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SUMMARY

Sensory inputs are often fluctuating and intermit-
tent, yet animals reliably utilize them to direct
behavior. Here we ask how natural stimulus fluctua-
tions influence the dynamic neural encoding of
odors. Using the locust olfactory system, we iso-
lated two main causes of odor intermittency: chaotic
odor plumes and active sampling behaviors. Despite
their irregularity, chaotic odor plumes still drove
dynamic neural response features including the syn-
chronization, temporal patterning, and short-term
plasticity of spiking in projection neurons, enabling
classifier-based stimulus identification and acti-
vating downstream decoders (Kenyon cells). Lo-
custs can also impose odor intermittency through
active sampling movements with their unrestrained
antennae. Odors triggered immediate, spatially
targeted antennal scanning that, paradoxically,
weakened individual neural responses. However,
these frequent but weaker responses were highly
informative about stimulus location. Thus, not only
are odor-elicited dynamic neural responses compat-
ible with natural stimulus fluctuations and important
for stimulus identification, but locusts actively in-
crease intermittency, possibly to improve stimulus
localization.

INTRODUCTION

An important feature of olfaction and other sensory modalities is

that natural sensory stimuli can be distorted by both environ-

mental and behavioral events. Air or water turbulence breaks

up an odor plume into concentrated packets or filaments of

odor separated by pockets of very low odor concentration (Fig-

ure 1A; Murlis et al., 1992, 2000). Similarly, an animal’s own

sampling behaviors, including sniffing in mammals (Kepecs

et al., 2006, Mainland and Sobel, 2006; Khan et al., 2012) and

olfactory appendage flicking in crustaceans and insects (Fig-

ure 1B; Koehl, 2006), also impose intermittency on the olfactory
stimulus. Little is known about how neural circuits encode the

resulting stimuli, or about the behaviors animals use to interact

with them.

The neural encoding of odors has usually been studied in the

laboratory with controlled, regular, and sustained odor pulses.

In the locust, this approach has revealed several features of

stimulus coding that facilitate essential olfactory computations

underlying odor identification and discrimination (reviewed in

Laurent, 2002). These features include time-evolving neural

responses that can outlast a stimulus (Laurent and Davidowitz,

1994; Wehr and Laurent, 1996; Laurent et al., 1996) and

synchronization among neurons (Laurent and Naraghi, 1994),

which is necessary for fine odor discrimination (Stopfer et al.,

1997). It remains unclear, however, whether the olfactory pro-

cessing mechanisms revealed in the laboratory can function

effectively in more natural settings. The chaotic temporal

structure of natural odor stimuli occurs at a timescale similar

to that of neural coding features believed to contain informa-

tion about the odor, and might therefore interfere with such

neural representations (Vickers et al., 2001; Brown et al.,

2005, Broome et al., 2006; Aldworth and Stopfer, 2015).

Furthermore, all previous experiments have been performed

on locusts with restrained antennae. It is therefore not

known whether antennal odor sampling movements might

themselves influence or interfere with neural spatiotemporal

coding features.

To evaluate the effects of stimulus variability caused by

odor plume turbulence and active sampling, we developed

two novel experimental paradigms with locusts to isolate

and characterize the two causes of intermittency. With a

fixed-antenna wind tunnel preparation, we could investigate

neural coding features elicited by chaotic, natural odor

plumes. With an active-sampling preparation, in which locusts

were free to flick their antenna through a linear odor filament

and walk freely on a substrate, we could combine behavioral

analyses with electrophysiology to address the functional sig-

nificance of self-induced stimulus intermittency for olfactory

coding.

We found that spatiotemporally structured neural responses

efficiently encode both types of intermittent natural olfactory

stimuli, and that active sampling behaviors take advantage of

this ability by increasing intermittency to gain more information

about an odor’s location.
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Figure 1. Studying Multiple Sources of Stimulus Intermittency

(A and B) Illustration of the two main sources of intermittency in natural olfactory stimuli: (A) turbulent odor plumes separate into intermittent filaments of high-

concentration odor; (B) the animal’s own sampling behavior, antennal flicking in the case of insects, results in intermittent stimulation even when exposed to a

laminar odor plume.

(C) Diagram of the wind tunnel in which the locusts were exposed to turbulent odor plume stimuli.

(D) Example trace of an electroantennograms (EAG) recorded adjacent to the locust’s intact antenna.

(E) Enlarged detail of the EAG shown in (D). Discrete EAG negative deflections indicate the transient presence of the odorant (scale bars, 300 ms; 0.05 mV; data

low-pass filtered for display purposes).

(F) Experimental setup used for active sampling behavior and electrophysiology experiments. Tethered head-restrained locusts walked on a ball whose motion

was tracked to measure walking speed and direction. Video records of the antennae were made from three different views, and the 3D antennal trajectory was

reconstructed.

(G and H) Diagrams of the two stimulus configurations used during the active sampling experiments. Laminar odor plumes with known 3D positions were

presented at different horizontal (G) and vertical (H) positions such that the locust was free to sweep its antenna in and out of the odorant while behavioral and

electrophysiological measurements were made. Blue circle in (G) indicates the ‘‘odor edge’’: the closest point to the odor source that the antenna could reach

along the odor plume.

Please cite this article in press as: Huston et al., Neural Encoding of Odors during Active Sampling and in Turbulent Plumes, Neuron (2015), http://
dx.doi.org/10.1016/j.neuron.2015.09.007
RESULTS

Plumes Elicit Neural Oscillatory Synchronization and
Temporal Patterning of PN Responses
We placed locusts with an immobilized antenna in a 1 m long

wind tunnel and exposed them to turbulent odor plumes

�1 m downstream of the odor source (Figure 1C) while re-

cording from second- and third-order olfactory neurons (PNs

and mushroom body Kenyon cells, KCs, respectively) ipsilat-

eral to the antenna. To monitor the arrival of windborne odor

filaments near the animal’s intact antenna, we recorded elec-

troantennograms (EAGs) from the second, isolated antenna
2 Neuron 88, 1–16, October 21, 2015 ª2015 Elsevier Inc.
placed alongside the intact antenna (Vickers et al., 2001).

This EAG signal tracked the local odor concentration imposed

by the turbulent plume, allowing us to monitor the odor stimulus

as it reached the locust (Figures 1A–1E). We examined whether

the chaotic and intermittent pattern of odor filament exposure

from a turbulent odor plume also resulted in temporal

patterning, synchrony, and oscillations in antennal lobe and

mushroom body neurons.

Exposing the locust to the turbulent odor plume led to series of

brief bursts of odor stimulation, as assessed by negative deflec-

tions in the EAG (Figures 1D, 1E, and 2A). These bursts had ame-

dian duration of 159 ms, with a median interval of 157 ms (see



Figure 2. Plumes Elicit Oscillatory Syn-

chrony and Temporal Patterning in Antennal

Lobe Neurons

(A) Representative simultaneous recordings of

LFP, EAG, and the intracellular activity of two LNs

taken in the wind tunnel. LFP and LNs show

several cycles of synchronous oscillation coinci-

dent with EAG deflections. Scale bar, LFP, 0.7;

LN1 and LN2, 5; EAG, 0.2 mV.

