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Deformable surface models are often represented as triangular meshes in image segmentation applica-
tions. For a fast and easily regularized deformation onto the target object boundary, the vertices of the
mesh are commonly moved along line segments (typically surface normals). However, in case of high
mesh curvature, these lines may not intersect with the target boundary at all. Consequently, certain
deformations cannot be achieved. We propose omnidirectional displacements for deformable surfaces
(ODDS) to overcome this limitation. ODDS allow each vertex to move not only along a line segment
but within the volumetric inside of a surrounding sphere, and achieve globally optimal deformations sub-
ject to local regularization constraints. However, allowing a ball-shaped instead of a linear range of
motion per vertex significantly increases runtime and memory. To alleviate this drawback, we propose
a hybrid approach, fastODDS, with improved runtime and reduced memory requirements. Furthermore,
fastODDS can also cope with simultaneous segmentation of multiple objects. We show the theoretical
benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively
on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation
accuracy as well as local accuracy in high curvature regions, such as the tip-shaped mandibular coronoid
processes and the ridge-shaped acetabular rims of the hip bones.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we address the issue of segmenting highly curved
anatomical structures in three-dimensional medical image data.
The aim is to improve segmentation accuracy. Segmentation meth-
ods based on deformable models (Terzopoulos, 1988; Xu et al.,
2000; He et al., 2008) have been shown to cope in a highly robust
manner with typical imaging deficiencies, such as noise, artifacts,
partial volume effects, low or no contrast due to adjacent anatom-
ical structures with similar appearance, etc. The basic idea is to de-
form a given (template) shape in such a way that the deformed
shape provides an optimal geometric representation of the corre-
sponding structure in the image.

Among many different types of deformable models, meshes are
advantageous in many respects, such as flexibility and topology
preservation (Montagnat et al., 2001). Typically, the degrees of
freedom of the deformable mesh are increased in a multi-level
fashion (Okada et al., 2007; Ma et al., 2010; Yin et al., 2010; Zhang
et al., 2010; Seim et al., 2008; Kainmueller et al., 2007). At first,
only global deformations like rigid transformations or statistical
variations (Cootes et al., 1995; Heimann and Meinzer, 2009) are al-
ll rights reserved.
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lowed. This robustly produces initial deformed shapes that roughly
capture the structure sought-after in the image. On the finer levels,
more local assumptions are made on deformations (Okada et al.,
2007; Ma et al., 2010), in order to allow for more flexibility and
thus capture the specific details of the structure in the given image
data. On the finest level, each vertex position of the mesh can move
‘‘freely’’, subject only to regularity constraints that consider its di-
rect neighborhood (Yin et al., 2010; Zhang et al., 2010; Seim et al.,
2008; Kainmueller et al., 2007). We refer to such kind of deforma-
tions as free deformations.

Usually, the deformable mesh probes the image information at
each vertex position: The image data is evaluated within a certain
search space to assess suitable image features. Given these probes, a
new shape is computed by displacing the vertices of the mesh, fol-
lowing a trade-off between image fidelity and anatomically plausi-
ble deformation. Note that for free deformations, search space and
resulting displacement of an individual vertex are closely related,
while this is in general not the case for global deformations, where
individual resulting vertex displacements may deviate arbitrarily
from the respective search space.

The details of the image probing play a crucial role in the seg-
mentation process. To this end, unidirectional (i.e. linear, one-
dimensional) search spaces per vertex of the deformable mesh
are commonly used (Heimann and Delingette, 2011) due to a
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Fig. 1. 2D sketch of an exemplary deformable mesh (dark grey, with vertices as
black dots) and target object (light grey). (a) Normal search spaces (directions
indicated by lines through vertices) on a tip-like structure detect no target
boundary points for a large set of vertices. (b) Resulting unregularized deformation
onto target object boundary. Avoiding self-intersection of the mesh suppresses
displacement of bottom left-most vertex.
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number of benefits: (1) Feature assessment is fast within one-
dimensional subsets of the image; (2) It is easy to select the ‘‘best’’
feature, as required by many methods (Cootes et al., 1995;
Kainmueller et al., 2007), because a one-dimensional search space
is likely to hit the target surface at only one single point (or at most
a finite number of points), and hence the set of suitable features is
likely to be small; (3) Free deformations can be computed in a
globally optimal way for unidirectional search spaces (Li et al.,
2006); (4) Normal vertex displacements implicitly restrict the
deformation of the surface in a way that reduces (but does not
prevent) the risk of generating mesh inconsistencies like self-
intersections or fold-overs.

However, unidirectional search spaces suffer from restricted vis-
ibility: They are prone to miss features in the image data (Fig. 1). In
case global deformations are employed, this problem may be alle-
viated by the fact that individual vertex displacements are not
tightly coupled to their respective search spaces. On free deforma-
tions, however, the problem has a severe impact: E.g., local trans-
lations of highly curved surface regions such as tips or ridges can
hardly be achieved (cf. Figs. 1 and 4). This holds true independently
of the chosen mesh resolution.

One approach to confront the visibility problem is repeated –
i.e. iterative – search for image features and respective deforma-
tion, where the hope is that visibility will improve in the next
iteration. There is, however, no guarantee to this end. Furthermore,
iterative deformation of meshes may easily lead to mesh inconsis-
tencies such as self-intersections (Park et al., 2001). This requires
additional remedial actions such as adaptive step-size control,
adaptive remeshing or mesh surgery (Bucki et al., 2010).

In this paper, we propose a method to overcome the visibility
problem for free deformations.1 The basic idea is to enlarge the
search space for image features to allow not only unidirectional
but omnidirectional displacements at each point of the deformable
model. On a deformable mesh, we asses features at – and allow dis-
placements to – a discrete set of points within a ball2 around each
vertex, thus guaranteeing visibility within some radius. Free defor-
mations are modeled by penalizing differences of displacements on
edge-connected mesh vertices. This discrete formulation enables
us to frame the segmentation problem as a Markov Random Field
(MRF), as will be explained in Section 2. MRFs can be optimized effi-
ciently (Komodakis et al., 2008), which has made them attractive for
many applications in image processing and computer graphics (see
e.g. Glocker et al., 2008; Paulsen et al., 2010). We denote the method
1 This work extends the authors’ paper presented at MICCAI 2010 (Kainmueller
et al., 2010), from which some text passages and figures are reused with kind
permission from Springer Science + Business Media.

2 Note that we use the term ball to refer to the volumetric (three-dimensional)
interior of a sphere, while with the term sphere we refer to the surface of a ball, i.e. a
two-dimensional manifold embedded in 3d.
of ball-shaped search spaces combined with MRF optimization for
surface mesh deformation as omnidirectional displacements for
deformable surfaces, or ODDS.

Allowing a three-dimensional search space per mesh vertex has
the drawback of significantly increased run-time and memory
requirements as compared to unidirectional search spaces. There-
fore, we also propose an extension to ODDS that is faster and less
memory-intensive – denoted as fastODDS. The key idea for fast-
ODDS, presented in detail in Section 3, is to allow omnidirectional
displacements only in regions of high curvature, while restricting
displacements to surface normals in ‘‘flat’’ surface regions.

Section 4 provides an extensive evaluation of ODDS and fast-
ODDS on synthetic and clinical data. In Section 5 we will analyze
and discuss these results in depth. Here, we will also address the
influence of mesh resolution and mesh consistency.

