and a bright
image (representing uneven illumination or detection efficiency across the field-of-view). We calculate corrected
pixel intensities C from a raw image R and bright and dark images B and D as:

Cx =
(Rx −Dx′) ∗ (B −D)

(Bx′ −Dx′)
(1)

The correction images can either have the same dimensionality as the raw images, in which case x′ = x,
or have lower dimensionality (e.g. when using 2D correction images on a 3D image stack), in which case
x′ = (x1 . . . xn) with n being the dimensionality of the correction images. If a dark image is not provided by the
user, we assume it to have constant intensity of 0 (corresponding to no background offset). Likewise, if no bright
image is provided, we assume it to have constant intensity of 1 (uniform illumination and detection efficiency).

We implemented the flat-field correction as a wrapper around an ImgLoader, calculating corrected pixel
intensity values on-the-fly (with optional caching) every time an image is loaded. That way, the corrected
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images are available for all other processing steps such as intensity-based registration, interest point detection
or image fusion, but it is still possible to activate or de-activate the correction or change bright or dark images
after the initial flat-field correction. A separate (bright, dark)-correction image pair can be set for every image in
the dataset by modifying the XML project file, while in the GUI we offer user-friendly assignment of correction
images to every (channel, illumination direction)-pair.

6. Pairwise shift calculation
In BigStitcher, we currently offer three ways of calculating shifts between a pair of images: the Fourier-based
phase correlation algorithm, the Gradient-descent-based Lucas-Kanade algorithm, both intensity-based meth-
ods, as well as interest point-based alignment.

Phase correlation
By default, we calculate pairwise translational shifts of two images I1 and I2 using phase correlation6,7 using
our new ImgLib2 implementation.4 In noiseless images, the method produces a phase correlation matrix (PCM)
Q containing a single δ-impulse at the location corresponding to the shift between the two images. Real images
might contain multiple peaks (Supplementary Fig. 11) and we localize the n highest peaks in Q by detecting
peaks with subpixel accuracy using a n-dimensional implementation of a quadratic fit.8 Aside from allowing
subpixel-accurate registration, we can use the precision obtained from the subpixel accuracy of the phase cor-
relation to counteract the effects of downsampling (Supplementary Fig. 12), allowing us to achieve registration
of similar quality to full-resolution with significant performance gains (Supplementary Fig. 13–15). Due to the
periodic nature of the Fourier shift theorem, each peak in the PCM actually correspond to 2n possible shifts in
n dimensions. We therefore test each of these candidate shifts by calculating the cross-correlation between
the images I1 and I2, optionally with interpolation in the case of sub-pixel shifts.8 We choose the shift vec-
tor t corresponding to the highest cross correlation as the final result after applying downsampling correction, if
necessary.

It is often necessary to not only align two single images but groups of images, e.g. all channels of a tile.
We therefore implemented a flexible framework for the registration of grouped images (see below). The two
images I1 and I2 can have arbitrary affine pre-registrations such as sample rotation, correction of axial scaling,
or already performed registration steps. If pre-registrations of I1 and I2 are identical, or are only based on
different translations or axis-aligned scalings, we run the phase correlation on (downsampled) raw input images,
otherwise on virtually fused images (Supplementary Note 16).

Lucas-Kanade
In addition to the default phase correlation-based pairwise shift calculation, we offer registration via an ImgLib2
implementation of the inverse compositional formulation of the gradient descent-based Lucas-Kanade optical
flow algorithm.9 While the algorithm is applicable to a variety of transformation models, we currently stick to
estimating a translation vector t. If the pairwise registration converges, we calculate the cross correlation of the
overlapping portions of the images as a quality metric for the pairwise registration.

Intensity-based registration of grouped images
In many use cases, one might want to align not single images but groups of images, e.g. all channels of a tile,
in the pairwise registration step. For this, we implemented a flexible framework for the registration of grouped
images.

Each attribute of the images can be set to be an axis of application, an axis of comparison or an axis of
grouping. The registration will proceed by first splitting the images by the application attributes, i.e. grouping all
images that have the same value for these attributes. In each group, the images are then split by the comparison
attributes and finally, the remaining image groups (that differ only in the grouping attributes) are combined into
one image stack by either averaging all images for each grouping attribute or picking the image with a specific
instance of the attribute.
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In a typical application, the stitching of tiled datasets, we would, for example, start by applying the registration
to all (Angle, TimePoint)-combinations individually, comparing by Tiles and finally grouping by Illumination

and Channel for each tile, e.g. by averaging illumination directions and picking a specific channel.