(B) Simultaneous recordings of LFP, EAG and

intracellular LN and PN activity. PN spikes coin-

cide with EAG deflection and phase-lock to LN

and LFP (PN-LFP coherence in Figure 3D). Scale

bar, LFP, 0.4; PN, 22; LN, 6; EAG, 0.2mV.

(C and D) Slow temporal patterns in PNs. (C) One

odorant (cherry) evoked different consistent pat-

terns in two simultaneously-recorded PNs: 88

sweeps, aligned to EAG peak onsets. Note in-

tensity of first response in PN2 (see also Figure 3).

(D) Different odorants evoked different firing pat-

terns in a given PN. Histograms constructed from

the data in (C) reveal different response patterns

for hexanol and geraniol (see text). Vertical line:

time of EAG peak. Firing patterns outlasted cor-

responding EAG deflections.

(E and F) Odor plumes and controlled odor pulses

elicited similar PN response patterns. Activity of

four PNs recorded simultaneously during presen-

tation of an odor plume (E), aligned as in Figure 2C)

and then ten trials of brief, controlled puffs of the

same odorant (F). Spikes times in blue, PSTHs in

gray.
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Figure S1 available online). The brief contacts with individual

plume odor filaments, signaled by fast negative deflections of

the EAG, led to bouts of oscillations in the mushroom body

LFP, similar to those seen during longer controlled olfactory

stimuli (e.g., Laurent and Naraghi, 1994), but briefer, typically

lasting only three to six oscillation cycles (Figures 2A, 2B, and

3A). To quantify the relationship between LFP oscillatory power

and odor filament encounters, we used a simple automated al-

gorithm (see Experimental Procedures) that measured LFP po-

wer (14–34 Hz band) both during negative EAG deflections

(indicative of odor filaments at the antenna) and during ‘‘flat’’

EAG segments (indicative of nonodorized air) (Figure 2A). These

measurements showed that oscillatory power was significantly

greater during EAG deflections (paired t test, p < 0.001, N =

200 trials, see Experimental Procedures), indicating that the

plume’s odor filaments were able to elicit bouts of oscillatory

synchronization among the PNs and LNs of the antennal lobe.
Neuron 88, 1–1
We verified this synchronization directly

with simultaneous intracellular record-

ings from LNs and PNs while the animal

was exposed to odor plumes. During

and immediately following individual

EAG deflections, pairs of LNs showed

subthreshold membrane potential oscil-

lations were phase-locked to each other

and to the LFP (33 LNs in 12 experiments;

see examples in Figures 2A and 2B). Dur-
ing these deflections, some PNs were transiently inhibited, while

others fired action potentials that were generally phase locked

to the LNs and the LFP (example in Figure 2B). Odor elicited

PN spikes (from ten PNs in ten experiments) were highly and

significantly coherent with LFP oscillations (see below and

Figure 3A).

Aligning PN responses to odor-filament contact revealed slow

and multiphasic temporal patterns of spiking that outlasted the

odor-filament contact (Figures 2C and 2D). These patterns of

excitation and inhibition both depended on PN and odor identity

and had profiles similar to those elicited by brief controlled

pulses of the same odor (Figures 2E and 2F; Laurent and Davido-

witz, 1994; Laurent et al., 1996). Thus, despite their intermittent

nature, naturalistic turbulent odor plumes elicit the principal dy-

namic neural features identified using longer, controlled odor

stimuli: oscillatory synchronization and slow temporal patterning

of antennal lobe neurons.
6, October 21, 2015 ª2015 Elsevier Inc. 3



Figure 3. Olfactory Response Features Evolve during an Odor Plume

(A) Beginning of a wind-tunnel trial (odorant was placed into the wind tunnel at 30 s). Simultaneous LFP, EAG, and intracellular PN records, plotted with a color-

coded sliding-window autocorrelation for the LFP. Recordings show LFP and PN responses coincident with EAG dips; autocorrelation shows gradual

appearance of LFP oscillations (banding patterns with period�50 ms =�20 Hz). Autocorrelation color calibration, min = blue (�0.85); max = red (1.17). Scale bar

(mV), LFP, 0.5; PN, 55; EAG, 0.15. Details in insets (red boxes). Note changes in LFP oscillatory power, decrease in PN response intensity, and increase in phase-

locking between the PN and the LFP. Inset scale bar, horiz, 150 ms; vert, same as above.

(B) Increasing LFP oscillations: LFP power (15–35 Hz, 10�4V2/Hz, means ± SEMs) during the first 15 EAG events averaged over all experiments (see Figure 2A).

LFP power during ‘‘flat’’ EAG epochs (red circles) remained small, whereas power during ‘‘peak’’ EAG epochs (blue squares) gradually increased (n = 22

experiments; two-way ANOVA, F event type * event [14] = 1.94, p < 0.02).

(legend continued on next page)
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Plumes Elicit Increasingly Sparse and Coherent Neural
Responses to an Odor
During each 3 min plume exposure, the locust encountered mul-

tiple odor filaments resulting in successive EAG deflections. Pre-

vious work using controlled, long-duration odor stimuli showed

that when the same odorant is repeatedly presented, each suc-

cessive PN response contains fewer but better synchronized ac-

tion potentials, correlated with stronger LFP oscillations and

stronger phase-locking between PNs and LFP (Stopfer and Lau-

rent, 1999). We tested whether the fluctuating and irregular

structure of natural odor plumes led to a similar increase of PN

spiking precision over the course of an odor plume presentation

(Figure 3).

To measure the potential change in PN synchronization from

one natural odor pulse to the next, we quantified LFP power in

the 14–34 Hz band over the first 15 EAG deflections (odor fila-

ment contacts) and over the first 15 periods of ‘‘flat’’ EAG (no

odor) (Figure 3B). The LFP power corresponding to flat EAG

epochs remained small and constant (circles, Figure 3B),

whereas LFP power measured during EAG deflections gradually

increased, reaching asymptote after seven to ten deflections

(squares, Figure 3B). The differences in LFP power were signifi-

cant (n = 22 experiments; two-way ANOVA, F Event type * event

(14) = 1.94, p < 0.02). Concomitant with this increase in LFP po-

wer, the intensity of each PN response (number of spikes/

response) decreased, mainly after the first stimulus (Figure 3C).

The change in spike number was significant (n = 10 experiments;

one-way ANOVA, F (14,126) = 12.62, p < 0.00001). Furthermore,

after the first few odor filament encounters, PN spikes phase

locked more precisely with the LFP, evident in the increased

coherence between PN firing and LFP oscillations (Figure 3D).

This increase in coherence was significant (n = 10 experiments;

one-way ANOVA, F (14,126) = 3.38; p < 0.00001) and reflects

the growing oscillatory synchronization of many PNs. These

changes and their time courses were similar to those evoked

by repeated controlled odor pulses (Stopfer and Laurent,

1999). Taken together, these results indicate that the intermit-

tency of natural, chaotic odor plumes result in ‘‘tuning’’ the

antennal lobe circuits, leading to sparser but increasingly struc-

tured PN responses.

