
©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

Articles

nAture methods  |  ADVANCE ONLINE PUBLICATION  |  �

understanding brain function requires monitoring and
interpreting the activity of large networks of neurons during
behavior. Advances in recording technology are greatly
increasing the size and complexity of neural data. Analyzing
such data will pose a fundamental bottleneck for neuroscience.
We present a library of analytical tools called thunder built
on the open-source Apache spark platform for large-scale
distributed computing. the library implements a variety
of univariate and multivariate analyses with a modular,
extendable structure well-suited to interactive exploration
and analysis development. We demonstrate how these
analyses find structure in large-scale neural data, including
whole-brain light-sheet imaging data from fictively behaving
larval zebrafish, and two-photon imaging data from behaving
mouse. the analyses relate neuronal responses to sensory
input and behavior, run in minutes or less and can be used on a
private cluster or in the cloud. our open-source framework
thus holds promise for turning brain activity mapping efforts
into biological insights.

New technologies1–9 based on imaging and multielectrode arrays
are making it possible to record simultaneously from hundreds
or thousands of neurons and in some cases, such as the larval
zebrafish7–9, nearly the entire brain. Given the growing size and
complexity of neural recordings10, analyzing and interpreting
the data will be a fundamental bottleneck for neuroscience11–14.
For example, an hour of two-photon imaging in mouse can yield
50–100 gigabytes (GB) of spatiotemporal data, and recording
from nearly the entire brain of a larval zebrafish using light-sheet
microscopy7,8 can yield 1 TB or more. At this scale, even simple
calculations can take hours to run on a single workstation, let
alone more complex analyses examining joint dynamical patterns
across the brain.

Neural data pose unique challenges for analytics. The data are
complex, and the ‘right’ analysis is rarely obvious. Every analysis
provides a lens through which to see the data, and it is often nec-
essary to try different analyses interactively, whether by varying
parameter choices or developing entirely new algorithms (Fig. 1a).
The need for flexible analytics is especially crucial for large data
sets; the more complex and heterogenous the response proper-
ties and dynamics, the wider the variety of analyses needed to

mapping brain activity at scale with cluster computing
Jeremy Freeman1, Nikita Vladimirov1, Takashi Kawashima1, Yu Mu1, Nicholas J Sofroniew1, Davis V Bennett1,
Joshua Rosen2, Chao-Tsung Yang1, Loren L Looger1 & Misha B Ahrens1

reveal their structure. Prototyping analyses for small data sets is
straightforward on a workstation using existing tools, but for
large data sets, especially those that exceed the memory of one
machine, this becomes intractable. Large-scale neuroscience
thus demands a flexible platform for creating analyses and
inspecting results.

Over the last several years, the private technology sector has
invested heavily in ‘big data’ approaches that leverage the power
of distributed computing (networks or ‘clusters’ of interconnected
compute nodes) to analyze large data sets15–17. MapReduce15 is a
widely adopted programming model that divides a large compu-
tation into two steps: a ‘map’ step, in which data are partitioned
and analyzed in parallel, and a ‘reduce’ step, in which intermedi-
ate results are combined or summarized. Many analyses can be
expressed in this model18, but conventional systems that imple-
ment MapReduce, such as the open-source Hadoop MapReduce
engine17, have key weaknesses. In particular, data must be loaded
from disk for each operation, which can slow iterative computa-
tions (including many machine-learning algorithms), and makes
interactive, exploratory analysis difficult. The recent, open-source
Apache Spark platform extends and generalizes the MapReduce
model while addressing this weakness, by introducing a primi-
tive for data sharing called a resilient distributed data set (RDD).
With Spark, a user can cache a data set, or an intermediate result,
in the memory (random-access memory; RAM) across cluster
nodes, performing iterative computations faster than with
Hadoop MapReduce19 and allowing for interactive analyses.
Spark’s application programming interfaces (APIs) also allow
a user to express distributed computations—not only map and
reduce but also filtering for subsets of data, joining multiple
data sets together and others—all as operations over RDDs. This
abstraction enables simpler, more concise implementations and
performance improvements, especially for complex sequences
of operations19. Other scripting languages and abstractions
simplify MapReduce jobs (e.g., Pig and Cascading) but are built
on the Hadoop MapReduce engine and thus lack the advantages
of in-memory data sharing. Another advantage of Spark’s APIs,
in particular the Python API, is compatibility with existing
libraries for scientific computing and visualization. Spark has
primarily been used in industry, but these properties make it
well-suited for neuroscience.

1Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA. 2University of California Berkeley, Computer Science Division, Berkeley,
California, USA. Correspondence should be addressed to J.F. (freemanj11@janelia.hhmi.org) and M.B.A. (ahrensm@janelia.hhmi.org).
Received 2� mArch; Accepted 23 June; published online 27 july 2014; doi:10.1038/nmeth.3041

http://www.nature.com/doifinder/10.1038/nmeth.3041

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

2  |  ADVANCE ONLINE PUBLICATION  |  nAture methods

Articles

Here we describe an open-source library of analytical tools for
neuroscience built on Spark. Our library, called Thunder, imple-
ments a variety of algorithms in a modular and extendable user-
oriented library (Fig. 1). The tools we developed enable the rapid
analysis and interpretation of large neural data sets and will be
relevant to a wide variety of data. To demonstrate their capabil-
ity, we applied them to high-resolution calcium imaging data.
We analyzed data from a paradigm, described in a companion
paper20, that combines whole-brain light-sheet imaging7 with
visual stimulation and behavior in paralyzed larval zebrafish12.
These data include recordings from nearly all neurons in the brain
and consist of time series from ~108 voxels, reflecting activity of
~105 neurons21 and large areas of neuropil. We also analyzed two-
photon imaging data from behaving head-fixed mice, including
responses from ~103 neurons (~106 pixels).

Our analyses quickly find patterns in neural data, revealing
neuronal populations involved in both stimulus encoding and
motor behavior. Although only demonstrated on calcium imag-
ing data, our tools could also be applied to imaging data from
other indicators (e.g., voltage, neurotransmitter), high-resolution
functional magnetic resonance imaging (fMRI), or electrophysio-
logical data and thus provide a general analytics platform for
large-scale neuroscience.

results
Analysis framework
Large-scale neural data analysis should be fast, interactive,
extendable and accessible to the neuroscience community. To
achieve these goals, we built a library, Thunder (http://freeman-
lab.github.io/thunder), on top of the open-source computing plat-
form Spark19, using its Python API. Here we describe the library
in detail: the input data it assumes, the analyses it performs, how
they are implemented, how they can be extended and benchmarks
of their performance.

Architecture and organization
In raw form, nearly all functional neural data sets (calcium imag-
ing, fMRI, electrophysiology) are collections of time series from
different neural channels, such as voxels. Many computations can
be parallelized over channels. Thus, a natural input format is a
collection of key-value pairs. The key is an identifier, and the
value is a response time series. Imaging data, for example, are
key-value pairs where each key is an x-y-z coordinate and each
value is the fluorescence time series. If records are stored on disk
in a networked or distributed file system, platforms such as Spark
can read them in parallel and perform a rich variety of computa-
tions. The keys can similarly index other kinds of neural channels,
for example, electrodes in a multielectrode array. The key-value
format is thus a general representation for neural recordings.

In practice, neural data are acquired and saved in a temporal
sequence of the form (all channels at time 0), (all channels at time 1),
etc., where the channels are, for example, voxels in imaging data.
Before analysis, data must be converted into the common input
format by collecting across time and writing key-value records to
disk, i.e., rearranging the data as (all time points for channel 0),
(all time points for channel 1), etc. Some version of this one-time
operation would be necessary in any platform for analyzing how

Dimensionality
reduction

Y = UV

N
eu

ra
l c

ha
nn

el
s

Time

R
esponse

Clustering

Y = XB
Summary stats

Σt ƒ(Y)
Y = ƒ(X,�)

�

�

Regression

b1 × stim
b2 × motor

Tuning

a

ReduceByKey

MapMap

Collect

Result

2

4

5

1

Map

Collect

1

2

Result

3JoinRDD RDD

b d

c e
Map

Map (Updated)

1

Map 1

5

Reduce

Temp.
Result

2 ReduceByKey 2

Temp.
Result

3Collect

Temp.
Result

Reduce
RDD RDD

3 Map
(Updated)

Map
(Updated)

4

4

Figure � | A platform for large-scale neural analytics. (a) Example
analyses in Thunder. Input data are time series from different neural
channels (e.g., voxels for imaging data). Univariate analyses (summary
statistics, regression and tuning) apply the same operation to every
channel. Multivariate analyses (dimensionality reduction and clustering)
examine joint structure across channels. Mathematical notation
(for illustration only): Y, data matrix, f, arbitrary nonlinear function,
µ and σ, example summary statistics, X, design matrix for regression, or
stimulus parameters, B, regression coefficients, θ, model parameters,
U, V, factors from a matrix decomposition. (b–e) Implementing different
neuroscience analysis workflows in Spark by applying distributed
operations to an RDD. Mass-univariate analyses implemented through
a map operation, which performs computations (e.g., fitting a
regression model) on partitions of the data in parallel, followed by
collecting the results (b). An iterative implementation of the singular
value decomposition (c) uses repeated map and reduce operations to
distribute a sequence of matrix computations, each using the result
of the previous computation. The map operations perform local matrix
multiplications, and the reduce steps perform addition. Caching the RDD
means that data do not need to be loaded from disk for each iteration.
The correlation between a time series and its local average (d) uses
a map and reduceByKey to compute averages of voxels belonging to
a spatial neighborhood and then joins these local averages to the
original data to compute correlations in a final map operation. k-means
clustering (e) uses a map to find the center closest to each point, and
a reduceByKey to average the data points from each cluster and thus
update the centers.