Intensity-based registration of images with pre-registrations

The two images I1 and I2 can have arbitrary pre-registrations, i.e. pixel coordinates xpx are mapped to world
coordinates xw via the affine transforms xw,I1 = AI1xpx,I1 + bI1 and xw,I2 = AI2xpx,I2 + bI2 . Depending on
the values of AI1 and AI2 , we consider two cases: If they are equal, i.e. the pre-registrations differ only by
a translation, we perform the shift calculation on the raw pixel data of the overlapping volume to get a shift
vector t for I2 in pixel coordinates. The transformation in world coordinates is then given by R

(
I t

0 ··· 0 1

)
R−1

with R =
(

AI2
bI2

0 ··· 0 1

)
. If the pre-registrations differ in more than just translation, we create virtually transformed

images of the smallest rectangular bounding box enclosing the overlapping volume and use them as input to the
registration. As the virtual input images are already in world coordinates in this case, the resulting transformation
matrix for I2 is simply

(
I t

0 ··· 0 1

)
Interest-point based

For interest-point based pairwise registration, we detect local extrema in either Difference-of-Gaussian or
Difference-of-mean filtered images, optionally followed by subpixel refinement of the detections via a quadratic
fit.8 If we are registering a pair of image groups, the interest points of each image in the group are pooled, with
optional replacement of point clusters within a user-defined radius by their center.

For each image, we apply the current (affine) registrations to the pixel-coordinate interest points and then
determine candidate point matches via descriptor matching.10,11 We then perform model-based outlier removal
via the RANSAC algorithm,12 yielding a set of inlier point pairs, Cinliers, and an optimal translation t for I2,
minimizing

∑
(ip1,ip2)∈Cinliers

||ip1 − ip2 − t||2

7. Quantification of pairwise image stitching using downsampling
To assess the effect of downsampling on the pairwise stitching we use simulations of spheroid-like objects at
different signal-to-noise ratios (SNRs) as ground truth. We create realistic images by mimicking image creation
in light-sheet microscopy including optical sectioning, 3-fold anisotropy between xy and z, light attenuation,
convolution, and pixel intensity generation using Poisson processes.13 Importantly, pairs of overlapping images
that we use for benchmarking the subpixel phase correlation method are created using different Poisson pro-
cesses and are additionally rendered with half a pixel offset of the full resolution images to avoid nearly identical
overlaps at high SNRs due to the simulation process (Supplementary Fig. 12).

We simulate 300 pairwise overlaps, each at SNRs ranging from 1 to 32, and lateral downsamplings ranging
from 1× to 8×, where axial downsampling is matched as good as possible to achieve near-isotropic resolu-
tion as in the actual software. We illustrate that across SNRs downsampled images yield a constant registration
quality, which even exceeds that of registration at full resolution for low SNRs. This is achieved through a combi-
nation of the smoothing effect during downsampling (Supplementary Fig. 12) and precise subpixel-localization
(Supplementary Fig. 13–15). Due to the smoothing effect, registration quality therefore initially increases at
2-fold and 4-fold downsampling (Supplementary Fig. 13–15), while when using more downsampling, the loss
of pixel resolution outweighs the effect of smoothing and hence the quality drops. Registrations with a constant
quality of an average error of below one pixel can be computed at a fraction of the computing time compared to
full resolution, typically 4 - 115 times faster. Existing outliers are filtered during global optimization and overall
registration quality can further be improved during the ICP14refinement step.

Simulated data was created using the net.preibisch.stitcher.headless.StitchingPairwise class in the BigStitcher
package (release version 0.3.3). Since it is a Maven artifact, the versions of all dependencies are defined
and the corresponding version can be built automatically from that source code state (https://github.com/
PreibischLab/BigStitcher/commit/0d7f79a59ab15fb1805157ab72c5bc9802b02fbd).

33

https://github.com/PreibischLab/BigStitcher/commit/0d7f79a59ab15fb1805157ab72c5bc9802b02fbd
https://github.com/PreibischLab/BigStitcher/commit/0d7f79a59ab15fb1805157ab72c5bc9802b02fbd


8. MultiView Registration
For MultiView registration, i.e. alignment of image taken from different angles (or also time series stabilization), we first
detect interest points in the individual images as described above (6). Images may be grouped (and are by default if we are,
e.g. registering tiled acquisitions from multiple angles for which we already aligned the tiles via an intensity-based method)
according to their attributes, by pooling their interest points and optionally merging clusters of interest points.