Readout of PN Responses by an Observer during Plume
Stimulation
The above results reveal that the dynamic features of PN re-

sponses are efficiently driven by naturalistic odor plume stimuli.

This suggests that, despite the intermittent nature of plume stim-

ulation, it should be possible for downstream neurons to extract

odor identity from the PN population response. We tested this

first indirectly, by using classifiers to extract information about

odor identity from the PN responses (Figure 4), and second

directly, by using the downstream KCs as decoders of PN pop-

ulation output (Figure 5).
(C) Decreasing PN response intensity: number of spikes coincident with consecut

experiments; one-way ANOVA, F [14,126] = 12.62, p < 0.00001).

(D) Increasing PN-LFP phase-locking: coherence (see Experimental Procedures)

(means ± SEMs, n = 10 experiments; one-way ANOVA, F [14,126] = 3.38; p < 0.
We first used a simple unsupervised classifier to determine

whether the EAG-aligned PN firing patterns could be used to

successfully identify the odorants within our stimulus set (Fig-

ure 4A; see Experimental Procedures). In Figure 4A, the lower

group of traces shows the average classification performance

of ten experiments, each of which incorporates the firing pat-

terns from five simultaneously recorded PNs responding to

odor plume stimulation; we found that classification perfor-

mance greatly exceeded that predicted by chance alone (arrow,

Figure 4A). Classification performance was even better in a sin-

gle experiment combining the firing patterns of 13 simulta-

neously recorded PNs (Figure 4A, upper traces). We found that

response patterns corresponding to larger EAG deflections

(likely elicited by higher-concentration filaments) weremore suc-

cessfully classified than those aligned to weaker deflections.

This finding is consistent with earlier work showing that, for a

given odorant, higher concentrations elicit more separable re-

sponses (Stopfer et al., 2003). Although slightly longer samples

permitted more successful classification, samples as brief as

150–200 ms (the median duration of EAG deflections) enabled

classification success far above chance. These results demon-

strate that plume-elicited PN firing patterns can in principle sup-

port odor recognition.

Because the above classifier used plume-evoked data sets for

both training and classification, we next tested whether the en-

coding of odorant identity in regular pulsed stimuli could be

used to decode odorant identity in plumes. We derived Gaussian

mixed models (GMMs) of neuronal population responses (mean

and covariance) from the responses of simultaneously recorded

PNs to controlled square pulses of odorant with varying duration

(0.1–2.0 s) and intensity (0.1%–100% concentration). The GMM

was then used to ‘‘decode’’ the PN responses during plume

stimulation by calculating the posterior probability (i.e., the

probability of each model given observation of the correspond-

ing PN responses) in a sliding window along the duration of a

plume data epoch obtained in the wind tunnel. Alignment to

odor filament hits was done with the EAG.

We found that these models, constructed from responses of

groups of 5–19 PNs to regular pulses of an odor, accurately pre-

dicted the presence of that odor when given responses of the

same PNs to odors presented as chaotic plumes in the wind tun-

nel (three experiments). In a representative experiment (Figures

4B–4D), after recording the responses of PNs to controlled

odor pulses, we presented hexanol and then cherry odor to a lo-

cust in the wind tunnel. Figures 4B and 4C show that hexanol fil-

aments, observed as downward deflections in the EAG, match

the times when the PN response-based model, with very high

levels of confidence, predicted the presence of hexanol rather

than cherry. Figure 4D shows the average prediction for re-

sponses to both hexanol and cherry presentations, triggered

by EAG deflections. The same log posterior probability ratio

test was performed, with cross validation, entirely with PN
ive EAG dips decreased, mainly after the first encounter (means ± SEMs, n = 10

between PN and LFP responses increased with consecutive EAG deflections

00001).

Neuron 88, 1–16, October 21, 2015 ª2015 Elsevier Inc. 5



Figure 4. Decoding of PN Responses during an Odor Plume Using Unsupervised Classifiers

(A) An unsupervised algorithm could use plume-elicited PN responses to successfully classify odorants as one of five presented in the wind tunnel. Top set:

classification success using 13 simultaneously recorded PNs. Colored lines: classification achieved using PN responses grouped by corresponding EAG

amplitude (see legend); dotted line: classification using all responses, ungrouped. Bottom set: mean classification success for ten experiments, each containing

five PNs each. Note that classification improved as more PNs, greater lengths of response (abscissa), and patterns corresponding to stronger EAG deflections

were included in the analysis.

(B) A model constructed from responses of PNs to square pulses of odors could identify the odor present in a chaotic plume. Upper trace: EAG. Lower trace:

instantaneous probability of identifying the odor in the plume based on the responses of the PNs. Solid red line: level at whichmodels for either odormatch the two

odors equally well. Shown is the ratio of the natural logarithm of posterior probabilities from the two odorant models; positive deflections show when the model

classifier selected the ‘‘correct’’ odorant, larger deflections indicate higher probability of matching the odorant (see Supplemental Experimental Procedures).

Scale bars, vertical, 0.3 mV/80 log units; horiz., 10 s.

(C) Expanded view of boxed area in (B); the probability of selecting the correct odorant peaks when the odor filament crosses the antenna (shaded yellow). Solid

red line: at this level, models for either odormatch the two odors equally well; dashed red line: at this level, themodel is 4.93 108 (e20) timesmore likely to correctly

match the presented odor. Scale bars, vertical, 0.15 mV/20 log units; horiz., 10 s.

(D) When filaments are present, the models accurately predict the odor. Average natural log of posterior probability ratio conditioned on negative EAG deflections

of durationR200 ms. Blue and green lines: peaks in probability traces indicate times relative to EAG deflections at which the model assigns a high probability to

the presence of a given odor. Shaded shaded areas: 95% confidence interval for model prediction. Red dashed lines: 95% probability for each odorant.

Please cite this article in press as: Huston et al., Neural Encoding of Odors during Active Sampling and in Turbulent Plumes, Neuron (2015), http://
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responses elicited by regular odor pulses, yielding qualitatively

similar results (data not shown): when the EAG registered the

presence of an odor pulse, the probability of correctly identifying

the odor increased dramatically, with responses to high concen-

trations reaching log probability ratios as high as 40, matching

the largest probabilities obtained with odor plumes (see Fig-

ure 4C). Together, these results show that the PN response vec-

tors evoked by controlled and pulsed odors can be used to
6 Neuron 88, 1–16, October 21, 2015 ª2015 Elsevier Inc.
decode quasicontinuously and with negligible error rate, the re-

sponses of those same PN assemblies to chaotic plumes con-

taining these odors, suggesting that odor identity is encoded

the same manner given either pulse or plume stimulation.