In summary, our results indicate that

1. ODDS can handle free deformations of meshes with high curva-
ture where previous approaches based on normal displace-
ments fail.

2. fastODDS keep all the benefits of ODDS for highly curved sur-
face regions, while being twice as fast and requiring 50% less
memory.

3. In contrast to ODDS, fastODDS can also be applied successfully
for simultaneous segmentation of multiple objects.

2. ODDS

For a more thorough search for image features in terms of the
visibility problem (see Section 1), we propose to extend the search
space at each vertex of a deformable surface mesh from a line seg-
ment to a ball centered at the respective vertex position. We define
the segmentation problem as a trade-off between finding suitable
image features within these ball-shaped search spaces and simul-
taneously considering local regularization.

Volumetric (three-dimensional) ball-shaped search spaces of
neighboring vertices overlap heavily in case the ball radius is big-
ger than the distance between the respective vertices; further-
more, individual search spaces most probably contain a whole
region (two-dimensional manifold) of the target surface. Hence
highly inconsistent (dissimilar) displacements on neighboring ver-
tices may point to the target surface. The type of local regulariza-
tion we employ must be able to avoid highly inconsistent
displacements of adjacent vertices. We achieve this in a discrete
setting (Sections 2.1 and 2.2) via Markov Random Field (MRF) en-
ergy minimization (Section 2.3).

We denote the set of vertices v of the deformable surface mesh
as V ¼ fv i 2 R3ji ¼ 1 � � �nVg, and the set of pairs of adjacent (i.e.
edge-connected) vertices ðv ;wÞ as E � V � V . Each vertex v can
be moved by adding a vector, or displacement, s 2 S, where
S ¼ fsi 2 R3ji ¼ 1 � � �nSg is a discrete set of possible displacements.
We refer to a mapping d : V ! S; v # dðvÞ ¼: dv that assigns a
displacement to each vertex as displacement field. We call a posi-
tion v þ s sample point. The set of sample points v þ S defines the
search space for vertex v. Note that this definition has the effect
that the search space of a vertex equals its range of motion.

2.1. Omnidirectional displacements

We define S as a set of displacements that are uniformly distrib-
uted within a ball of radius rS, i.e. 8s 2 S : ksk < rS, where rS is a
parameter of our method. Displacements in S are arranged as a
cubic close-packed lattice (Conway et al., 1999); see Fig. 2a for a
2D sketch. We denote the minimum Euclidean distance
between unequal displacements si; sj 2 S as sampling distance
dS :¼ minsi–sj

ksi � sjk.
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We refer to this ball-shaped set of displacements as omnidirec-
tional displacements. Note that omnidirectional displacements are
interpreted in the same (world) coordinate frame for all vertices
(see Fig. 2b and c). In consequence, applying the ‘‘same’’ displace-
ment to different vertices means shifting these vertices by the
same three-dimensional vector. This is different from traditional,
unidirectional sets of displacements (i.e. unidirectional displace-
ments), where the set of displacements is specified via a set of
lengths, and actual displacement vectors are obtained as vectors
of the respective lengths in vertex-individual directions. In other
words, each vertex has its individual set of displacements, and
‘‘same’’ displacements on different vertices have same lengths
but may have different directions.

2.2. Objective function

For each displacement s 2 S and vertex v 2 V , a scalar cost
/ðv; sÞP 0 encodes whether sample point v þ s is believed to lie
on the target object boundary within the image I : R3 ! R. The
stronger the belief, the lower the cost. In other words, /ðv; sÞ serves
as a penalty for the case that v is displaced by s. In general, how-
ever, any / : V � S! Rþ0 is feasible as cost function.

For each two displacements si; sj, a scalar ‘‘distance’’
wðsi; sjÞP 0 serves as a penalty for the case that si and sj occur
on adjacent vertices. The distance function w : S� S! Rþ0 takes
care of regularization. In the following, we assume that w is mono-
tonically increasing with the Euclidean norm of the difference of
displacements, ksj � sik, and depends on nothing else. Whenever
it adds to clarity, we sloppily denote wðsi; sjÞ ¼ wðksj � sikÞ.

We define the mesh adaptation problem as follows:

d ¼ argmin
fd̂v :v2Vg

X
v2V

/ðv ; d̂vÞ þ
X
ðv ;wÞ2E

wðd̂v ; d̂wÞ ð1Þ

This means we are looking for the displacement field d that mini-
mizes an objective function that sums up the image costs and dis-
tance penalties for all vertices. Note that Eq. (1) contains an
implicit parameter that controls the trade-off between ‘‘image fit’’
and regularization. It can be adjusted by scaling the cost- or the dis-
tance function.

Interpreting displacements in world coordinates (cf. Section 2.1)
yields distance-penalties for locally scaling (i.e. growing or shrink-
ing) the mesh, while parallel translations are not penalized (see
Fig. 2c). We consider this beneficial as we expect our initial meshes
as well as their local features to have approximately correct scale.
Alternatively, if scaling should not be penalized, one could inter-
pret displacements in local coordinate systems per vertex.

2.3. Optimal displacement field

We encode the objective function in Eq. (1) as an MRF, with ver-
tices being represented by MRF-nodes, mesh edges by MRF-edges,
and displacements by the possible states (also called labels) of the
nodes. Cost /ðv ; sÞ defines the unary potential of node v in state s,
and distance wðsi; sjÞ defines the binary potential of two adjacent
nodes in states si; sj. The MRF-state with minimal sum of poten-
tials yields the desired displacement field. We optimize the MRF
energy with a solver that is guaranteed to find an approximately
optimal solution (Komodakis et al., 2008). This solver can deal with
non-metric distance functions w – it solely requires w to satisfy
wðsi; sjÞ ¼ 0() si ¼ sj.

2.4. Refined regularization

The condition wðs1; s2Þ ¼ 0() s1 ¼ s2 has the effect that there
is always a distance penalty for unequal displacements on neigh-
boring vertices. In other words, even the smallest distance between
displacements, i.e. the sampling distance dS, is penalized if respec-
tive displacements occur on neighboring vertices. The sampling
distance serves as a scale on which features shall be detected in
the image data; in general it is not supposed to determine the
amount of regularization imposed upon mesh deformation. A
straightforward option to ‘‘tolerate’’ some larger distance between
displacements while respecting the condition wðsi; sjÞ ¼ 0
() si ¼ sj would be to set the respective distance penalties to a

very small value with respect to all others. However, setting very
small binary potentials to obtain ‘‘almost’’ unpenalized displace-
ment distances impairs the approximate optimality guarantees of
the MRF solver (Komodakis et al., 2008), which depend on the ratio
between largest and smallest non-zero binary potential.

Alternatively, we propose to approximate a ‘‘tolerated distance’’
with zero penalty as follows: Let eS ¼ f~si 2 R3ji ¼ 1 � � �neSg be a
second cubic close-packed lattice which is coarser than S, i.e.
deS > dS. eS partitions S into displacement blocks Bi by means of
nearest-neighborhood to its elements ~si. Formally, Bi ¼

s 2 Sj~si ¼ argmin
~s2eS ks� ~sk

( )
. Given the displacement blocks, we

set up an MRF with states ~si via unary potentials ~/ðv ;~siÞ ¼
mins2Bi

/ðv ; sÞ, and binary potentials ~wð~si;~sjÞ ¼ wðk~si � ~sjkÞ. We

optimize the respective MRF energy w.r.t. ~d : V ! eS and assign to
vertex v with ~dv ¼ ~si the displacement s 2 Bi with minimum cost,
i.e. dv ¼ argmin

s2Bi

/ðv ; sÞ.