http://freeman-lab.github.io/thunder
http://freeman-lab.github.io/thunder

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nAture methods  |  ADVANCE ONLINE PUBLICATION  |  3

Articles

the data vary over both space and time. Assuming a common
input format additionally supports data sharing and domain-
general analysis tools.

The first analysis step in Thunder uses the load function to turn
input data into an RDD in Spark and apply any desired preprocess-
ing, as in: data = load(sc, ‘dataset’, ‘dff ’).cache(), where dataset is
the location of the data, sc is the Spark context (a class that acts as
the main entry point for Spark functionality) and dff specifies one
of several preprocessing options. The optional .cache() marks the
RDD for caching into RAM, which is important if it will be queried
multiple times (e.g., during an iterative computation or during
interactive analysis). A variety of RDD operations can then be per-
formed. The core of Thunder is expressing different neuroscience
analyses in the language of RDD operations (Fig. 1b–e). Spark
exposes RDD operations through APIs in the programming lan-
guages Scala, Java and Python. Thunder is primarily written in the
Python API (PySpark) because it enables the use of robust numeri-
cal and scientific computing libraries (e.g., NumPy and SciPy), and
provides the simplest front end for new users. Finally, Thunder is
designed so that analyses can be run either as standalone scripts
or interactively within the Python shell (or an iPython notebook),
enabling immediate inspection and visualization of results.

Analyses and implementation
Thunder includes several univariate and multivariate analyses,
organized into regression, factorization, clustering and time-series
statistics (Fig. 1). The components of the analyses are modular,
making it easy to combine or extend them.

Univariate analyses (sometimes called ‘mass-univariate’)
perform a computation on each neural channel, for example,
voxel-wise summary statistics or voxel-wise regression. These

analyses are naturally expressed through a map operation that
distributes the computation across the worker nodes of the
cluster, followed by a ‘collect’ to return the result to the driver
(Fig. 1b). We separate the computation performed on each
channel from the RDD operation itself; for example, by using a
high-level RegressionModel class that implements the mapping
and using subclasses, each for particular models, that implement
the fitting. This design enables users with only minimal knowl-
edge of Python to modify the underlying computations (e.g., the
form of regression) or add new ones.

Multivariate analyses examine multiple channels, in some cases
the entire data set. These analyses typically require (at least) a
combination of map and reduce operations, where the map step
distributes some computation across partitions of the data, and
the reduce step uses a commutative and associative function to
combine the results (Fig. 1c). Such analyses can be more involved
to implement, but the algorithms we include provide a founda-
tion for future work. For example, many multivariate analyses
use the singular value decomposition (SVD), which seeks to
approximate an n × t matrix as the product of n × k and k × t
matrices, where n is the number of channels and t the number
of time points. We provide two large-scale implementations of
the SVD. The first is suitable for ‘tall-and-skinny’ matrices (e.g.,
large n, small t); it uses a map to compute rank 1 outer products,
a reduce (with addition) to aggregate the results and another map
to project data into the recovered subspace. For the case of many
time points (t > 1,000), we implemented an alternative large-
scale iterative algorithm based on expectation maximization22,
which expresses a sequence of matrix updates as map and reduce
steps (Fig. 1c), and can be faster than the direct method when a
small number of singular vectors are required (see below).