Finally, because signals from closely consecutive filaments

within a plumemight interact and affect the ability of the olfactory

system to use certain temporal features of odor representations,

we examined the correlation between inter-filament interval and



Figure 5. Decoding of PNResponses during

an Odor Plume by Downstream KCNeurons

(A) Representative simultaneous recording shows

KC spikes (red) correlated with strong EAG dips

(presence of odor filament, green) and oscillatory

bursts in the LFP (transient olfactory network

synchrony, blue, band-pass 14-34 Hz). (A) shows

two consecutive 30 s recordings. 7, odorant

(cherry blend) placed in wind tunnel.

(B) KC in (A) also responded to brief (100 ms)

pulses of odorant; in this KC, the highest con-

centration (see Experimental Procedures) elicited

the most reliable responses. Fifteen trials of each

concentration; green line: average EAG response;

arbitrary scale is same for all five concentrations.

(C) KCs show similar response specificities when

activated by brief pulses or by plumes. For all KC-

odor pairs (blue dots, 28 KCs in ten experiments,

four or five odors each), specificity (see Experi-

mental Procedures) with pulse activation is plotted

against specificity with plume activation. Pulse-

and plume-elicited responses are highly corre-

lated (r = 0.73, p < 0.001).

(D) Spikes in KC in (A) are correlated with EAG

deflections. Green: EAG records (light green:

mean) corresponding to all recorded KC spikes

(red).

(E) Across all experiments, KC spikes tend to

occur during EAG deflections (analyzed times

indicated by horizontal shaded bars in D,

difference from mean ‘‘before’’) (means ± SEMs,

28 KCs in ten experiments; two-way ANOVA: F

[2,569] = 90.2, p < 0.0001).

(F) Spikes in KC in (B) are correlated with LFP

oscillations. Blue traces: LFP records (band-pass

14–34 Hz) aligned with corresponding KC spikes

(red line, t = 0).

(G) Across all experiments, KC spikes are corre-

lated with LFP oscillations; percent of ‘‘before’’

mean oscillatory power (10�4V2/Hz) in 14–34 Hz

band, integrated over times indicated by color

bars in (D), was significantly greater during KC

spikes than at other times (means ± SEMs, 11 KCs

in six experiments, two-way ANOVA: F [2,329] =

21.48, p < 0.0001).
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the ability to discriminate between odors. We examined the rela-

tionship between peak discrimination value—assessed by the

ratio of posterior probabilities—in a small (1.5 s) window

following deflections in the EAG trace, and interfilament inter-

vals. This analysis revealed that consecutive filaments interact

to a small but significant (R2 = 0.034, p = 0.0017) extent. The

slope of the regression line was 1.6 with a y intercept value of

17.3, indicating that for each additional 1 s between filament ar-

rivals, the classifier was, on average, about 5.50 (e1.6) timesmore

likely to correctly identify the odorant. Thus, it becomes easier

for the olfactory system to identify an odorant as consecutive fil-

aments are spaced farther apart in time within a plume. Note

however that, even when consecutive filaments completely

overlapped, the classifier was 3.26*107 (e17.3) times more likely
to correctly identify the odorant than when no filament was pre-

sent. Thus, the impact of interfilament interval is small relative to

the olfactory system’s overall discrimination ability.

Readout of PN Responses by Kenyon Cells during Plume
Stimulation
KCs are targets and natural decoders of the PNs’ output.

Because KCs are highly selective for certain odors presented

in controlled conditions (Perez-Orive et al., 2002; Shen et al.,

2013) and because they each sample about 50% of the PN pop-

ulation (Jortner et al., 2007), their responses should reveal

whether circuits can extract odor identity information from PN

ensembles during odor plume stimulation. How, then, do KCs

respond to odor plumes? In 32 wind-tunnel experiments, we
Neuron 88, 1–16, October 21, 2015 ª2015 Elsevier Inc. 7
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Figure 6. Locusts Actively Target Their Antennae to Odorant Locations

(A–C) Representative 3D antennal tip trajectory during 10 s presentation of clean air (blue) and odor (red). Black circles marked with white asterisks: the ‘‘odor

edge’’ (nearest point to the odor source along the odor stream that the antennae could reach).

(D) The same antennal trajectory in coordinates of antennal azimuth and elevation. Dotted lines: odor edge position.

(E and F) Average antennal sweep frequency (E) and amplitude (F) over an odor presentation trial (p < <0.001 for bothWilcoxon signed rank tests that frequency or

amplitude was the same before and during odor, n = 330 trials, 14 locusts). Orange shading: epoch when odor was on.

(G and H) Average walking turning velocity (G) and antennal azimuth position (H) of the locust during trials with odor presentation to either the right (green line) or

left (red line) of the animal (p < <0.001 for both two-sidedWilcoxon rank sum tests that walking direction or antennal azimuth was same during odor delivery from

the left and right, n = 214, six locusts). Orange shaded area: as in (E) and (F). In (G), positive turning velocity is to the locust’s right, negative to the left. In (H), data

are plotted with respect to the right antenna, and horizontal dotted line indicates average preodor antennal azimuth. In (E)–(I), data are shown as mean values

(solid line) ± SEM (shaded).

(I) Odor-induced change in antennal position is not explained purely by walking direction. Turning velocity indicates whether the locust is turning toward (positive

values) or away from (negative values) the odor. Average azimuth angles of the antennae are plotted for three different conditions: ipsilateral odor presentation

(black), contralateral odor presentation (gray), and nonodor (blue) conditions. Note that some standard error bars are too small to be seen.

(J) Example of how changing odor location changes the locations sampled by the left antenna of an individual locust. Small spheres: the antennal tip positions

that were more common during odor delivery from either the animal’s left (red) or right (green). Sphere radii are proportional to the difference between the

number of frames the antennal tip spent at a given location during the odor and nonodor conditions. Black circles marked with white asterisks: left and right odor

edges.

(legend continued on next page)
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recorded from 205 KCs, and found that KCs responded sparsely

in the presence of odor plumes. Figure 5A shows a typical

example of a KC responding to a plume of cherry odorant (green

traces indicate EAG responses, blue traces indicate the LFP, and

red tick marks indicate spikes of one KC). In 290 s of exposure to

the odor plume (60 s shown), this KC fired only 49 times. To

compare the odor specificity of KCs to plumes or long puffs,

we delivered both types of stimuli in the same experiments.

We found that KC spikes elicited by plume filaments predicted

responses to pulse delivery, and vice versa. The KC shown in

Figure 5A, for example, responded most reliably to puffs of the

highest concentration of cherry odor (Figure 5B), though at times

relative to pulse onset that varied with concentration (see also

Stopfer et al., 2003; Gupta and Stopfer, 2014). To quantify this

comparison, we made similar measures from 28 KCs in ten ex-

periments. All KCs so tested showed comparable sensitivities

to odorants (see Experimental Procedures) whether tested with

brief pulses or odor plumes; sensitivities were significantly corre-

lated with one another (r = 0.73; p < 0.001; Figure 5C).