The sampling distance of eS defines an upper bound to the
Euclidean norm of displacement differences that are not penalized.
More precisely, with block sampling distance deS , zero penalty is
attributed to displacements with ksi � sjk < deS in case si and sj be-
long to the same block, while the minimum non-zero penalty is
attributed to displacements with ksi � sjk < 2deS in case si and sj be-
long to adjacent blocks.

Note that the proposed approach allows for the ‘‘best’’ approx-
imative optimality guarantee of the MRF solver (Komodakis et al.,
2008) given the desired amount of regularization. Furthermore,
memory requirements are significantly reduced as compared to
the straightforward approach: The size of the MRF to be solved de-
pends only on the desired amount of regularization, and does not
increase in case of refined search space sampling. These advanta-
ges come at the cost of distance penalties not only depending on
actual displacement distances, but also on displacement block
organization.
3. FastODDS

ODDS are designed to allow for accurate segmentations of highly
curved structures, while methods that employ unidirectional dis-
placements are fundamentally limited here (cf. Fig. 1). The method-
ological benefits of ODDS come with the drawback of increased
runtime and memory. The required number of sample points per
vertex for a ball-shaped range of motion with radius r is in Oðr3Þ,
while it is in OðrÞ for line segments of length 2r, with corresponding
runtime and memory requirements. For instance, given a medium-
sized mesh with about 8500 vertices, together with a displacement
set S with diameter 2rS ¼ 15 mm and sampling distance dS ¼ 0:4
ODDS take about 2:30 min to compute on a 3:5 GHz core and re-
quire more than 4:5 GB of memory (cf. Table 4).

Unidirectional displacements – apart from the above-men-
tioned limitations – do allow for an accurate segmentation of ‘‘flat’’
structures: At least, the non-visibility problem is unlikely to occur
here. Anatomical structures of interest in medical image analysis
often exhibit mainly flat or only slightly curved surface regions,
while high curvature appears on a much smaller amount of their
surface.



Fig. 2. 2D sketch of omnidirectional displacements: (a) Black dots depict three vertices v1; v2; v3 of a deformable mesh. Ball-shaped ranges of motion S (large grey disks)
around each vertex are discretized via sample points (light dots). (b) Exemplary displacements s1; s2; s3 to sample points are shown as black arrows, where equivalent
displacements on different vertices are indicated by corresponding numbers. (c) Applying the same displacement to all vertices leads to parallel translation.

3 Ridges may be computed automatically on the initial segmentation (see Appendix
B), or, in case a statistical shape model is used for initial segmentation, defined a priori
(automatically or manually) on the model.
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Therefore we propose to use omnidirectional displacements
only in (and next to) surface regions with high curvature, while
employing unidirectional displacements in flat surface regions
(see Section 3.2). Thus we exploit the benefits of ODDS, while
reducing runtime and memory via an overall reduced amount of
sample points. We call this approach fastODDS.

We propose to compute unidirectional and omnidirectional dis-
placement sequentially (see Section 3.4). Hence, in general, any
method for obtaining unidirectional displacements can be chosen.
In this work, we employ the graph cuts based method of Li et al.,
2006 (see Section 3.1), because (1) it has proven to be powerful
for accurate fine-grain segmentation of medical image data (Yin
et al., 2010; Lee et al., 2010; Zhang et al., 2010; Petersen et al.,
2011; Seim et al., 2008, 2010), and (2) it allows for simultaneous
segmentation of multiple objects (Yin et al., 2010), a property that
we call multi-object ability. In the following, we refer to this method
as GraphCuts. Simultaneous segmentation of multiple objects is
beneficial in case of low contrast or similar appearance of adjacent
objects, e.g. for accurate segmentation of adjacent bones in joints.
As described in Section 3.5, the multi-object ability of GraphCuts
can be transferred to fastODDS.

3.1. Unidirectional displacements

In contrast to ball-shaped ranges of motion, unidirectional
ranges of motion are defined per vertex of the deformable mesh.
Usually, directions normal to the deformable surface are chosen,
but any other predefined directions and generally also curves can
be employed. Directions ‘v 2 R3 with k‘vk ¼ 1 yield respective dis-
cretized displacement sets per vertex, Lv ¼ fli 2 R3ji ¼ 1 � � �nLv g,
with lengths klik < rL, where rL is a parameter of the method.

Given unidirectional (sets of) displacements Lv per vertex, we
employ GraphCuts (Li et al., 2006) to compute the displacement
field with minimum sum of costs subject to local constraints on
the difference between the lengths of adjacent displacements. For-
mally, GraphCuts compute the optimal solution to

d¼ argmin
fd̂v :v2Vg

X
v2V

/ðv ; d̂vÞ subject to 8ðv;wÞ 2 E : j‘v � d̂v � ‘w � d̂wj< c;

ð2Þ

where c 2 R is a regularization parameter. Here, the (signed) length
of displacements must define a total order, i.e. the set(s) of displace-
ments must be one-dimensional.

3.2. Where to use omnidirectional displacements

When defining the surface region where omnidirectional dis-
placements shall be applied (OmniD-region), we assume that we
want to achieve a smooth transition to the region where unidirec-
tional displacements shall be applied (UniD-region). Consider e.g. a
sharp ridge surrounded by flat surface regions. Imagine we want to
translate this ridge in a direction roughly parallel to the flat surface
regions. To achieve a smooth overall displacement field, surface-
tangential movements cannot be allowed on the boundary of the
OmniD-region. Therefore we need to employ omnidirectional dis-
placements not only in the region of high curvature (i.e. on the
ridge and in a very small area around it), but within a larger tran-
sition region around the ridge. Hence, a band of some width around
high-curvature regions has to be included in the OmniD-region
(see Fig. 3).

We propose to define the OmniD-region as follows: (1) Identify
ridges on the surface3; (2) Identify the surface region that lies within
a certain geodesic distance g to those ridges. As for the UniD-region,
we define it as the complement of the OmniD-region on the surface.
Fig. 8a shows OmniD- and UniD-regions on an exemplary anatomical
structure.

The geodesic distance threshold g is a parameter of fastODDS.
Informally speaking, it should be large enough to allow for the de-
sired amount of displacement of ridge vertices without too much
distance penalty. Consider a deformable mesh with mean edge
length em. Then, g=em roughly estimates the number of edges that
connect a ridge to the boundary of the OmniD-region. Stretching
(or shrinking) each of these edges by one sampling distance d
can reach a translation of the ridge up to d � g=em. In case we can
estimate a desired maximum amount of displacement t 2 R, we
may define g ¼ em � t=d. This way, the desired displacement of ridge
vertices can be achieved with no more than the minimum non-
zero distance penalty wðdÞ at any edge.

3.3. Objective function

We propose to compute displacements for OmniD- and UniD-
region with ODDS and GraphCuts, respectively. If not mentioned
otherwise, we use the same notation as in Section 2. Let VU be
the vertices in the UniD-region, VO the ones in the OmniD-region,
with V ¼ VU [ VO and VU \ VO ¼ ;. The pairs of adjacent vertices E
are partitioned into EO ¼ VO � VOð Þ \ E, EU ¼ VU � VUð Þ \ E and
E@ ¼ VO � VUð Þ \ E. This means EO contains the edges in the Om-
niD-region, EU the edges in the UniD-region, and Ed the edges that
bridge between VO and VU . We refer to the set of vertices in the
UniD-region which are part of an edge that bridges to the Om-
niD-region as UniD-boundary @VU ¼ fw 2 VU ; 9vinVO : ðv ;wÞ 2 E@g.