Figure 2 | Performance benchmarks for
Thunder. (a,b) Run times for a 50 GB data set
(512 × 512 × 4 voxels, 6,300 time points),
with 10, 20 and 30 nodes (a) and for a 250 GB
data set (2,048 × 1,024 × 18, 894 time points),
with 20, 40 and 60 nodes (b). std refers to
standard deviation. Each node had 16 cores
and 128 GB RAM (100 allocated to Spark),
see Online Methods for additional
specifications. All computations were
performed on cached data and only include
duration of computation (not loading or
saving results, see e). For iterative
computations, five iterations were used.
Times reflect the minimum from three runs.
(c) Run time as a function of data set size,
using 60 nodes. Data dimensions were
(2,048 × 1,024 × z, 1,500 time points),
where z was varied from 2 to 32 to vary total
size. Gray line, linear fit with intercept fixed at 0, slope = 0.029. (d) Run times for varying iterations of independent component analysis, applied to the
same 50 GB data set from a, with and without data caching (run times for cached data include the initial time to load and cache). The slight increase
in run time for caching with one iteration likely reflects a small serialization penalty for populating the cache. (e) Run-time breakdown on two cluster
environments for the same two data sets from a,b; durations are shown for loading, parsing and caching data, performing the computation (identical
to times reported in a,b for the private cluster) and collecting and saving the result. Numbers in center give combined time. Amazon EC2 cluster used
‘compute optimized’ instances, each having 32 vCPUS (with hyper-threading, so this is roughly matched to the 16 real cores per node on the private
cluster) and 60.5 GB RAM (53.3 allocated to Spark). (f) Run times for performing two analyses on a private cluster (with Spark) or on a single 12-core
Linux workstation with 64 GB RAM (with Matlab), for the same data analyzed in c. Input data were identical in content (single files containing
response time series from all voxels of a single plane) but a text file for Spark and a MAT file for Matlab. In both cases times include loading and
parsing, computing, and (for Spark) collecting results. Ten iterations were used for ICA. For convenience, times here were extrapolated where
possible (e.g., timing one iteration and multiplying by the number of iterations), and extrapolation was verified in a subset of cases.

a Data: 50 GB Data: 250 GB Data: 50 GB, 20 nodes

Private
cluster

Amazon
EC2

Regression ICA (iterative)

29.1 s19.5 s 88.2 s 108.2 s

99.3 s73.7 s27.7 s18.7 s

Regression ICA (iterative)

Data: 250 GB, 40 nodes

Load and
Parse
Compute
Collect and
Save

10 nodes
20 nodes
30 nodes

20 nodes
40 nodes
60 nodes

Time (s)

Data set size (GB) Number of iterations

ICA

With caching
Without

Run time (s)

1 10 100 1,000 10,000 100,0001 2 5 10 200 500

40

100

ICA (iterative)

Regression
Workstation (Matlab)
Cluster (Spark)200

400
800

S
iz

e
(G

B
)

100
200
400
800T

im
e

(m
)

4
3
2
1
0

Regression

20

R
un

 ti
m

e
(s

)
0

1,000 1,500

Time (min)
0 1 20 10 20 30

Voxel-wise std

Average time course

Cross-correlation

Regression

Fourier analysis

ICA (iterative)

PCA (iterative)

k means (iterative)

c d

f

b e

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nAture methods

Articles

Many other analyses require RDD operations beyond map and
reduce. For example, the filter operation can be used to extract
spatial subregions during an analysis. Correlating each voxel’s
time series to the average of a local neighborhood involves a flat-
Map and reduceByKey to average local groups of voxels, a join
to combine the raw data with those averages and a final map to
compute the correlation coefficients (Fig. 1d). k-means clustering
involves a map step (to compute, for each point, the closest of the
k centers), followed by a reduceByKey (to average the data points
belonging to each cluster; Fig. 1e). With a working knowledge
of these operations, and of Python, users can easily extend the
analyses or create new ones. The components of Thunder can also
be fluidly combined. For example, we could perform regression
on every voxel and cluster the resulting regression coefficients or
compute residuals from a model fit and use dimensionality reduc-
tion to examine structure in the noise. Both can be expressed in
a few lines of code.

setup and installation
Running Thunder on a cluster requires first deploying Spark
as well as installing Python and the necessary Python libraries,
all available as open source. Spark can be deployed on a private
cluster (e.g., at a university or research facility) or on Amazon’s
EC2 cloud computing services. For EC2 usage, we provide a
customized Spark EC2 launch script that creates a Spark cluster
on EC2 and preinstalls Thunder (and its dependencies). For a
university cluster running the Univa Grid Engine, we provide
instructions for setting up Spark in standalone mode (Online
Methods). The advantages of EC2 are ease of deployment and
scalability (the number of nodes can be tailored to the data
set and desired performance, see below). The disadvantage is
that data must be transferred to cloud storage, but when many
analyses are performed on the same data, this one-time cost
may be insignificant.