Our simultaneous recordings further revealed that KC spikes

usually occurred during EAGdeflections. For example, Figure 5D

shows EAG activity around every spike recorded from the KC in

Figure 5A (red line, time of KC spikes; dark green, every corre-

sponding EAG trace; light green, average EAG response). Note

that, for this KC-odor pair, the delay between EAG deflection

and KC spike was consistent. We observed the co-occurrence

of EAG deflections and KC spikes in all of our paired recordings;

these results are quantified in Figure 5E (28 KCs in ten experi-

ments; two-way ANOVA, F (2,569) = 90.2, p < 0.001). We found

that the delay between an EAG-triggered KC spike varied from

KC to KC, and from odor to odor (see also Stopfer et al.,

2003); our perispike sample window was sufficiently long (0.5

s) to account for this variation. Our results thus show that KC

spikes are elicited by odor filament encounters. Finally, we found

that KC spikes usually (but not always) occurred during transient

increases in LFP oscillatory power. For example, Figure 5F

shows LFP recordings around every spike recorded from the

KC shown in Figure 5A. Again, all of our paired recordings re-

vealed this co-occurrence: summary data from 11 KCs in six ex-

periments show significantly increased LFP power (14–34 Hz)

during KC spiking (Figure 5G; two-way ANOVA: F (2,329) =

21.48, p < 0.0001). Thus, KCs tend to spike during periods of

odor-elicited transient PN synchrony of sufficient coherence to

cause observable LFP oscillations.

In summary, KCs responded to odor plumes sparsely, during

odor filament encounters, and when PNs were transiently syn-

chronized. These observations are consistent with those previ-

ously obtained using controlled odor pulses (Laurent and Nara-

ghi, 1994; Perez-Orive et al., 2002; Stopfer et al., 2003; Brown

et al., 2005) and show that, despite the intermittency of natural
(K) Arrows give the circular mean of the antennal tip distributions like that shown

from the left (red) or right (green). Mean position arrows are shown for both left a

(L) Circular means of the antennal angles that were more common when odor was

232 trials, two-sided Wilcoxon rank sum test that data from different odor positio

conditions).

(M and N) Distribution of per-trial median azimuth (M) and elevation (N) distances b

sweeps occur closer to the odor edge (y value = 0) in the odor condition (red) th
odor plumes, important information such as odor identity is still

reliably passed on from second- to third-order neurons of the ol-

factory system. In fact, the increase in spike timing precision

invoked by repeated stimulation from sequential odor filaments

in a chaotic plume may even serve to enhance coding precision

of the third-order neurons (Bazhenov et al., 2005).

Locusts Actively Sample Odors
Odor stimuli are also discretized by an animal’s own sampling

behavior. For example, many insects repeatedly sweep their

antennae through odor fields (Figure 1B). To study selectively

the effects of thesemovements, we developed amethod tomea-

sure a tethered locust’s antennal and walking behavior in

response to localized odor stimuli. We simultaneously measured

walking direction and the 3D position of both antennae relative to

the known 3D location of thin laminar odor or air streams (Figures

1F–1H and S2). This enabled us to calculate when a locust’s

freely moving antenna contacted the odor and, thus, to recon-

struct the animal’s self-imposed odor-stimulus time course. In

the absence of odor, locusts often engaged in ‘‘clean-air’’ an-

tenna sweeping. When an odor was presented, locusts

increased their antennal sweep frequency (Figures 6A–6E),

reduced their sweep amplitude (Figures 6D and 6F), walked (Fig-

ure 6G), and moved their antenna toward the odor source (Fig-

ures 6H and 6I).

In some insect species, antennal position covaries with

walking direction (Dürr and Ebeling, 2005). To assess whether

the antennal movements we observed were actively targeting

odors rather than simply being correlated with turning move-

ments, we examined antennal behavior as locusts made turns

both in the presence and absence of an odor filament. For any

given turning velocity toward the odor (positive turning veloc-

ities), we found that antennae swept closer to the odor source

than they would sweep during the same turning velocity without

odor (Figure 6I); this difference was dramatically reduced when

turning away from the odor (negative turning velocities). In addi-

tion, we found the positioning of the antennae matched that of

the odor source regardless of the source’s location in both azi-

muth (Figures 6J and 6K) and elevation (Figure 6L). In the pres-

ence of an odor, antennae swept primarily through the point

along the reachable odor filament closest to the odor source, a

position we termed the ‘‘odor edge’’ (blue circle in Figure 1G).

The angle between the position of each antennal sweep and

the odor edge decreased in the presence of an odor in both az-

imuth (Figure 6M) and elevation (Figure 6N; two-sided Wilcoxon

rank sum test that odor and non-odor data came from the same

distribution, p < 0.001 for both azimuth and elevation). Thus, the

locust’s odor-induced changes in antennal movements reflected

a targeted, active sampling strategy rather than a simple fixed

change in antennal behavior.
in J for six locusts (214 trials). Arrow color indicates whether odor delivery was

nd right antennae (as indicated by the position of the arrow base).

delivered from above (red) or below (green) the locust (data from eight locusts,

ns came from the same distribution: p < 0.001 for both azimuth and elevation

etween the antenna during a sweep and the odor edge. Note that the antennal

an the nonodor condition (blue).
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Figure 7. Simultaneous Electrophysiology and Behavior in Walking Animal

(A) Example projection neuron (PN) intracellular recording made as the locust actively sampled a laminar odor stream. Top green trace: 2D projection of the 3D

antennal tip trajectory. Colored tube indicates airstream location (blue, clean air; red, odor turned on). Saturated segments indicate when antenna intersected the

airstream. Vertical dotted lines: start of odor contact periods. Shown below (top to bottom) are the simultaneously recordedmembrane potential of a PN, the LFP,

LFP power (5–55 Hz band), forward component of walking, and LFP autocorrelation. Responses to antennal odor contact can be seen in both the PN and LFP

traces.

(legend continued on next page)
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Neural Responses during Active Sampling Behavior
To determine the effect of active sampling on the responses of

central olfactory neurons to odor, we made intracellular record-

ings from individual PNs and recorded LFPs from the mushroom

body as the locustmoved its antenna freely in andout of a laminar

odor stream (Figure 7A, as in the behavioral experiments

described in Figure 6). From results shown in Figure 6, we knew

that our odor stimuliwere sufficient to inducedetectable orienting

responses. We investigated whether the locust’s own sampling

of such a stimulus was sufficient to induce the dynamic neural

response features observed in our natural-plume experiments

(Figures 2A and 2B). As with odor-plume stimuli (Figure 3A),

when the antenna contacted the odor stream, transient oscilla-

tory waves appeared in the LFP that briefly outlasted the odor

contact (Figures 7A–7E); PN action potentials and subthreshold

membrane potential oscillations were phase-locked to the LFP

during these events (Figures 7B–7F). Thus, we could identify

stimuli that elicit behavior, record neural responses to these stim-

uli, and observe when the locust’s freely moving antenna first

contacted the odor stream. For the first time in locusts, we could

now compare behavioral and neural latencies directly.