We are dealing with two sets of displacements, namely the dis-
cretized ball-shaped range of motion S which applies to all vertices
in the OmniD-region, and discretized linear ranges of motion Lv

along directions ‘v per vertex of the UniD-region. We assume for
the moment that 8v 2 VU : Lv � S (see Section 3.4). In this context,
for ease of notation, we refine the definition of a displacement field
to



Fig. 3. 2D-sketch of OmniD- and UniD-region on an exemplary tip-like mesh
(vertices depicted as dots) with ridge at rightmost vertex (blue dot). Only a small
region around the ridge exhibits high curvature, as indicated by the light blue,
dashed line. Instead, we assign vertices within a certain geodesic distance g around
the ridge to the OmniD-region; all others belong to the UniD-region. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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d : V ! S; v # dðvÞ ¼: dv
2 S : v 2 VO

2 Lv : v 2 VU

�
ð3Þ

Then the objective function of fastODDS is defined as follows:

d ¼ argmin
fd̂v :v2Vg

X
v2V

/ðv; d̂vÞ þ
X

ðv;wÞ2EO[E@

wðd̂v ; d̂wÞ

s:t: 8ðv;wÞ 2 EU : j‘v � d̂v � ‘w � d̂wj < c
ð4Þ

Note that Eq. (4) sums up Eq. (1) on the OmniD-region and Eq. (2)
on the UniD-region, and adds to that the distance penalties for
edges bridging between OmniD- and UniD-region.

3.4. Optimal displacement field

We follow the simple idea to compute unidirectional and omni-
directional displacements sequentially, in a way that a smooth
transition between UniD- and OmniD-region is achieved. There-
fore, we first obtain a displacement field for the UniD-region (via
GraphCuts or any other method), and second perform ODDS on
the OmniD-region, constrained by fixed displacements on the
UniD-boundary as computed beforehand.

This approach partitions the objective function in Eq. (4) into
two parts that are subsequently solved. First, we compute

djVU
¼ argmin
fd̂v :v2VUg

X
v2VU

/ðv ; d̂vÞ

s:t: 8ðv ;wÞ 2 EU : j‘v � d̂v � ‘w � d̂wj < c ð5Þ

via GraphCuts. Second, we approximate

djVO
¼ argmin
fd̂v :v2VOg

X
v2VO

/ðv; d̂vÞ þ
X

ðv;wÞ2EO

wðd̂v ; d̂wÞ þ
X

ðv;wÞ2E@

wðd̂v ;dwÞ
 !

ð6Þ

via MRF optimization. Note that in Eq. (6), dw ¼ djVU
ðwÞ is fixed for

all w 2 VU .
While GraphCuts yield a globally optimal displacement field

subject to the given constraints, and MRF optimization guarantees
an approximately optimal solution within provable bounds
(Komodakis et al., 2008), our hybrid approach for solving Eq. (4)
does not guarantee either of these global properties. The optimality
bounds guaranteed for MRF optimization would determine bounds
for the overall objective function in case we minimized Eq. (4) with
respect to the set of displacement fields on the UniD-boundary for
which a solution to Eq. (5) exists. This would require solving Eqs.
(5) and (6) for all feasible displacement fields on the UniD-bound-
ary. Their number is in Oðc=d � @VUj jÞ. As this is roughly 3 � 1000 in
our experiments (cf. Section 4), we did not follow this approach for
performance reasons.
Practically, to get a ‘‘good’’ solution on the UniD-boundary, we
perform GraphCuts on the whole surface except vertices on or next
to ridges. The overlap with the OmniD-region serves for an ex-
tended regularization in GraphCuts optimization; the resulting dis-
placements are discarded afterwards. Note that ‘‘cutting the
surface open’’ along ridges allows for translational movements of
surface regions near ridges with GraphCuts at least in one (sur-
face-normal) direction. Otherwise, moving the surface ‘‘inward’’
one side of a ridge and ‘‘outward’’ on the opposite side may not
be possible due to regularization.

As for the OmniD-region, practically, we enlarge it by the UniD-
boundary, and achieve fixed displacements for each boundary ver-
tex w 2 @VU by assigning zero cost /ðw; sÞ to s ¼ djUðwÞ and infinite
cost to all other displacements s 2 S; s – djVU

ðwÞ. More precisely,
as unidirectional displacements are generally not in S due to dis-
cretization, we assign zero cost to the closest displacement in S,
i.e. argmin

s2S
kdjVU

ðwÞ � sk, and infinite cost to all others.

3.5. Multi-object FastODDS

GraphCuts can be used for simultaneous segmentation of multi-
ple objects (Yin et al., 2010) via shared displacement directions for
arbitrary adjacent structures (Kainmueller et al., 2009b). Hard con-
straints on the distance between adjacent surfaces can be enforced.
To transfer this capability to fastODDS, we use multiple surfaces
that are coupled with shared displacement directions in adjacent
regions as input, and partition each surface into OmniD- and
UniD-region as for single-object fastODDS. Then, we apply multi-
object GraphCuts on the (coupled) UniD-regions. Subsequently,
we apply ODDS on the OmniD-regions as for single-object
fastODDS (cf. 6), i.e. constrained by fixed displacements on the
UniD-boundary as computed beforehand, here via multi-object
GraphCuts. This way, fastODDS can handle multi-object situations
in case adjacent surface regions are, at least to some extent, flat,
and hence equipped with linear range of motion.

If, however, the coupled region exhibits high curvature, it may
overlap with the OmniD-region. Consequently, the resulting de-
formed surface may intersect with the adjacent surface. This can
be prevented in case we know beforehand that one of the adjacent
surfaces does not exhibit high curvature. In this case, the multi-ob-
ject GraphCuts result on the ‘‘flat’’ surface can be used to modify
the cost function on the OmniD-region of the ‘‘curved’’ surface such
that no overlap can happen. This can be achieved by setting costs
to infinite for all sample points that lie inside the deformed ‘‘flat’’
surface. However, in case both adjacent surfaces exhibit high cur-
vature within the coupled region, multi-object fastODDS do not
guarantee non-overlapping results.

4. Results

To evaluate ODDS, we applied it to three types of 3D data: (1)
Synthetic binary images, (2) synthetic binary images with various
amount of noise, and (3) clinical image data. To evaluate fastODDS,
we applied it to two cohorts of clinical image data: (1) 106 CBCTs
of the mandibular bone – with the coronoid process as an exem-
plary tip-like structure – to assess the differences to ODDS, and
(2) 49 CTs of the hip bones – with the acetabular rim as an exem-
plary rim-like structure in a multi-bone environment – to assess
the multi-object ability of fastODDS.

On synthetic binary images and clinical image data, we also
computed results with GraphCuts (Li et al., 2006), as well as re-
peated, i.e. iterative GraphCuts (iGraphCuts). Furthermore we com-
pute results with an iterative, locally regularized method we refer
to as FreeForm (Kainmueller et al., 2007). FreeForm selects the min-
imum cost displacement for each vertex, truncates it to some max-
imum length (i.e. ‘‘stepsize’’), applies it and subsequently
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regularizes locally via a small displacement toward the centroid of
the respective adjacent vertices.