Pairwise point correspondences can either be established by geometric local descriptor matching, a modified version
of the iterative closest point (ICP14) algorithm or by simply matching the center of mass of the point clouds of both images
(note that in this case the registration will be constrained to be a translation). Using the link graph (V,C) and pairwise point
correspondences Pij established thus, we calculate the final registration by performing global optimization as described
above (12), optionally with iterative link removal and a second round to preserve metadata.

Geometric Local Descriptor Matching
To identify corresponding interest points in between two point clouds, geometric local descriptor matching combined with
random sample consensus (RANSAC12) has been proven to be a powerful technique.10,11 The basic idea to express
each interest point as a geometric constellation using its n (typically three) nearest neighboring interest points. The vector
difference between two descriptors then describes how similar the local area of two points is. A geometric local descriptor
(GLD) is assumed to be a correspondence candidate if it is at least m (typically one to ten) times more similar than the
second most similar GLD.8 True corresponding interest points between two point clouds are finally identified using RANSAC
on a regularized affine transformation model. However, fast GLD matching using the rotation-invariant technique based
on geometric hashing10 requires relatively randomly distributed points to robustly identify correspondences, while the non-
accelerated, redundant, translation-invariant counterpart11 identifies correspondences reliably in non-rotated point clouds
of only up to a few thousand points in reasonable time. Here, we developed a new matching procedure by extending both
techniques to better suit the requirements when attempting to identify corresponding interest point in between point clouds
of prior unknow size derived from imaged structures that are potentially rotated relative to each other.

Redundancy is a powerful mechanism for GLD matching. It uses additional nearest neighbors but excludes some of
them sequentially during matching making it more robust to potentially mis-detected interest points.11 We therefore extend
the fast rotation-invariant technique based on geometric hashing10 with the capability for redundancy. This significantly
increases the chance of being able to align randomly oriented point clouds very fast, albeit at low inlier ratios (ratio of true
correspondences to total number of correspondence candidates). Rotation invariance is not desired if both point clouds
are known to be approximately in same orientation, for example if the rotation of the sample performed by the microscope
was known and has been applied to the dataset. Checking for potential rotations simply increases the chance for wrong
correspondence candidates. We therefore implemented a fast translation-invariant GLD based on geometric hashing that
supports redundancy. All four versions of GLD are available in BigStitcher to enable robust multi-view alignment.

9. Quantification of overall registration quality
To quantify registration quality, we acquired an as-small-as-possible (166GB), cleared section of an adult mouse brain. It is
imaged at lower magnification from two angles (0◦ and 180◦) and in a 2×3 tile configuration with dual-sided illumination for
each angle (Fig. 2l,m, Supplementary Fig. 2,17 and Supplementary Table 1).

We identified a ground-truth set of corresponding interest points in directly adjacent images by manually selecting bright
spots from a set of interest points that were automatically detected using Difference-of-Gaussian filtering and subpixel-
accurate local maxima determination (Supplementary Fig. 17a,b). For each image pair, we selected between 19 and 52
corresponding points, in total 692.

We then registered the dataset in BigStitcher for tiled acquisition only, tiled acquisition across illumination directions, and
for the multi-tile, dual illumination, multi-view case. This is achieved by grouping the images either by angle and illumination
direction, just by angle, or not at all. For the single-view cases, we performed translational alignment by stitching the
images using phase correlation. For an all-to-all registration with a translation model, the images of angle 2 were manually
rotated by 180◦ and then all images were aligned using interest points by fast translation-invariant GLD matching followed
by RANSAC12 and global optimization using a translation model. All translation-model alignments were refined using ICP14

as described above. The point correspondences determined during ICP were further used for non-rigid refinement.

For virtual re-blocking, each original image was split into 2×2×2 sub-blocks (with 120px overlap in xy and 100px overlap
in z). After the re-blocking, 4–28 manually selected point correspondences remained between each set of directly adjacent
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blocks. For each of the image groupings and registration models used, we calculated an average error of the manually
selected point correspondences:

eavg =
1

|I|
∑
i1∈I

(
1

|C(i1)|
∑

i2∈C(i1)

( 1

|PM(i1, i2)|
∑

(p1,p2)∈PM(i1,i2)

||T i1(p1)− T i2(p2)||2
))

(2)

With I being the set of images, C(i) the adjacent images of an image i (ignoring diagonal pairs for which no correspond-
ing interest points were manually selected as well as pairs that are not in the same group, e.g. when grouping by angle and
illumination direction, and pairs from the same original image in the virtually blocked dataset), PM(i, j) the corresponding
manually selected interest points of images i, j and Ti the transformation of image i.