Benchmarks
To characterize performance, we first measured run times for two
data sets, three cluster sizes and nine analyses, all implemented on
a private cluster running Spark. The test data sets were two-photon
imaging data (Fig. 2a, 512 × 512 × 4 voxels, 6,300 time points,
~15 min at 7.5 Hz, 50 GB) and light-sheet imaging data (Fig. 2b,
2,048 × 1,024 × 18 voxels, 900 time points, ~15 min at 1 Hz,
250 GB). We analyzed cached data, and the reported run times
only include durations required to perform the computation,
not time for loading and parsing input data or collecting and

saving results (see below for run times of those steps; Online
Methods). In general, run times increased with algorithm com-
plexity and decreased with cluster size (Fig. 2a,b). All voxel-
wise statistics completed in under 30 s, and iterative algorithms
completed within a couple minutes; with 40 nodes, we were able
to query the average time series of the larger data set in less
than 5 s and estimate three singular vectors in under a minute.
Performance on both data sets increased with cluster size. For
the larger data set, performance nearly doubled from 20 to
40 nodes (Fig. 2b; geometric mean improvement across analy-
ses, 1.89); on the smaller data set, it also increased from 10 to
20 nodes (Fig. 2a, geometric mean improvement across analyses,
1.58). In both cases, further increasing cluster size led to smaller
improvements. This ceiling effect likely reflects communication
overheads: as the number of nodes increases, less data are proc-
essed per node, and computation times are eventually dominated
by the fixed cost per task of serializing and transferring data
and code. In a separate test we examined performance for one
analysis on a larger range of data set sizes; run times scaled
linearly with data size, and analysis of 1.5 TB finished in under
a minute (Fig. 2c). Together, these results suggest that the
framework can efficiently process a variety of data sets and will
scale well to more complex analyses.

To demonstrate the advantage of data caching, a capability
unique to Spark, we computed run times on one data set for dif-
ferent numbers of independent component analysis (ICA) itera-
tions; in one case, the data were reloaded during every iteration
and in the other, the data were loaded once and cached (Fig. 2d).
As reported previously19, caching improves performance for itera-
tive algorithms because the cost to load data is incurred only once;
the speedup resulting from caching is thus greater for more itera-
tions. Fast iterative algorithms can be especially useful for large-
scale problems; for example, we compared run times for iterative
and direct implementations of the singular value decomposition
(see above), each factoring an n × t matrix into n × k and k × t
matrices, with k = 3. For a data set with dimensions n = ~108,
t = ~102 (150 GB), using 40 nodes, the direct method took 92 s, and
one iteration of the iterative method took 12 s. For a data set with
n = ~108 and t = ~103 (750 GB), the direct method took 1,983 s,
whereas one iteration of the iterative method took only 27 s. Thus,
for larger t, the cost of even 10 iterations is about 0.1× the cost of
the direct method.

In real use, analysis includes not only computation but loading
(and parsing) data and saving results to disk. For the two data
sets compared above, we provide these durations under two

Figure 3 | Maps of in vivo two-photon calcium
imaging data from mouse cortex revealing
response modulation by locomotion.
(a) Schematic of experimental preparation
for two-photon calcium imaging of neural
activity in mouse somatosensory cortex during
locomotion. (b) Animal running speed and
calcium responses (∆F/F) of example cells that
showed modulation owing to running speed.
Each response is the average of small groups of
~50 voxels. (c) Map of running speed modulation
from one imaging plane. Numbers indicate
example cells from b. Color indicates preferred speed and brightness indicates strength of modulation (assessed as R2 from linear fit, maximum of 0.0125).
(d) Map of local correlations. Brightness, correlation coefficient between calcium fluorescence of each voxel and the average of a local 7 × 7 neighborhood.

100 µm

6
4 3

2

51
S

peed (cm
/s)

43

0

c

100 µm

C
orrelation

0.7

0.2

da
Microscope

Running speed

Responses

40 s

30
 c

m
/s

20
0%

 ∆
F

/F

Spherical
treadmill

6

b

5
4
3
2
1

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nAture methods  |  ADVANCE ONLINE PUBLICATION  |  �

Articles

environments: a private cluster with a net-
worked file system and an Amazon EC2
cluster with ‘compute optimized’ instance
types running a Hadoop distributed file
system (Fig. 2e and Online Methods). For
regression, the run time is dominated by
loading and parsing. For a more complex
analysis (ICA), relatively more time is
spent on computation. Performance pat-
terns were similar between the private
cluster and EC2, as were overall run times
(Fig. 2e). We also performed the same tests
using the ‘general purpose’ instance type
(data not shown). These instances have a
quarter the cores and half the RAM of the
compute-optimized instances but are also a quarter of the cost;
in that case run times were ~3× slower for these instances, with
longer load times in particular.