We computed costs /ðv ; sÞ 2 R from the image I : R3 ! R as
proposed by Seim et al., 2008: If the image intensity Iðv þ sÞ lies
within a certain window ½i0; i1�, and the directional image deriva-
tive rnv Iðv þ sÞ along the surface normal nv at vertex v is negative
and its absolute value exceeds a certain threshold j, the cost /ðv ; sÞ
is inversely proportional to rnv Iðv þ sÞk k.4 Otherwise costs are set
to a constant, high value /high. The thresholds i0; i1 and j are param-
eters of the strategy and are set per application (see Table 1).

As for the trade-off between image fit and regularization, we
scale the cost function such that a � wðdeSÞ < ð/high � /ðv ; sÞÞ
< a � wð2deSÞ for any cost /ðv ; sÞ < /high, where a ¼ 6 is the average
number of edges per vertex. Image derivatives are scaled such that
0 < /ðv ; sÞ < 0:5 � /high for any /ðv; sÞ < /high. This serves for a clear
distinction of features from ‘‘non-features’’, but also leaves room to
distinguish between the quality of features, i.e. there exist
/1 < /2 < /high with a � wðdeSÞ < ð/2 � /1Þ.

Whenever we compare different adaptation methods on the
same image data, we use the same cost function / for all methods.

For all omnidirectional displacements (ODDS and fastODDS), we
employ displacement blocks with sampling distance deS ¼ 3dS; as
distance function w, we use wðs1; s2Þ ¼ kðs2 � s1Þ=deSk3 in all experi-
ments. In all GraphCuts experiments (‘‘pure’’, iterative, as well as in
UniD-regions of FastODDS), the regularization parameter c equals
the block sampling distance deS as set in the respective ODDS/fast-
ODDS experiment, i.e. c ¼ deS .

Whenever we employ unidirectional as well as omnidirectional
displacements for the same image data (in multiple methods), the
length of the unidirectional range of motion equals the respective
ball diameter, i.e. rL ¼ rS. As for the sampling distance of unidirec-
tional displacements, we set it to half the sampling distance of the
respective omnidirectional displacements, i.e. dLv ¼ 0:5dS. When-
ever we employ fastODDS, we detect ridges automatically as de-
scribed in Appendix B with significance 0.04 mm�1 and curvature
threshold 0.1 mm�1. In contrast to GraphCuts and ODDS/fastODDS,
all FreeForm and iGraphCuts adaptations were performed itera-
tively, with 30 steps.

Table 1 lists the values of application specific parameters.

4.1. Synthetic images

We performed experiments on binary images5 of a cube and a
thin ellipsoid. As initial meshes, we used triangulated cube and tip
surfaces with ideal shape, but shifted pose (see Fig. 4a). We chose
ball diameters such that the target object boundary was located
completely within a band of respective width around the initial
mesh. Fig. 4b shows the results of adding normal displacements
without any regularization. The results of FreeForm-, GraphCuts-
and ODDS adaptation are shown in Fig. 4c, d and e, respectively.

We added various amounts of random noise to the binary cube
image and performed ODDS as before. The cube was detected cor-
rectly for noise with ranges ½�0:5 � � �0:5� and ½�2:5 � � �2:5�, and
failed for ½�5 � � �5�. Fig. 5 shows slices of the noisy image data
and the respective adaptation results.

4.2. Clinical data

4.2.1. Mandible (coronoid process)
In a quantitative evaluation on 106 mandible Cone-Beam CTs

with voxel size 0:33 mm3 we compared ODDS, fastODDS, FreeForm,
4 This means that for the computation of costs at a vertex v, image derivatives are
assesed in the same direction for all displacements s, namely in direction of the
surface normal nv at v, no matter which type of displacements are employed
(unidirectional or omnidirectional).

5 i.e. intensities 2 f0;1g.
iGraphCuts and GraphCuts results to gold standard surfaces ob-
tained from manual segmentations. Initial meshes were generated
automatically by adaptation of a statistical shape model (SSM)
(Kainmueller et al., 2009a).

For all omnidirectional displacements, we gave slight prefer-
ence to displacements that point further ‘‘outwards’’ in curvature
gradient direction rk1ðvÞ, where k1 is the first principal curvature
of the deformable surface. (Note that rk1ðvÞ is perpendicular to
the surface normal at v.) We achieve this preference by adding to
/ðv ; sÞ a small cost proportional to rS � s � rk1ðvÞ=krk1ðvÞk. To
also exploit information about curvature gradient for all unidirec-
tional displacements, we do not use normal displacements, but ro-
tate displacement directions from surface normals towards
curvature gradient direction. We found that a rotation angle of
45 degrees yields the best results for the mandible. By considering
the curvature gradient of the mesh, we intend to find ‘‘better’’
points on the sharp, tip-like target structure in the sense of ana-
tomical correspondence, and hence reduce the amount of mesh dis-
tortion necessary for accurate segmentation of the tip.

For both gold standard as well as automatically determined
mandible surfaces, we extracted the right coronoid processes as
the region of the mesh that lies above 1/2 of the extension of the
mandible in transversal direction, between 1/3 and 2/3 of exten-
sion in dorsoventral direction, and above 2/3 in longitudinal direc-
tion. Extraction of the left coronoid process worked analogously.
We identified the tip point as the upmost vertex in longitudinal
direction. See Fig. 6 for an exemplary mandibular bone anatomy.

As error measures for the coronoid process, we assessed the tip-
to-tip distances (tip2tip), tip-to-surface distances (tip2surf), and
Hausdorff (max) surface distances, as well as the percentage of
two-sided surface distances above 1:2 mm (%>1.2 mm). Evaluation
results are shown in Table 2 and Fig. 7. As measurements are not
normally distributed, we performed Wilcoxon’s signed-rank test
(Hollander and Wolfe, 1999) to assess the significance of differ-
ences between methods.

4.2.2. Hip bones (acetabular rim)
In a quantitative evaluation on 49 hip CTs with voxel size

0:9� 0:9� 1 mm3 we compared fastODDS and GraphCuts results
to gold standard surfaces obtained from manual segmentations.
Initial meshes were generated automatically by adaptation of an
articulated statistical shape model (ASSM) of hip bones and femur
(Kainmueller et al., 2009c). In case of omnidirectional displace-
ments, we gave slight preference to displacements in surface cur-
vature gradient direction, as described before for the mandible
(cf. Section 4.2.1).

Again, we experimented with unidirectional displacements ro-
tated from surface normals towards curvature gradient directions
to also approfit from curvature gradient information – however,
we found that for the hip bones, this does not improve accuracy.
We attribute this to the more complex shape of the hip bones,
which exhibit concave and convex structures in close proximity,
and do not show such a sharp and long tip as the mandibular cor-
onoid process. Consequently, we stick to normal displacements
here.

For an unbiased, reproducible delineation of the acetabular rim,
we computed it automatically as described in Appendix A on both
gold standard segmentations and adaptation results. As error mea-
sures for the acetabular rim, we assessed the Hausdorff (max) curve
distance as well as the percentage of distance above
1:5 mm ð% > 1:5 mm). Furthermore, we assessed the max surface
distance as well as the % > 1:5 mm measure for the whole hip
bones.