To estimate the lowest theoretically achievable errors given a certain transformation, we use only the manually selected
point correspondences to calculate a globally optimal registration (and optionally the non-rigid refinement thereof) of the
images and then calculate the average error from the same point correspondences as described above. In the virtually
blocked case, we also use manually selected point correspondences (826 in total) between adjacent blocks within the same
original image for the registration (but ignore them for the final error calculation).

Despite relatively small aberrations in this sample as compared to entire mouse brains (compare with Fig. 2b,c,d and
Fig. 2k) we illustrate that using only translation as transformation model is only reasonable for tiled acquisitions that do
not include multiple illuminations or multiple acquisition angles, yet even there spherical aberrations persist that question
the standard use of translation models in general (Supplementary Fig. 4,9). The alignment errors increase when aligning
across illumination directions and greatly increase when aligning different acquisition angles. Importantly, please note that
the alignment quality across different illumination directions is significantly reduced on larger samples when using only
translation models (compare Fig. 2b,c,d and Fig. 2k). Using the affine, split-affine or non-rigid registration functionality,
BigStitcher can sharply reduce the registration errors in large cleared and expanded samples. As a trade-off between speed
and quality we usually choose affine or split-affine registrations.

10. Multiview deconvolution
In addition to real-time image fusion, we offer deconvolution of bounding-box-defined volumes using a multi-view formulation
of the iterative Richardson-Lucy deconvolution algorithm15,16 with Tikhonov regularization17 and various optimizations.13

The PSFs required for deconvolution can be extracted from interest points detected in the images (e.g. when subdiffraction
fluorescent beads were incorporated with the sample, see section 11) or supplied as TIFF stacks with odd dimensions by
the user. BigStitcher offers GPU acceleration of the deconvolution on CUDA-capable Nvidia GPUs.

To allow deconvolution of multi-tile views, we extended the original deconvolution13 to be based on the virtual fusion.
Thereby, any number of input image tiles are virtually fused and serve as one of input views for the multi-view deconvolu-
tion. Proper multi-view deconvolution of partly overlapping samples requires sophisticated weight normalization in between
views,13 which we implemented to be computed virtually. Since also the input views are also virtually loaded, the memory
requirement of the deconvolution solely depends on the output image size and shows a significantly increased memory-
efficiency. All virtual inputs and weights are additionally cached, ensuring highest-possible processing performance for
systems with large amounts of RAM.

11. PSF measurement and PSF extraction
In light-sheet microscopy, measured PSFs often differ significantly from simulated ones due to variable precision of light-
sheet alignment in every experiment. Therefore, light-sheet deconvolution usually relies on the extraction of PSFs from the
actual experiment19,25. To be able to perform PSF extraction in cleared tissue we developed a new protocol. Estapor
Fluorescent Microspheres (F-XC 030) were diluted 1:20000 in monomer solution containing bis-acrylamide (0,05% v/v bis-
acrylamide, 4% v/v acrylamide, 4% w/v Paraformaldehyde (PFA), 0.25% w/v VA-044 in PBS). The monomer solution was
polymerized under constant vacuum and shaking at 37◦C for 2 hours. The formed hydrogel was incubated in FocusClear
overnight and imaged using the Zeiss Lightsheet Z.1 microscope with the same experimental settings used to acquire
previous samples. For C. elegans dauer imaging fixed larvae were embedded in 1.2% agarose together with Estapor
Fluorescent Microspheres (F-Z 030), diluted 1:2000. For ExM data acquired on the IsoView microscope depth-sectioned
images (0.4125 µm step) of fluorescent beads (200nm diameter) embedded in 0.6% low-melting-temperature agarose were
imaged using the same experimental settings as for sample imaging. For all samples, PSFs were extracted by detecting
interest points in the acquired bead images. Potential bead aggregates were excluded by manual removal on the maximum
intensity projection using the BigStitcher module “Manage Interest Points > Remove Interactively”.