Finally, we compared a cluster running Spark to a single
powerful workstation running Matlab, across four data sizes
(from the same data set used in Fig. 2c). Of course, the cluster
will outperform the workstation but for an end user deciding
between alternatives, the magnitude of improvement is of
relevance. Spark’s performance increase was as large or larger
than expected based on the number of nodes (40×), achiev-
ing an improvement of at least 200× for an iterative analysis
(Fig. 2f). The key limitation of any single workstation solution
is that, owing to memory limitations, portions of the data must
be loaded and processed sequentially, leading to slow run time
despite fast core computations (e.g., matrix multiplication). This
is especially problematic for iterative analyses; in contrast, Spark
can cache the entire data in RAM. Also of practical interest, the
price of one such workstation could pay for ~300 h of 40-node
cluster usage on EC2, with 1.2 TB total RAM and 320 virtual
CPUs (vCPUs).

two-photon imaging example
For an initial demonstration of our framework, we analyzed two-
photon calcium imaging data from layer 2/3 somatosensory cor-
tex neurons in head-fixed mice running on a spherical treadmill
in a tactile virtual reality environment23 (Fig. 3a). The genetically
encoded calcium indicator GCaMP6s was delivered via infection
with adenoassociated virus (AAV2/1, synapsin-1 promoter)24. In
the visual cortex, neurons exhibit tuning to running speed25 and
locomotion-induced modulation26. We used Thunder to perform
a voxel-wise interrogation of locomotion-induced modulation
in the somatosensory cortex (Fig. 3b,c). Analysis of these data,
which are typically 50–100 GB, at the level of voxels is possible
but burdensome with ordinary methods (e.g., Matlab; Fig. 2e).
We used mass-univariate tuning analyses to compute for each
voxel how well its response was predicted by running speed, and
the running speed to which it responded best. We combined these
two properties into a map in which brightness indicates the reli-
ability of prediction and hue indicates tuning (Fig. 3c). We also
used local correlation27 to estimate reliably responsive neurons
independent of covariates (Fig. 3d). Both the tuning and local

Excitation
optics

Video
display

Excitation
objectives

Detection
objective
(top view)

Excitation
beam

Electrodes

4

2

1

1
2

2

3

3

4

4

1

1

5

1
2

2

3

3

4

4

20 s

10
0%

 ∆
F

/F

5

1
2
3
4
5

5

5

5

3

D
et

ec
tio

n
op

tic
s

Eph
ys

 fo
r

be
ha

vio
r

a

c

b

Pallium

Habenula

Tectum

M
idbrain

F
orebrain

H
indbrain

Cere-
bellum

Spinal
cord

40 µm

Figure � | Direction tuning maps of whole-brain
neural activity measured in a larval zebrafish
with light-sheet microscopy while zebrafish
were presented visual stimuli. (a) Schematic
of experimental preparation. Ephys refers to
electrophysiological recordings for monitoring
behavior (Online Methods). (b) Maps of direction
tuning across the brain derived by fitting every
voxel with a tuning-curve model that separately
describes the temporal response profile and the
tuning to direction. Color, preferred direction
(see legend in c); saturation, tuning width
(i.e., circular variance); brightness, response
strength (Online Methods). White means
responsive but without unidirectional tuning.
Image shows maximum intensity projection
through 39 planes covering 195 µm.
(c) Magnified regions of the habenula, tectum
and hindbrain, each from a single imaging plane.
Scale bars, 10 µm. Time series show responses
of example cells. Black traces, ∆F/F averaged
from small groups of ~100 voxels; responses
averaged across five presentations. Color traces,
prediction of best-fitting tuning curve model
(Online Methods). Gray vertical bars, stimulus
on; white vertical bars, stimulus off.

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nAture methods

Articles

correlation maps can be used to help identify and segment indi-
vidual neurons. A comparison of the two maps suggests a large
fraction of responsive neurons were modulated by locomotion.
The ability to quickly and flexibly generate such maps will be of
immediate use for the wide variety of two-photon imaging data
currently being collected.

large-scale applications
The capabilities of our framework are well illustrated through
applications to data generated by techniques such as light-
sheet7,8,20 and light-field2,4 microscopy. A recently developed
combination of light-sheet imaging in the larval zebrafish with
visual stimulation and behavioral monitoring20 enables simulta-
neous recording from virtually all neurons in the brain during
sensorimotor behavior. The resulting data are typically hundreds
of gigabytes per experiment and thus demand tools such as the
ones we developed. Here we show how Thunder reveals pat-
terns of biological importance in these data. Detailed examples
of implementation and sample data sets are available via http://
research.janelia.org/zebrafish/.

direction selectivity
Across the animal kingdom, organisms have both sensory neurons
and behaviors tuned to the direction of visual motion28,29. In the
zebrafish optic tectum, mechanisms of direction selectivity have been
characterized both at the single cell and the network level30–33. Light-
sheet imaging with visual stimulation20, combined with appropriate
analyses, can reveal patterns of direction selectivity across virtually
the entire brain. We generated a transgenic fish Tg(elavl3:H2B-
GCaMP6s)jf5 that expresses nuclear-localized GCaMP6s24 in almost
all neurons (Online Methods). We measured neural responses while
presenting fish with a whole-field moving stimulus that changed

direction every 20 s (Fig. 4a), using a light-sheet configuration that
avoided stimulation of the eyes20 (Online Methods).