For each period when the air stream was odorized, we noted

when the antenna first contacted the odor stream (t = 0 in Figures

7G–7I). After this initial contact, the antenna’s trajectory started

to diverge from its normal clean-air sweeping trajectory (red

versus blue, Figure 7G). To estimate the latency of the locust’s

behavioral response to the odor, we measured the probability

that the antennal positions at each time point following initial

odor contact came from the equivalent distribution of positions

during a clean-air sweep. Defining behavioral latency as the

time between initial odor contact and the time when this proba-

bility fell below p = 0.05 (Figures 7G and 7H; see Supplemental

Experimental Procedures), we found this behavioral latency to

be 210 ms (Figures 7G and 7H; N = 6 locusts, n = 125 trials).

When data from individual locusts were treated separately, this

latency fell within 140–510 ms. Thus, locusts changed their

antennal sweeping behavior after a single sweep through an

odor. We found that LFP power in the 10–30 Hz band peaked

on average 160 ms after each odor contact (Figure 7I). Thus,

the behavioral change occurred �50 ms, or one LFP oscillation

cycle, after the peak in neural response, measured as LFP po-

wer. Previous work has shown that this time encompasses the

transient period when responses of PNs evolve rapidly and the

PN population activity is most informative about odor identity

(Mazor and Laurent, 2005).
(B–E) High-resolution segment of traces in (A), showing LFP (gray) and PN (blu

potentials (B–D) and PN subthreshold responses (E) are phase-locked to the odo

(F) Odor-triggered average crosscorrelation between PN membrane potential an

(G–I) Combined behavioral and neural data from different experiments to estima

elevation during the antenna downsweep that resulted in the first contact with ei

Shaded regions: interquartile range of the antennal elevation. (H) Odor and nonod

(t = 0, first vertical dashed line). The time of this divergence is quantified by plotting

elevation data at each time point come from the same distribution. We defined

(horizontal dashed line). As a control we performed the same analysis on adjace

Mean standardized LFP power in the 10–30 Hz band occurring after odor (red) or

standard deviations, y axis has arbitrary units). The LFP power peaks on averag

behavior (210 ms).
Reconstructing Odor Filament Location from Neural
Response during Active Sampling
Locusts displayed a range of antennal-sweep motions when

sampling odors (Figure 6). Using simultaneous measures of

antennal movements and neural activity, we sought to identify

the specific movements that led to the strongest neural re-

sponses to odors. Sorting antennal sweeps by their correspond-

ing LFP responses revealed that the greatest LFP power

occurred during shallow antennal sweeps through the odor

stream (Figure 8A)—that is, during sweeps that resulted in longer

odor contacts (Figure 8B). This suggests the locust could, in prin-

ciple, increase the signal-to-noise ratio of the odor-elicited neu-

ral response by adjusting its antennal sweeps to obtain longer

odor samples. Our behavioral measures showed that locusts

do not do this; in fact, the median per-sweep contact duration

actually decreased by 16% in the presence of odor (Figure 8C).

Instead, locusts increased sweep frequency in the presence of

odor (Figure 6E), resulting in an increase in odor-contact fre-

quency: the median contact frequency increased by 49% in

the presence of an odor (Figure 8D).

We investigated possible consequences of this increase in

antennal sweep frequency and odor targeting by the antenna

(Figure 6). Our behavioral experiments suggested that locusts

use information about odor location to guide walking direction

and antennal search behavior. To test whether neural responses

contain information about odor location, we compared simulta-

neous measures of neural activity and antennal position. We

found that graphing antennal position color coded by 10–30 Hz

LFP power (corrected for the 160 ms neural delay) revealed a

reasonable estimate of the true odor location (Figure 8E). To

further quantify the information about odor location provided

by the neural responses to a given antennal sweep sequence,

we calculated the normalized mutual information (NMI; Stud-

holme et al., 1999; Pluim et al., 2003; see Supplemental Experi-

mental Procedures) between the LFP-power-based reconstruc-

tion (Figure 8E) and the actual known odor location (inset,

Figure 8E). NMI scores range from 0 to 1, from neural activity

providing no information to perfect information about odor posi-

tion at all locations across the spherical surface surrounding the

locust. (NMI never reaches 1 because the locust’s antennae

cannot reach all locations around its head.)

Thus we compared different sweep sequences across trials to

determine the patterns providing most neural information about

odor location. When a locust encounters an odor, it both in-

creases its antennal sweep frequency and shifts its sweep
e) responses during odor contact periods (orange). Note that both PN action

r-induced LFP oscillation cycles.

d LFP.

te their relative latencies from odor contact. (G) Median (dark lines) antennal

ther odor (red) or the clean airstream (blue) in each trial (125 trials, six locusts).

or average antennal trajectories diverge after the initial airstream/odor contact

the false discovery rate (FDR) corrected probability that the odor and nonodor

the behavioral latency as the time when this probability drops below p = 0.05

nt sweeps that both occurred during the no-odor condition (light gray line). (I)

clean airstream (blue) contact (data from eight locusts, 189 trials, error bars are

e at 160 ms, i.e., 50 ms before the first statistically distinguishable change in
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Figure 8. Neural Consequences of Active Sampling

(A and B) Stronger neural responses are driven by shallower antennal sweeps with a longer duration of odor contact. (A) Antennal tip elevations during each

upsweep through the odor are binned by strength of the resulting LFP power and the mean (±SEM) sweep trajectory plotted for each quintile of LFP power

(downsweeps showed a similar result, data not shown). A flatter line indicates a shallower sweep through the odor. Data from eight locusts, 189 10 s trials, 1,228

odor contacts. (B) The mean (±SEM) duration of odor contact per sweep is plotted for each of the LFP quintiles in (A) (overall median odor contact duration =

63 ms, data from both up- and downsweeps).

(C and D) Odor-induced changes in antennal sweep patterns result in shorter, higher-frequency odor contacts. Data are the percent change between odor and

no-odor conditions for median per-sweep airstream contact duration (C), and median contact frequency (D) (six locusts, 107 trials.)

(E and F) Odor filament location can be reconstructed from LFP power and antennal movements. Colored points show the antennal tip positions visited over an

entire experiment (53 10 s trials, bin size = 2� 3 2�). Points are color coded by the standardized 10–30 Hz LFP power that resulted from visiting that location (LFP

power is time shifted by 160ms to correct for neural latency). (E) plots data from the odor condition; (F) plots data fromwhen only the clean air streamwas present.

Background gray pixels indicate the location of the odor stream that the antenna was able to contact, shown in full in the inset of (E). The normalized mutual

information (NMI, a measure of how much information the LFP reconstruction contains about the odor location) was 0.17 and 0 for the odor and no-odor

conditions, respectively.

(G) The per-trial NMIs computed as in (E) and plotted against the per-trial average antennal sweep frequency. An increase in sweep frequency correlates with an

increase in information about the odor location.

(H) Per-trial NMI as a function of median elevation distance between the antenna and the odor during all sweeps in a trial. Changes in the elevation angle of

antennal sweeps to bring it closer to the odor, as was seen in the behavioral experiments, correlate with an increase in information about the odor location. Data

from eight locusts, 189 10 s trials, 1,228 odor contacts; error bars, SEM.