35



12. Global optimization
Estimation of globally optimal transformations
The pairwise registration step results in links between image (groups) V (note that since we do not use the actual image
content in the global optimization, we will refer to the images by their integer id in this section: V ⊂ N). The links can be
either in the form of pairwise transformations T p (such that coordinates x from two images Vi and Vj can be transformed
according to T pij(xj) = xi) or point correspondences PM from which such transformations can be estimated. The pairwise
registrations thus form a link graph (V,C) with edges C = {(i, j) ∈ V × V |T pij ∈ T

p} between image pairs for which we
could determine pairwise transformations. Simply traversing a spanning tree of the link graph and propagating the pairwise
transformations can lead to the compounding of pairwise registration errors, even if the traversal is done along a minimal
spanning tree determined according to some quality metric qij , e.g. cross-correlation, of the pairwise registrations.

We thus make use of an algorithm for globally optimal registration by iterative minimization of square displacement of
point correspondences18,19 for reaching a reasonable consensus in this case. This point match-based framework allows for
flexible grouping and fixing of images, is applicable to, among others, time series-, chromatic channel- or view-registration
and can easily be adapted to incorporate the pairwise transformations from e.g. phase correlation. The algorithm is agnostic
of the transformation model (e.g. translation, affine transform,...), with the only requirement being that the model parameters
can be estimated by a least-squares fit from point correspondences.

We determine the globally optimal registrations R given the image (groups) V , pairwise links C, pairwise n-dimensional
point matches PM with PMij ⊂ Rn × Rn and a set of fixed views F ⊆ V by minimizing:

argmin
R\{Ri|Vi∈F}

∑
(i,j)∈C

( ∑
(xk,yk)∈PMij

||Ri(xk)−Rj(yk)||2
)

(3)

Note that for all fixed views, the registration will be constrained to be the identity transformation I: ∀Vi ∈ F : Ri = I.

Global optimization given pairwise transformations
The intensity-based pairwise shift calculations do not directly give us the point correspondences we need for the global
optimization step, instead the results are pairwise transformations T p in the form of affine transform matrices. We can,
however, easily construct point correspondences by taking a set of points and transforming them with the inverse transform
(the only requirement being that the n-dimensional points do not all lie in a subspace of lower dimensionality of Rn).

Using the 3-dimensional pairwise transformations T p (T pij(xj) = xi) between two image (groups) Vi and Vj given their
existing registrations Rmeta, we use the 8-point approximate bounding box of their overlapping region BBij to construct the
point correspondences: PMij = {

(
bbk, (T

p
ij)
−1(bbk)

)
|bbk ∈ BBij}. We can then determine the globally optimal registrations

R by performing the minimization described above (3).

Global optimization with iterative link dropping
Once the global optimization terminates due to convergence or exceeding of the maximum number of iterations, we can
calculate the error of the individual images as the average displacement of all interest points in an image to their point
matches:

ei =

∑
{j:(i,j)∈C}

∑
(xk,yk)∈PMij

||Ri(xk)−Rj(yk)||∑
{j:(i,j)∈C} |PMij |

(4)

If the link graph (V,Cn) contains links with contradicting point correspondences, stopping after one round of global
optimization might leave us with unsatisfying results. In the iterative version of the global optimization, we therefore check
that both the average error of all images and the ratio of maximal and average error fall below a user-defined threshold. If
these conditions are not yet met, we will proceed to iteratively remove disagreeing links from the link graph and repeat the
global optimization. To do this, we first determine the link with the highest error by maximizing:

cworst = argmax
(i,j)

max
(xk,yk)∈PMij

(
(1− qij)2

√
dijk log10

(
max

(
deg(i), deg(j)

)))
(5)
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with dijk denoting the distance of the k’th point match of the link (i, j), dijk = ||Ri(xk) − Rj(yk)||, deg(i) denoting the
degree (number of neighbors) of an image Vi in the link graph and qij being a quality metric ∈ (0, 1) of the link, e.g. 0-
truncated cross correlation. We then remove the worst link from the links (Cn+1 ← Cn \ cworst) and repeat the optimization
step 3 with the new link graph (V,Cn+1). The whole process is repeated until the errors fall below a user-defined threshold
(in the worst case, links will be dropped until we end up with spanning trees of the connected components in the link graph).

Two-round global optimization using metadata
If some cases, the link graph might contain multiple connected components, e.g. in datasets from screening applications,
where the actual sample only occupies isolated ”islands” and most images contain only background. In this case, we can
only reliably determine pairwise transformations within the connected components and align images within the components
in the global optimization step. We might, however, have reasonable registrations Rmeta from metadata and wish to keep
as closely as possible to those if we do not have strong links.