Direction selectivity is commonly characterized by measuring
responses to moving patterns and fitting the responses with a suit-
able model9,29,31,34. In Thunder, a combination of mass-univariate
tuning (as described above) and regression can model ~108 time
series in parallel, by first estimating the response to each direc-
tion and then fitting a circular tuning curve. For visualization, we
constructed a map in which every voxel is colored by its preferred
direction (hue), tuning width (saturation) and response strength
(brightness) (Fig. 4b, and Supplementary Videos 1 and 2). The tec-
tum showed heterogeneous tuning of neighboring cells, consistent
with previous reports35. Medial and ventral parts of the midbrain
and hindbrain showed strong and coarse preferences for direction
(left, right or forward) (Fig. 4b). Parts of the forebrain, includ-
ing the habenula36, also showed heterogeneity, including many
cells that responded to the moving stimulus but nearly equally to
all directions (Fig. 4c). Differences in tuning heterogeneity may
signify qualitative differences in the types of computations that
these areas perform. In particular, the coarse biases, being in the
hindbrain, likely reflect circuits underlying motor coordination,
whereas the heterogeneity in visually responsive areas may reflect
fine-scale visual computation. Note that this particular analysis
assumes unimodal tuning to direction, so responses tuned to ori-
entation, but not direction, will appear untuned; by design, extend-
ing Thunder with bimodal tuning would be straightforward.

maps of sensorimotor responses
Whereas mass-univariate analyses characterize voxels independ-
ently, many response properties, especially those involved in motor
control, involve the joint dynamics of neural populations11,13,
and demand appropriate multivariate analyses. We characterized

Figure � | Maps of sensorimotor responses
in larval zebrafish. (a) Maps of response
dynamics obtained by reducing each voxel to
a pair of numbers (weights on the first two
principal components) using PCA. In the color
wheel (bottom left), the first two principal
components are the red and yellow-green
traces, and different linear combinations
describe a family of dynamics: angle (hue)
indicates response shape, and radius
(brightness) indicates response strength. These
values determine the hue and brightness for
each voxel in the map. Shown is maximum
intensity projection through 15 planes (each
5 µm apart). (b) Stimulus sequence and
calcium responses (∆F/F) of individual neurons;
examples highlight different response types.
(c) Map derived from an experiment in which
the fish swam sporadically in response to a
constantly slowly moving stimulus. Lagged
cross-correlation and PCA were used to reduce
each voxel to a pair of numbers, capturing
the timing of response relative to swimming
and visualized as in a. Shown is maximum
intensity projection through 47 planes (each
5 µm apart). (d) Swimming strength (from
electrophysiological recordings) and calcium
responses (∆F/F) of individual neurons during
self-driven swimming.

50
%

 ∆
F

/F

50 s40 s

Swim strength

Responses

Stimulus On Off

Responses

50
%

 ∆
F

/F

Time (s)
0
On Off

40
Time (s)

–8 8
Swim

c

d

a

b
50 µm 50 µm

Tectum

Lateral
neuropil

Putative
alx neurons

http://research.janelia.org/zebrafish/
http://research.janelia.org/zebrafish/

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nAture methods  |  ADVANCE ONLINE PUBLICATION  |  �

Articles

motor dynamics during stimulus-driven behavior using a simple
visual stimulus alternating between forward motion and station-
ary pattern, in a fish expressing cytoplasmic GCaMP5G7,37 pan-
neuronally under the elavl3 promoter38.

Neurons across the hindbrain and midbrain exhibited a variety
of dynamics in response to the stimulus. Principal component
analysis (PCA) is a method for characterizing common dynamical
patterns in such heterogeneous assemblies11,13. Thunder performs
PCA through large-scale implementations of the singular value
decomposition (SVD) (see above and Online Methods), which we
applied here to the stimulus-cycle averaged neural responses. This
analysis revealed a coordinated sequence of events after the onset
of stimulus across the brain (Fig. 5a,b). For spatial visualization,
we applied a polar transform to recode every voxel’s projection
onto the first two components into an angle and an amplitude.
This representation is sensible because it depicts separately the
temporal shape of the response (as a color) and the strength (as
brightness), yielding a visualization of response dynamics across
the brain (Fig. 5a, and Supplementary Videos 3 and 4). Early
responses appeared in the optic tectum (calcium signals peaking
within the first 3–5 s, green), followed by the hindbrain (blue-
green), including what appear to be thick axonal bundles in the
ventral hindbrain, and columns of neurons that, based on their
location, may correspond to a stripe of glutamatergic neurons
(specifically, alx neurons) known to be involved in motor sig-
naling39,40. We found delayed responses (blue) in the anterior
hindbrain as well as in parts of the cerebellum, which were also
more variable across stimulus presentations (Fig. 5b). Notably,
two regions exhibited ‘off ’ responses (i.e., larger responses dur-
ing the period of no stimulus motion): areas of neuropil in the
lateral hindbrain (magenta), as well as two small clusters of cells
located far laterally.