(legend continued on next page)
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elevation to a point closer to the odor (Figure 6). Both of these

changes strongly correlate with an increase in information about

odor location as measured by NMI (Figures 8G and 8H). This

observation led us to hypothesize that odor-induced changes

in antennal behavior increase the amount of information about

odor location available in the neural response. To test this hy-

pothesis, we used a simple model of odor-elicited LFPs to esti-

mate what the LFP responsewould have been, had an odor been

present during the antennal movements generated in the no-

odor trials. This model computed the kernel that best predicted

real LFP power responses given the odor stimulus time course

and noise matched to the data (see Supplemental Experimental

Procedures). We validated the model by showing that NMI

values based on real LFP data correlated well with those pro-

duced by the model given the same antennal movements (Fig-

ure 8I; Pearson’s correlation coefficient, r = 0.88). We applied

this model to antennal movements measured in both the

‘‘odor’’ and the ‘‘no-odor’’ conditions as if odor were present in

both. Compared to the ‘‘no-odor’’ condition, using the antennal

movements from the ‘‘odor’’ condition yielded a probability dis-

tribution with NMI values shifting higher (Figure 8J), even when

trials were truncated so that both odor and no-odor conditions

contained the same number of sweeps (Figure S3). This indi-

cates that, indeed, neural information about odor location was

enhanced by the odor-induced change in antennal movements.

Finally, by finding the maximum local contrast in the LFP

reconstruction image, we estimated the location of the edge of

the odor stream closest to the odor source (see Supplemental

Experimental Procedures). Our behavioral experiments had sug-

gested that the ‘‘odor edge’’ (Figure 1G) was an important stim-

ulus feature, potentially providing information about the walking

direction required to approach the odor source (Figure 6). We

found that the antennal movements during odor presentations

resulted in reduced error in estimates of the odor edge location

(Figures 8K and S3). Thus, results from both experiments and

modeling suggest that the antennal sweep patterns locusts

use in the presence of an odor provide more information about

both the overall location of the odor and the location of its

edge, a specific, behaviorally relevant stimulus feature.

DISCUSSION

Most animals, including humans, encounter natural odors as a

series of complex, intermittent patterns of stimuli. Such intermit-

tency is generated both externally by turbulent air or water and

internally by active sampling behaviors such as sniffing in mam-
(I) A simple model to predict the LFP power responses and thus the NMI from t

generated by themodel are strongly correlated with the NMI values obtained from

53 trials, one locust).

(J) Odor-location reconstruction quality differs between antennal movements disp

in (I) to estimate the NMI values that would result from the antennal sweep movem

odor and no-odor conditions. The red line gives the probability of each NMI valu

results from using the sweep patterns seen during the no-odor condition. The

antennal sweep patterns observed during the odor condition are used. Data are fr

(K) Using the samemodel LFP power data as in (J), we computed, for each trial, an

was reachable by the antenna). The angular distance between this estimate and t

angle error plotted for the odor (red) and no-odor (blue) sweep patterns. On aver

those during the no-odor condition, resulted in a better estimate of the odor edg
mals (Kepecs et al., 2006; Mainland and Sobel, 2006), antennule

flicking in crustaceans (Koehl et al., 2001; Koehl, 2006), wing

fanning in moths (Loudon and Koehl, 2000), or head-casting in

insect larvae (Gomez-Marin et al., 2011). Like the external world,

these sampling behaviors have the consistent consequence of

providing the animal’s olfactory system with repeated, intermit-

tent, discrete odor samples (Kay and Laurent, 1999; Spors and

Grinvald, 2002; Cang and Isaacson, 2003; Rinberg et al.,

2006a; Verhagen et al., 2007; Carey et al., 2009; Carey and

Wachowiak, 2011; Shusterman et al., 2011; Khan et al., 2012;

Nagel et al., 2015).

Despite this stimulus intermittency, many species can rapidly

identify (e.g., Uchida and Mainen, 2003; Abraham et al., 2004;

Rinberg et al., 2006b; Bhandawat et al., 2010) and locate (e.g.,

Budick and Dickinson, 2006; Porter et al., 2007; Willis, 2010;

Gaudry et al., 2013) odorants. Thus, a fundamental question is

how the nervous system processes odor stimuli with such com-

plex structures. This question becomes especially interesting

because many species use complex neural dynamics to encode

odor information. How do the neural dynamics interact with

those of a stimulus, and how is an animal’s sampling behavior

adapted to these neural codes? Using two new experimental

paradigms in a well-studied insect, we separated the two sour-

ces of natural odor intermittency and studied their respective ef-

fects on neural processing.

Natural Intermittent Stimuli Reliably Drive Temporal
Features of Olfactory Coding
Because of the technical challenges they present, naturalistic

plume stimuli have rarely been used to study olfactory coding

(Khan et al., 2012). In vertebrate experiments, odor presenta-

tions are often sustained, but rendered intermittent by a superim-

posed breathing or ventilation rhythm (e.g., Rinberg et al., 2006a;

Shusterman et al., 2011). Studies based on intermittent but well-

controlled odor stimuli have been fruitful in insects (Stopfer and

Laurent, 1999; Vickers et al., 2001; Brown et al., 2005; Martelli

et al., 2013; Riffell et al., 2014) where many features of dynamic

neural encoding have been characterized (Laurent, 2002). Here,

we used the locust olfactory system, in which antennal odor re-

ceptors are more readily accessible to the external world than

are the internal, turbinate-bound receptors of vertebrates, to

examine how naturalistic odor plumes, like those encountered

in natural settings such as forests and fields (Murlis et al.,

2000), are encoded and decoded by second- and third-order ol-

factory neurons. It has been suggested (Vickers et al., 2001) that

the complex temporal structures of natural odor stimuli would
he measured antennal movements and known odor location. The NMI values

the real LFP power measured during the same antennal movements (data from

layed in odor and no-odor behavioral conditions.We used themodel described

ents recorded in the behavioral dataset if odor had been present during both

e when using the sweep patterns seen during odor presentation; the blue line

curve peak shifts to better odor-location reconstructions (higher NMI) when

om six locusts; trials where the antenna did not contact the odor are excluded.

estimate of the location of the odor edge (closest point to the odor source that

he actual odor edge was calculated. Probability of obtaining different values of

age, antennal movements that occurred during the odor condition, rather than

e location.
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interfere with dynamical features of olfactory neuronal re-

sponses, such as the slow temporal patterns of spiking and pe-

riodic synchronization that had been revealed mainly by regular

and sustained odor stimuli (reviewed in Laurent, 2002), casting

doubt on the functional relevance of neural response timing.