For this, we developed a two-round version of the global optimization. In the first round, we determine registrations
Rstrong as described above, using the graph of strong links, i.e. links that are backed by pairwise transformations. In the
second round, we determine the connected components in the (V,Cstrong) graph and a mapping CC : N→ N from image
(group) indices to connected component indices as well as weak links Cweak = {(i, j) ∈ V × V |CC(i) 6= CC(j)} between
images in different components. We then determine transformations Rcc for each connected component not containing a
fixed image by minimizing:

argmin
Rcc\{rcci ∈R

cc|CCi∩F 6=∅}

∑
(i,j)∈Cweak

∑
bbk∈BBij

||RccCC(i)

(
Rstrongi (bbk)

)
−RccCC(j)

(
Rstrongj (bbk)

)
||2 (6)

Note that we use the corners bbk of the bounding box BBij of the overlapping volume of two images Vi and Vj as the
point correspondences. The overlap is determined according to the metadata transformations Rmeta and we essentially
try to ”un-do” the registrations of the first round as well as possible (while keeping the registrations within the connected
components). The final transformations R are the concatenation of the registrations within the connected components with
the relative transformations of the connected components: Ri ← RccCC(i)R

strong
i .

13. Simulation of light propagation in tissue using raytracing
To describe the scene we will simulate we use two phantom images of the same size that separately define the visible light
image (corresponding to fluorescent probe distribution) and the refractive indices map (Fig. 2e,f). We deliberately embed
the spheroid-like object of varying refractive index (Ri = 1.1–1.21) within a dense, invisible material with high refractive
index (Ri = 1.1) surrounded by air (Ri = 1.0) to recapitulate significant aberrations in the illumination light path using a
relatively small simulation volume of 289×289×289px. The object simulations are implemented in the multiview-simulations
package.13

We virtually scan a concave lightsheet (diameter of 1 pixel in the center, and 3 pixels at the edge) in 1-pixel steps and
alternating left and right illumination through the sample (Fig. 2g), simulating an entire volume for each lightsheet position
and direction (Fig. 2h and Supplementary Video 2). Therefore, we send 200.000 individual rays originating from random
positions within the concave lightsheet through the sample for each lightsheet simulation. The initial vector of each ray
points approximately along the lightsheet illumination direction and moves in 1-pixel steps through the volume. After each
move we locally compute the Eigenvector of the largest Eigenvalue using the refractive index map, which defines the normal
vector of the refractive surface at the current, sub-pixel ray position. Using this estimated refraction surface, we compute
the refraction angle using raytracing algebra,20 update the ray vector accordingly, and add a Gaussian distribution with an
intensity defined by the visible light image to the simulation volume. For simplicity we ignore total reflection since it is mostly
caused by numerical instabilities. We confirmed correct refraction of rays based on our computation of local Eigenvectors
in discrete pixel-images by comparing it to refraction of rays in the corresponding continuous, parametric description of the
same scene (not shown).

The result of these simulations are 578 3d-volumes that recapitulate the principles of dual-sided lightsheet illumination
(Fig. 2g). Inspired by classical raytracing, we perform a simplified detection simulation and therefore invert the ray path
and only modulate signal intensity as a function of distance from the focal plane. Per camera pixel (289×289) we send 500
rays at random positions within each pixel into the scene that are refracted as described above. For detection, we use the
same the same refractive index map, and the result of each respective lightsheet illumination simulation serves as image
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data. However, since we assume an extremely high refractive index mismatch for illumination simulation to recapitulate
the behavior in large samples, we assume a lower refractive index mismatch for the embedding material (Ri = 1.01) to
acquire reasonably distorted images. The relative refractive index mismatch within the spheroid-like object is conserved
(Ri = 1.01–1.11). We assume the focal point of the objective to lie in the center of the currently simulated lightsheet
position. The light captured by each ray on its path through the sample is then computed as the sum of all light integrated
when traveling through the sample, at each ray location gaussian-weighted (σ = 3.5) by the distance to the expected
lightsheet position. The simulations were performed in parallel on the local compute cluster at the MDC.

Simulated data was created using the net.preibisch.simulation.SimulateMultiV iewAberrations class in the multiview-
simulation package (release version 0.2.2). Since it is a Maven artifact, the versions of all dependencies are defined and
the corresponding version can be built automatically from that source code state (https://github.com/PreibischLab/
multiview-simulation/commit/b41b74cce9287f804b670d7de3396605446818a8).