Evaluation results for both acetabular rim and whole hip bone
are shown in Table 3. As for the mandible, error measures are
not normally distributed, and hence we performed Wilcoxon’s



Table 1
Application specific parameters are the number of vertices #V of the deformable mesh (which determines the average edge length of mesh triangles el (mm)), the diameter 2r
(mm) of the range of motion, the sampling distance dS (mm) of the set of displacements, the number of sample points #S and MRF labels #eS resulting for ODDS/fastODDS, the
intensity window ½i0 ; i1� of the cost function, the gradient magnitude threshold j (1/mm) and filter length nf (in number of edges) and geodesic distance g (mm) for definition of
the OmniD-region.

#V el 2r dS #S #eS ½i0; i1� j nf g

Cube 770 1 26 0.5 105294 3768 [0.1,1.1] 0.1 – –
Ellipsoid 1797 1 31 0.5 178201 6989 [0.1,1.1] 0.1 – –
Mandible 8561 1.2 15 0.4 41272 2188 [350,800] 75 6 6
Hip bone 14008 2.1 20 0.5 48078 1714 [120,720] 25 10 10

Fig. 4. Results on synthetic data. Deformable mesh (red/dark grey mesh) and target object (transparent grey surface) are shown (a) in their initial situation, and after
deformation via (b) displacements along normals without regularization, (c) FreeForm, (d) GraphCuts, and (e) ODDS. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Performance of ODDS in the presence of noise. We added random noise with range (a) [-0.5..0.5], (b) [-2.5..2.5] and (c) [-5..5] to a binary image of a cube. We show
slices of the image data and the respective adaptation result (red/dark grey mesh). The grey transparent surface depicts the ideal target object. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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signed-rank test to assess significant differences. Additionally,
Fig. 8b and c shows the averaged directional distance maps, i.e.
gold standard-to-result and result-to-gold standard distances,
respectively.

4.2.3. Performance
All experiments were performed on a single 3 GHz core with

8 GB main memory. Table 4 lists the average performance of all
methods applied to clinical data.

MRF optimization (Komodakis et al., 2008) took between one
and six seconds in all ODDS- and fastODDS experiments. Computa-
Fig. 6. Exemplary mandibular bone anatomy. Red circles: Left and right coronoid
process. Red dots: Respective tip points.
tion of the cost function /ðv; lÞ was more time-consuming,
accounting for more than 90% of the runtime of ODDS and fast-
ODDS as stated in Table 4. FastODDS and iterative GraphCuts have
comparable runtime.
5. Discussion

5.1. Accuracy

Experiments on synthetic binary images show that ODDS are
able to handle parallel translations of highly curved surface re-
gions, in contrast to conventional free deformation approaches
(GraphCuts and FreeForm) that employ normal displacements.
While global deformation models (i.e. rigid) may also yield the de-
sired vertex displacements in the experiments we present, ODDS
achieves them with free deformations.

Experiments on noisy synthetic images show that ODDS are
able to produce well-regularized displacement fields in the pres-
ence of noise. However, for a very low signal-to-noise ratio, ODDS
may fail to detect the target object.

Experiments on Cone-Beam CTs of the mandible show that both
ODDS and fastODDS are able to produce very accurate segmenta-
tions of tip-like structures. On 212 mandibular coronoid processes,
ODDS and fastODDS clearly outperform the GraphCuts, and Free-
Form approach. Here, normal displacements often exhibit the vis-
ibility problem. Fig. 9a–c shows exemplary results.

A comparison of ODDS and fastODDS on the mandibular
coronoid processes reveals no significant differences for any error



Table 2
Top to bottom: Average error measures (and standard deviation) for initial SSM adaptation (SSM), FreeForm, iterative GraphCuts (itGraphCuts), GraphCuts, fastODDS and ODDS
results on 212 coronoid processes and 106 entire mandibles, followed by differences A� B of average error measures for A;B 2 fGraphCuts; fastODDS;ODDSg, together with
significance levels of difference (p-values) as assessed with Wilcoxon’s signed rank test. A positive p-value indicates that B has lower error than A (at the respective level of
significance), while a negative sign indicates that A has lower error than B. Significance levels below 5% are marked with a star (*), below 1% with two stars (**), and below 0.1%
with three stars (***).

Coronoid process
tip2tip (mm) tip2surf (mm) max (mm) %> 1:2 mm (%)

SSM 2.44(2.10) 2.12(2.15) 2.76(2.16) 4.48(7.12)
FreeForm 1.72(2.00) 1.43(2.02) 1.98(1.98) 1.51(4.04)
GraphCuts 1.79(2.08) 1.69(2.17) 2.22(2.18) 2.30(5.39)
itGraphCuts 1.66(2.02) 1.32(2.02) 2.07(2.01) 1.83(4.62)
fastODDS 1.38(1.69) 1.05(1.66) 1.70(1.76) 1.23(3.74)
ODDS 1.35(1.52) 1.03(1.51) 1.68(1.59) 1.17(3.39)
FreeForm-ODDS 0.37 0.40 0.20 0.34
p-Value [%] <0.01⁄⁄⁄ <0.01⁄⁄⁄ 0.02⁄⁄⁄ 0.51⁄⁄

FreeForm-fastODDS 0.34 0.38 0.18 0.28
p-Value (%) 0.03⁄⁄⁄ <0.01⁄⁄⁄ 0.04⁄⁄⁄ 0.20⁄⁄

itGraphCuts-ODDS 0.31 0.29 0.38 0.66
p-Value (%) <0.01⁄⁄⁄ 1.27⁄ <0.01⁄⁄⁄ <0.01⁄⁄⁄

itGraphCuts-fastODDS 0.28 0.27 0.37 0.60
p-Value (%) 0.72⁄⁄ 3.07⁄ <0.01⁄⁄⁄ <0.01⁄⁄⁄

fastODDS-ODDS 0.03 0.02 0.02 0.06
p-Value (%) 31.41 46.00 23.77 �43.05

Fig. 7. Box plots (with outliers as circles and extreme outliers as dots; see Chambers, 1983) of error measures for GraphCuts (GC), iterative GraphCuts (iGC), FreeForm (FF),
fastODDS (fO) and ODDS results on coronoid processes as listed in Table 2. Underlaid parallel coordinate plots draw lines between errors measured for different methods (GC,
iGC, FF, fO, ODDS) on corresponding individual cases, e.g. between the tip2tip errors of fastODDS- and ODDS-result on coronoid process no. 189, etc.
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Table 3
Top: Average error measures (and standard deviation) for initial ASSM adaptation as
well as GraphCuts and FastODDS results on 98 acetabular rims and 98 hip bones.
Bottom: Differences of average errors and respective levels of significance (p-values)
as assessed with Wilcoxon’s signed rank test. Significance levels below 5% are marked
with a star (*), below 1% with two stars (**), and below 0.1% with three stars (***).

Acetabular rim Hip bone

max
(mm)

%>1.5 mm
(%)

max
(mm)

%>1.5 mm
(%)

ASSM 5.95(2.53) 66.88(17.64) 8.44(2.53) 26.74(7.80)
GraphCuts 5.00(2.53) 36.61(15.98) 7.07(2.36) 2.39(1.79)
fastODDS 4.69(2.75) 22.91(15.34) 6.92(2.40) 1.88(1.65)
GraphCuts-

fastODDS
0.32 13.70 0.15 0.52

p-Value (%) 1.04⁄ <0.01⁄⁄⁄ 5.58 <0.01⁄⁄⁄

Table 4
Performance (computation time in seconds/ maximum memory requirement in GB)
for ODDS, fasODDS (fO), GraphCuts (GC), iterative GraphCuts (itGC) and FreeForm (FF)
averaged for 106 mandibles and 98 hip bones.