Our results establish that chaotic odor plumes drive olfactory

circuitry to generate all the spatiotemporal features of PN and

KC responses characterized earlier under sustained, stationary

stimulation regimes (Laurent and Davidowitz, 1994; Stopfer

and Laurent, 1999; Wehr and Laurent, 1996; Laurent et al.,

1996; Stopfer et al., 1997, 2003; Perez-Orive et al., 2002; Mazor

and Laurent, 2005). Despite introducing variance into odor-en-

coding temporal response patterns, the very brief, irregular

odor encounters generated by chaotic plume stimulation provide

a highly efficient input for generating odor-specific, distributed,

spatiotemporal patterns of synchronous activity in antennal

lobe neurons that outlasted the transient odor filament encoun-

ters. These brief population firing patterns efficiently drove their

downstream decoder neurons the KCs in an odor-specific

manner and could be used successfully for unsupervised odor

classification. Over the duration of an odor plume, the temporal

precision of the PN responses significantly increased, with suc-

cessive filament encounters eliciting fewer but more precisely

aligned spikes in PNs, and stronger �20 Hz oscillations in the

LFP. Our results indicate that odor identification is robust to nat-

ural stimulus intermittency and suggest that the same spatiotem-

poral activity patterns that have been observed with sustained

odor exposure are likely to be part of the locust’s processing

of natural olfactory stimuli.

An Active and Adaptive Odor-Sampling Strategy
In addition to the natural stimulus intermittency of odor plumes,

many species impose intermittency through olfactory sampling

behavior. Insects have been shown to adjust the movements

of their antennae when an odor is presented (e.g., Nishiyama

et al., 2007), and such movements have been suggested to

reflect active odor sampling (e.g., Wilson, 2008; Wachowiak,

2011). It was not known, however, whether these movements

represent targeted olfactory sampling or rather, nonspecific

manifestations of a change in the animal’s state, triggered by

the stimulus.

We established a new preparation to enable recording from

olfactory neurons while the animal actively scanned its sur-

roundings with its odor-sensitive antenna. Our results show

that the locust’s antennal flicking does represent a directed

odor sampling strategy. We found that antennal movement tra-

jectories shifted significantly as the antenna completed its first

sweep through an odorized air stream. The timing of this

response was similar to the latency for ‘‘one-sniff’’ behaviors

observed in rodents (Johnson et al., 2003; Uchida and Mainen,

2003; Wesson et al., 2008). The brief behavioral latency we

observed, with odor-triggered antennal movements redirecting

within 50 ms after the peak of LFP power and within 200 ms of

odor contact, indicates that the behavioral shift began during

the initial ‘‘transient phase’’ of the PN population’s response.

At this time neural responses undergo rapid odor-specific

changes and provide, from an ideal decoder’s point of view,

the most information about odor identity (Mazor and Laurent,
14 Neuron 88, 1–16, October 21, 2015 ª2015 Elsevier Inc.
2005). Similarly, locusts sweep their antennae at the same

�0.8 Hz frequency (Figure 6E) at which PN responses are

most informative about the dynamics of a stimulus (Geffen

et al., 2009). Thus, the animal’s odor-elicited sampling behaviors

are aligned with the optimal informational window in the PN

ensemble. We did not find any evidence for anticipatory or

modulated PN activity during active sampling.

An inherent tradeoff exists between the quantity and the

quality of sensory samples that can be taken within a given

time: increasing sampling frequency produces more samples,

but if all the samples are shorter, they will each produce noisier

estimates. Indeed, we found that fast and steep antennal

sweeps evoked weaker neural responses than slow and

shallow sweeps that allowed longer contact with the odor.

Why, then, do locusts increase the frequency rather than the

duration of antennal odor sampling, when this reduces the

strength of the neural odor responses, effectively trading sam-

ple quality for quantity? First, weak population responses can

be informative, provided that they are temporally precise (Stop-

fer et al., 1997; Stopfer and Laurent, 1999; Perez-Orive et al.,

2002). Second, we found that this rapid sampling behavior

enabled a better reconstruction of the stimulus location from

the resulting neural responses by providing weak samples at

many locations as opposed to strong samples at a few loca-

tions. Thus, our results show that the increased stimulus inter-

mittency introduced by antennal active sampling behaviors

actually serves to enhance encoding of stimulus location, infor-

mation that is essential to the survival of the animal. Addition-

ally, because odor plumes change rapidly, serial sampling

strategies enable the efficient exploration of an unstable olfac-

tory space. It would be interesting to determine whether active

sampling behaviors in other sensory modalities such as

saccadic eye movements or whisking in rodents make similar

tradeoffs between quality and number of sensory samples to

improve stimulus localization.

Taken together, our results suggest that the formats of neural

representations of odors and antennal sampling behaviors are

well matched to provide both identification and localization of

natural odor stimuli. Not only does the locust olfactory system

efficiently encode naturalistic intermittent odor stimuli with infor-

mation-bearing dynamic neural responses, but locusts exploit

this ability by actively adjusting their sampling behavior to

increase the intermittency of stimulation, thus providing the

animal with more information about stimulus location. The rele-

vance of such changes in sampling frequency after odor detec-

tion (e.g., Wesson et al., 2009) is strongly indicated by recent re-

sults with rats tracking odor trails (Khan et al., 2012). Additional

sampling and decoding strategies, such as bilateral compari-

sons, have also been shown to be relevant both in rodents

(Khan et al., 2012) and in flies (Gaudry et al., 2013). The fasci-

nating similarity between strategies, if not mechanisms, em-

ployed by such distant animal species should eventually help

us converge on the underlying fundamental principles of olfac-

tory coding.
EXPERIMENTAL PROCEDURES

Full details are provided in the Supplemental Information.
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Animals

Results were obtained from 83 adult locusts (Schistocerca americana) of both

sexes and prepared as described in Laurent and Davidowitz (1994) and Stop-

fer et al. (2003).

Electrophysiology

EAGs were recorded using chlorided silver-wire electrodes placed in an iso-

lated antenna wired to a DC amplifier (Brownlee). Intracellular recordings

were made using sharp glass electrodes. KCs, some PNs and some LFPs

were recorded using tetrodes or silicone probes. Data were analyzed offline.

Odor Stimulation and Conditions

Odors were presented to immobilized animals in a 1 m long wind tunnel or

with a conventional olfactometer, or in animal walking on an air-supported

trackball via a set of directed and parallel tubing forming laminar flow in front

of its freely moving antennae. Odors were fresh flowers, freshly cut wheat-

grass or liquid odorants (‘‘green’’ odorants (Visser et al., 1979): 1-hexanol,

1-heptanol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, hexanal, 2-heptanone, 1-

octanol, and geraniol (Sigma); 3-pentanone (Aldrich); and mint and cherry

(LorAnn Oils).

Video Acquisition

Movies were recorded at 100 fps and 4683 490 resolution (Basler a602f cam-

era). Image acquisition was controlled through Matlab. Illumination was pro-

vided by an array of red LEDs (Thor Labs). Two mirrors placed on either side

of the locust at�45� provided three different views in all, allowing antennal po-

sition reconstruction in 3D. Camera frames were synchronized with the track-

ball and electrophysiology data with a TTL pulse.

Data Analysis

Methods are given in full in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, one movie, and Supple-

mental Experimental Procedures and can be found with this article at http://

dx.doi.org/10.1016/j.neuron.2015.09.007.
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