14. Non-rigid transformation
The underlying principle of moving least squares21 is to non-rigidly transform images using a set of corresponding points.
Therefore, a local transformation is computed for each pixel using a distance-weighted fit of all corresponding points ensuring
smoothness. In BigStitcher, corresponding points are a direct result of all interest point-based registration algorithms. To
provide a sufficient amount of corresponding interest points, it is yet most useful to derive them using ICP.14 Regularization
is achieved on the registration side as corresponding interest points are identified on a regularized affine transformation
model either using RANSAC12 or ICP,14 which both specify a maximum error. This ensures that corresponding points
cannot diverge more than this specified error from the regularized affine transformation of each image tile. In combination
with virtual re-blocking, this error can be limited to smaller regions than the acquired, physical tiles.

When computing local transformations for each image, it is necessary to ensure smoothness across n overlapping
images by defining appropriate point correspondences. However, the registration identifies only pairwise correspondences
in between pairs of images. From those, we therefore first identify all unique interest points across all images defined by all
pairwise correspondences (Supplementary Fig. 23). The location of each unique point is then determined by averaging
the locations of all contributing interest points after applying their respective affine transformations. Thereby, the non-rigid
transformation only accounts for the remaining error after affine alignment. For each image, corresponding points required
for moving least squares are then subsequently defined between the unique point and the corresponding interest point of
the transformed image only.

15. Quality estimation using relative Fourier Ring Correlation
For computing the 2d-Fourier Ring Correlation22 we adapted methods from the FRC ImageJ plugin23 as outlined in the
Online Methods.

16. Image fusion
We fuse multiple images by performing a weighted average of the raw images Iraw transformed by their registrations R.
Each raw image Irawi has a set weight images Wi. For example, we allow the user to weigh the images with a cosine-
shaped fade-out, de-emphasizing the artifact-prone border regions of the individual images, as well as by the approximate
local entropy, to emphasize images with sharper structures in overlapping regions. Since the raw images will be evaluated
at non-integer coordinates, we offer the choice between nearest-neighbor and linear interpolation. Downsampling can easily
be achieved by prepending a scaling transformation to each of the registrations R. The intensity of the fused volume at a
coordinate x is given by:

Ifused(x) =

∑
Iraw
i ∈Iraw

(
Irawi

(
R−1
i (x)

)
∗
∏
wj∈Wi

wj
(
R−1
i (x)

))
∑
Iraw
i ∈Iraw

(∏
wj∈Wi

wj
(
R−1
i (x)

)) (7)

In practice, we evaluate Ifused only at integer coordinates of a user-defined bounding box. We implemented the image
fusion to perform all calculations virtually on-the-fly, with caching of previously computed planes using imglib2-cache. This
allows the quick inspection of fusion results as well as creation and planewise saving of images that might exceed the RAM
available to the user.

38

https://github.com/PreibischLab/multiview-simulation/commit/b41b74cce9287f804b670d7de3396605446818a8
https://github.com/PreibischLab/multiview-simulation/commit/b41b74cce9287f804b670d7de3396605446818a8


17. Brightness and contrast adjustment
Even after correcting for fixed-pattern noise (5), differences in brightness and contrast between images, e.g. due to bleach-
ing, might persist and be visible in the fused images. To correct for this, we estimate optimal linear transforms of pixel
intensities in adjacent images24 to achieve uniform brightness and contrast in the whole dataset. We minimize the inten-
sity difference of all pixels in the overlapping volume OAB of two images IA, IB (with corresponding coordinates (xA, xB)

according to the current registrations):

argmin
α,β

∑
IA∈I

( ∑
IB∈I\IA

( ∑
(xA,xB)∈OAB

(
IB(xB)−

[
αIAIA(xA) + βIA

] )2)) (8)

Since this is equal to one-dimensional point correspondence registration, we can make use of the same iterative op-
timization algorithm used for image registration (12). To reduce influence of noise and computational costs, we use (pre-
computed) downsampled versions of the images for the optimization. A problem with unconstrained optimization is the
possibility of convergence to the trivial solution of setting all pixel intensities to zero. We therefore formulate the linear
transform I(x) ∗ α+ β as a weighted average between a linear transform, an additive transform and the identity transform:

αI(x) + β = λ1 ∗ (α′I(x) + β1) + λ2 ∗ (I(x) + β2) + λ3 ∗ I(x) (9)

with user-definable regularization parameters λ1, λ2, λ3 : λ1 + λ2 + λ3 = 1. By using nonzero λ2, λ3, we can constrain
the optimization to not converge to the trivial solution.