[sec/ GB] ODDS fO GC iGC FF

Mandible 149/ 4.6 85/ 2.2 3/ 0.9 90/ 0.9 6/ 0.4
Hip bone – 319/ 5.4 18/ 2.3 – –
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measure. However, the parallel-coordinate plots that underlay the
box plots in Fig. 7 show that there are some individual cases with
considerable differences between ODDS and fastODDS error mea-
sures. We conclude that fastODDS is not guaranteed to produce
equally accurate results in the individual case, but overall does
not perform significantly different than ODDS.

As for the whole mandible surface, we found an evaluation of
error measures to be ‘‘overshadowed’’ by large regions on the ini-
tial segmentation that are too far away from the target structure
such that it does not lie within either ball-shaped or linear search
space. These are regions that exhibit misleading or missing fea-
tures – the best one can do is to keep them at their initial position,
i.e. not deform them at all after initial SSM-based segmentation.
This holds for the region around the teeth, where the teeth them-
selves are potentially mistaken as features, and also the chin,
which often lies outside the FoV of the CBCT scanner and hence
exhibits no features at all. Therefore, we only state the Hausdorff
error measure here (Table 5) for reasons of completeness. Note that
differences are not significant for any couple of methods, including
the initial SSM-based segmentation. However, the average errors
suggest a slight tendency in favour of ODDS/fastODDS.

Experiments on CTs of the pelvis show that fastODDS are able to
produce very accurate segmentation of ridge-like structures in a
multi-object environment. On 98 acetabular rims of the hip bones,
multi-object fastODDS clearly outperform the multi-object Graph-
Cuts approach. Here, unidirectional displacements often struggle
with restricted visibility, see Fig. 10a and b, respectively.

FastODDS also performs better in terms of error measures eval-
uated on the whole hip bones. As for the Hausdorff error measure,
the relatively small improvement from initial (SSM-based) to
resulting (GraphCuts and fastODDS) segmentation suggests that
Fig. 8. FastODDS on hip bones. (a) Exemplary hip bones with OmniD-region (red) and
surface distances (GraphCuts-FastODDS) from/to gold standard averaged over 49 cases.
from results to gold-standard. On average, fastODDS perform better than GraphCuts in
interpretation of the references to color in this figure legend, the reader is referred to th
the p-value stemming from the comparison of GraphCuts and fast-
ODDS, 5:58%, may, as for the mandible but less prominent, be
influenced by regions on the initial segmentation that are too far
away from the target structure to be within reach of either ball-
shaped or linear search range. This observation has also been re-
ported by Seim et al. (2008).

5.2. Comparability of regularization

For GraphCuts, differences of displacement lengths on neigh-
boring vertices are ‘‘for free’’ up to c, while larger differences are
impossible. For ODDS, differences of displacements on neighboring
vertices are ‘‘for free’’ or cost the minimum non-zero distance pen-
alty up to a Euclidean norm of deS , while the penalty increases cubi-
cally for larger differences (see Section 2.3). FreeForm regularizes
the surface mesh and not displacements themselves – however,
the maximum edge length that can occur on a needle-shaped
(i.e. infinitesimally thin tip) mesh is bounded by displacement
stepsize and internal smoothing weight.

To achieve comparable regularization, we set the regularization
parameter c of GraphCuts to the displacement block sampling dis-
tance deS as set in the respective ODDS/fastODDS experiment. Fur-
thermore, we parametrized FreeForm such that when stretching
a needle-like tip, the maximum achievable edge length is double
the average initial edge length el, and hence the maximum differ-
ence of displacements is el, where el ¼ c. In summary, deS ¼ c ¼ el
in all experiments.

We think this allows for a fair comparison of methods. How-
ever, to make sure that the superior accuracy of ODDS/fastODDS
is not an effect of ‘‘more or less’’ regularization, we performed
GraphCuts not only with c ¼ deS , but with c ranging from the sam-
pling distance dS up to an absurdly large 10dS ¼ 5 mm in nine extra
experiments on the hip bones. Considering segmentation accuracy,
significant improvements of fastODDS over GraphCuts as stated via
colored entries in Table 3 hold for any of the respective GraphCuts
results.

Cutting the sampling distance by half, i.e. dLv ¼ 0:5dS, was in-
tended to compensate for a potential advantage of omnidirectional
UniD-region (grey). (b and c) Comparison to GraphCuts: Differences of directional
(b) Difference of distances from gold-standard to results. (c) Difference of distances

blue regions, while GraphCuts perform better than fastODDS in red regions. (For
e web version of this article.)



Fig. 9. ODDS: Exemplary results on clinical data: Coronoid processes of the mandible. Contours – Black: gold standard. White: initial mesh. Green/gray: ODDS result. Blue/
light gray: FreeForm result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Average Hausdorff error assessed on 106 mandible surfaces for initial SSM-based
segmentation, FreeForm (FF), GraphCuts (GC), iterative GraphCuts (iGC), fastODDS
(fO) and ODDS.

SSM FF GC iGC fO ODDS

7.36 7.30 7.36 7.33 7.14 7.14
(3.03) (2.99) (3.01) (3.00) (2.71) (2.69)
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displacements in terms of an effective denser sampling in surface-
normal direction due to additional adjacent sampling points. It did
slightly improve error measures for GraphCuts results – however,
the accuracy of ODDS/fastODDS could not be reached, not even
with still smaller (nor bigger) sampling distances from 0:25 to 1dS.

5.3. Mesh resolution

The flexibility of the deformable mesh is determined by regular-
ization, namely the ‘‘tolerated distance’’ dtol between neighboring
displacements as set via regularization parameters (cf. Section 5.2),
and mesh resolution, namely the average edge length el of mesh
triangles. Tolerated distance, divided by triangle edge length,
dtol=el, serves as a measure for mesh flexibility. However, coarser
mesh resolution at constant mesh flexibility in terms of dtol=el
has a smoothing effect on the displacement field. To this end, to as-
sess the influence of mesh resolution at constant flexibility
dtol=el ¼ 1 as set in our original experiments (see Table 1), we per-
Fig. 10. FastODDS: Exemplary results on clinical data: Acetabular rim of the pelvis. C
GraphCuts result. FastODDS works nicely while GraphCuts do not reach the correspondin
from the initial mesh. (For interpretation of the references to color in this figure legend
formed an additional evaluation of fastODDS, iterative GraphCuts
and FreeForm on a series of different mesh resolutions. We achieve
different resolutions with an approach for isotropic remeshing de-
scribed by Surazhsky and Gotsman, 2003. The resulting Hausdorff
distances on 212 mandibular coronoid processes are plotted in
Fig. 11. For fastODDS, we did not evaluate the finest mesh resolu-
tion due to unbearable memory requirements (P 64 GB). The sig-
nificance statements given in Table 2 hold for any of the
examined resolutions, and furthermore also when comparing fast-
ODDS at 1:2 mm edge length to iterative GraphCuts and FreeForm
at the smaller edge length of 0:6 mm.
5.3.1. Mesh consistency
Avoiding self-intersections of the deformable mesh is crucial for

approaches that employ unidirectional displacements together
with iterative feature search (FreeForm, iGraphCuts). This is be-
cause ‘‘loops’’ in the deformable mesh can invert surface normals
and hence render successive search directions unfeasible, if not
counterproductive. To this end, we prevent self-intersections with
the method proposed in (Kainmueller et al., 2007), and hence no
self-intesections occur (while consequently the deformable mesh
may ‘‘get stuck’’). Instead, for approaches that perform feature
search just once (ODDS, fastODDS, GraphCuts), self-intersections
of the deformable mesh do not necessarily affect segmentation
accuracy. However, they do indicate some sort of quality of mesh
deformation. To this end, we assessed the number of self-intersec-
tions for the mandibular coronoid process and hip bone results as
ontours: Black: Gold standard. White: Initial mesh. Green: FastODDS result. Blue:
g image features that are located (a) in outward direction and (b) in inward direction
, the reader is referred to the web version of this article.)