The size of overlaps between image tiles can differ significantly. Therefore, intensity transformations supported by many
overlapping pixels will implicitly have a higher weight, which can lead to the fact that visible intensity differences between
tiles with little overlap persist. To compensate this effect we allow to balance overlaps by setting a maximal number of
corresponding pixels. To ensure equal distribution of these corresponding pixels, we randomly remove pixels from the set of
all pixels until the desired number is achieved.

18. Example datasets for BigStitcher
We prepared three different examples of different size and complexity for testing the BigStitcher. We suggest to run
BigStitcher on these first before applying it to your dataset. This allows you to quickly test features in an environment
where you can easily ask for advice on GitHub or the ImageJ Forum.

The data can be downloaded from the Open Science Foundation (a Nature recommended data repository https:

//www.nature.com/sdata/policies/repositories) at https://osf.io/bufza/.

2d multi-tile dataset (2.8 MB)
Maximum intensity projection of the nervous system of a Drosophila larva containing 6 tiles and 3 channels each.
You can download the raw input at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_2d.zip and a recon-
structed BigStitcher project at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_2d_h5_aligned.zip. In
the reconstructed project, the images were imported into the BigStitcher using the AutoLoader (with immediate re-
saving as HDF5 and Movement to a regular 2-by-3 grid with 10% overlap between the tiles). We calculated pairwise
shifts using phase correlation with default parameters, using the precomputed 2x2 downsampling and averaging the
channels. We ignored links with correlation < 0.7 and calculated the final registration using the two-round global
optimization with strict constraints.

3d multi-tile dataset (123 MB)
3d confocal scan of the nervous system of a Drosophila larva containing 6 tiles and 3 channels each, channels are dis-
tributed over different files. You can download the raw input at http://preibischlab.mdc-berlin.de/BigStitcher/
Grid_3d.zip and the reconstructed project at http://preibischlab.mdc-berlin.de/BigStitcher/Grid_3d_h5_

aligned.zip. In the reconstructed project, we ran the same import and reconstruction steps as for the 2d dataset and
in addition performed affine refinement of the registration using IPC with default parameters and simple tile refinement
to create the final reconstructed project.

We will add larger and more complex examples on the BigStitcher website https://imagej.net/BigStitcher and will
also link videos of the alignment process from there.
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19. Links to the current source codes
The BigStitcher is distributed over two projects. Both are licensed under the GPL(v2) and the source code is freely available
on GitHub, at https://github.com/PreibischLab/BigStitcher and https://github.com/PreibischLab/multiview-reconstruction,
respectively.

The CUDA code for accelerated interest point detection and devonvolution is available from https://github.com/

StephanPreibisch/SeparableConvolutionCUDALib and https://github.com/StephanPreibisch/FourierConvolutionCUDALib,
respectively.

The light simulation is a standalone software and part of the multiview-simulation package https://github.com/

PreibischLab/multiview-simulation, the main class can be found here: https://github.com/PreibischLab/multiview-simulation/
blob/master/src/main/java/net/preibisch/simulation/SimulateMultiViewAberrations.java. The license is also
GPL(v2).

Newer versions will be hosted using GitHub, and release announcements will be done via Twitter (https://twitter.
com/preibischs), on the GitHub page (https://github.com/PreibischLab/BigStitcher), and on the ImageJ wiki (http:
//imagej.net/BigStitcher). Releases are and will be provided to end users via the Fiji update mechanism.25

The following classes are the main classes for the respective codes:

BigStitcher: net.preibisch.stitcher.plugin.BigStitcher (in BigStitcher)

Light simulation: net.preibisch.simulation.SimulateMultiV iewAberrations (in multiview-simulation)

Phase correlation simulation: net.preibisch.stitcher.headless.StitchingPairwise (in BigStitcher)

20. Bug reports and feature requests
For bug reports and feature requests regarding BigStitcher please use the GitHub issue system available here: https:

//github.com/preibischLab/BigStitcher/issues.

21. BigStitcher user guide
The BigStitcher comes with extensive documentation that is hosted on the ImageJ wiki. The current version of the continu-
ously updated user guide can be found at https://imagej.net/BigStitcher#Documentation.
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