Fig. 11. Comparison of fastODDS, iGraphCuts and FreeForm at a series of mesh
resolutions. X-axis: Average edge length (mm) of mesh triangles. Y-axis: Hausdorff
distance (mm) assessed for 212 coronoid processes of the mandible. Mandible
meshes contain about 34,100, the original 8561, 5000, 3100 and 2300 vertices,
respectively.

Table 7
Automatic acetabular rim delineation: Average root mean square (rms) and Hausdorff
(max) distance from manually defined landmarks, and percentage of distance above
1 mm (%>1 mm), assessed on 147 hip bone surfaces. Standard deviations in brackets.

rms (mm) max (mm) %>1 mm (%)

1.21(0.31) 3.06(0.90) 34.84(12.37)
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presented in Sections 4.2.1 and 4.2.2, respectively. Each triangle
edge that intersects with a non-adjacent triangle counts as a self-
intersection. Table 6 lists the results. While fastODDS and ODDS
exhibit more self-intersections than GraphCuts on the mandibular
coronoid processes, fastODDS produces slightly less self-intersec-
tions than GraphCuts on the hip bones.
5.4. Performance

A comparison of ODDS and fastODDS on the mandibular bone
shows that fastODDS requires less than half the memory, while
being almost twice as fast as ODDS. The runtime of fastODDS is
comparable to iterative GraphCuts. In general, the gain in perfor-
mance achieved by fastODDS depends on the ‘‘curvedness’’ of the
anatomical structure of interest. Hence we hypothesize that the
Table 6
Average number of self-intersections in deformed surface mesh, assessed for ODDS,
fastODDS and GraphCuts on 212 mandibular coronoid processes, and for fastODDS
and GraphCuts on 98 hip bones. Standard deviation in brackets.

ODDS fastODDS GraphCuts

Coronoid process 30.8 22.2 7.6
(29.2) (23.1) (17.4)

Hip bone – 305.81 311.70
(140.28) (163.07)
gain is even bigger for structures like the heart or the liver, where
a higher percentage of the structure exhibits low curvature, while
it may be little to none on highly folded structures like the cerebral
cortex or the intestinal mucosa.
6. Conclusion

We proposed ODDS, a method that allows omnidirectional dis-
placements for all vertices of a surface mesh during deformable
model adaptation. We encode the adaptation problem as a Markov
Random Field, which allows us to approximate globally optimal
mesh deformation subject to local regularization constraints. In
an evaluation on synthetic as well as clinical data, we showed that
this approach can outperform traditional mesh adaptation along
line segments (e.g. surface normals) in regions with high curvature
(tips and ridges) in terms of segmentation accuracy.

To save runtime and memory as required by ODDS, we devel-
oped a hybrid approach, fastODDS. Here, we employ omnidirec-
tional displacements adaptively, i.e. only where high curvature
calls for them, and traditional unidirectional displacements else-
where. In an evaluation on clinical data we showed that fastODDS
achieve the same segmentation accuracy as ODDS in regions of
high curvature, while requiring only half the runtime and memory.

An additional benefit of fastODDS is that it can be applied for
simultaneous adaptation of multiple, adjacent meshes, i.e. multi-
object segmentation. In an evaluation on clinical data we showed
that fastODDS can outperform traditional multi-object mesh adap-
tation along line segments.

Future work will focus on a more efficient computation of the
image cost function / via parallelization and exploitation of over-
lapping domains.
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Appendix A. Automatic acetabular rim detection

The statistical shape model of the hip bones we employ for ini-
tial segmentation contains a particular region (aka patch) that de-
fines the acetabulum, cf. Seim et al., 2008. Consequently, this
acetabular patch is inherent on every initial segmentation, and is
preserved during deformation with any of the adaptation methods
we employ in this work. The boundary of the deformed acetabular
patch serves as an initial estimate of the acetabular rim. It is repre-
sented by a set of vertices that are connected by edges which form
a closed contour. Starting from this initial estimate, the algorithm
for automatic detection of the acetabular rim proceeds as follows.
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(1) Define an approximate ‘‘rim-plane’’ via plane-fit to the ini-
tial acetabular rim estimate. (2) For each vertex on the initial rim
estimate, sample a set of points on the hip bone surface in direction
perpendicular to the rim within some geodesic distance. (3) Define
a cost per sample point as the signed distance from the approxi-
mate rim-plane in outward6 direction. (4) Construct a graph: For
every pair of neighboring vertices, connect corresponding sample
points by and edge in the graph; Connect sample points +- the cor-
responding one to achieve the desired amount of regularization; (5)
Perform Dijkstra’s algorithm (Dijkstra, 1959) to obtain the mini-
mum-cost rim. The result serves as automatically detected acetabu-
lar rim.

We evaluated automatic rim delineation vs. manually defined
landmarks on 147 hip bone surfaces stemming from manual and
automatic segmentation results. Resulting error measures are
listed in Table 7.
Appendix B. Automatic ridge detection

For ridge detection on surfaces, we utilize the ridge definition
first introduced by Rothe (1915), more recently described by
Koenderink and van Doorn (1993). Intuitively a ridge of a height
function can be imagined as the way one would take when walking
up a mountain. One usually chooses the path with the lowest slope
since it is the least exhausting. We apply this definition for ridges
to the maximum principal curvature on surfaces as height func-
tion, i.e. j ¼ maxðjj1j; jj2jÞ, yielding curves along sharp edges as
well as sharp wrinkles of a surface.

At first sight, the above ridge definition requires computing the
fifth derivative of the surface to find the ridges. Because computing
derivatives is very sensitive to noise, we use a more robust prop-
erty of these ridges which we describe intuitively here. Suppose
we descend along a ridge for a fixed distance f, starting at a certain
height h. If, instead, we do not start at the ridge, but on the isoline
of height h a little to the right or to the left of the ridge, and walk
the same distance in direction of steepest descent, we will end up
lower. Consequently also the integral of the heights we pass when
starting on the ridge, H, is higher than the integrals when starting
beneath the ridge, Hleft and Hright , and the same holds for the aver-
age height of the walk, h ¼ H=f . We approximate the respective
integral curves of the (discrete) gradient vector field of j on the tri-
angular surface mesh (Forman, 1998) as described by Cazals et al.,
2003.

We call the walking distance f, i.e. the arc length for integration,
the filter length, specified by a number of edges nf in our discrete
setting. We call the difference of the average heights,
minfh� hleft ;h� hrightg (unit:mm�1), the significance of a ridge. If
significance is low, the ridge might not be sharply peaked. We
therefore discard ridge pieces if significance does not exceed a user
given threshold. We also discard ridge pieces if their average
height h is below a user defined curvature threshold, because they
are not necessarily strong features of the surface. Details can be
found in Weber, 2008.
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