More subtle aspects of motor response dynamics can be
revealed through more refined experimental designs, which in
turn demand more targeted dimensionality reduction. In one
such experiment, we isolated aspects of motor generation using
a continuous, slow stimulus (Online Methods), which elicited
‘self-driven’ swims. Because the stimulus was constant, the swim
durations were determined by the fish, not the stimulus, and the
instantaneous strength of the animal’s swimming was captured
with an independent electrophysiological recording12,20.

Response patterns were characterized by correlating the
response of each voxel with the animal’s swimming at differ-
ent temporal lags, and embedding and visualizing the ensem-
ble of lagged-correlations in a low-dimensional space (Fig. 5c).
Thunder’s modularity implements this analysis by combining
mass-univariate cross-correlation with PCA. In the resulting

map (Fig. 5c, and Supplementary Videos 5 and 6), there were
fewer responses in the tectum compared to the block-alternation
experiment, consistent with a primarily sensory role for those sig-
nals. Two functional networks were instead dominant (Fig. 5c).
The first (cyan-green) exhibited responses locked to the ani-
mal’s swimming, in similar populations to those described
above (Fig. 5a). But a second, sparser population (magenta-red)
showed elevated activity preceding swimming and lower
activity during swimming (Fig. 5c,d). Inspection of individ-
ual neuron traces (Fig. 5d) showed that responses followed
the offset of swimming, after which they increased their
responses (toward a plateau), apparently until initiation of
the subsequent swim, at which point their activity abruptly
dropped. Although the dynamics of the calcium indicator may
be partially responsible for the ramping nature of the responses,
we believe this is unlikely to be the cause, owing to the slow
timescale (5–10 s) of the signal increase (relative to the rise
and decay time constants of GCaMP5G37). These neurons were
primarily localized to two regions, a horseshoe-like structure
in the dorsal hindbrain and two far lateral clusters of neurons
in the medial part of the hindbrain (Fig. 5c,d), and show
how analyses of whole-brain data can reveal small neuronal
populations with distinctive dynamics.

dynamical portraits
Dimensionality reduction reveals the spatial organization of
dynamics (Fig. 5), but can also reveal how patterns of neural
activity evolve over time on a trial-by-trial basis. We repeated
the optomotor experiment during simultaneous recording of
behavior. We used PCA to estimate a low-dimensional space
and then project the complete time course of neural responses
(across individual trials) into the low-dimensional state space

b

D
im

 1

D
im

 2

Dim 3

a

D
im

 2

Dim 1

Swims

Swim strength
– +

Stim
 o

ff

Stim on

Figure � | Dynamical portraits of larval zebrafish whole-brain activity via
dimensionality reduction. (a) Trial-by-trial trajectories through a neural
state space, derived using PCA (Online Methods) from a data set like that
reported in Figure �a,b; each trace corresponds to one presentation of
the stimulus (12 s motion, 12 s stationary). Trace color (black to blue),
strength of swimming derived from electrophysiology. Black dots and
gray shaded region, trial onset. Blue shaded region, stimulus onset.
(b) Trial-by-trial trajectories related to stimulus direction, derived using
regression and PCA (Online Methods), from a data set similar to that
reported in Figure �. Each trace corresponds to one presentation of the
stimulus (10 s motion, 10 s stationary). Color, stimulus direction, as in
Figure �c. Black dots indicate trial (and stimulus) onset.

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nAture methods

Articles

(Online Methods). The resulting trajecto-
ries (Fig. 6a and Supplementary Video 7)
show how neural activity evolves through time. Trajectories before
and immediately after the onset of stimulus were stereotyped across
trials but exhibited variability later, likely reflecting variability in
behavior. Indeed, on individual trials, successive swims after the
onset of stimulus corresponded to deflections in state space. Unlike
voxel-wise tuning (Figs. 3 and 4), these results demand simulta-
neous measurement across the brain and multivariate analyses
that can examine the entire data set, especially to link single-trial
dynamics to behavior13.

As a second example, we estimated trial-by-trial trajecto-
ries from responses to moving, oriented gratings (similar to
the experiment reported in Fig. 4). For this analysis, we com-
bined regression (to extract variability related to the different
stimulus directions) with dimensionality reduction (Fig. 6b,
Supplementary Video 8 and Online Methods). Whereas before
trajectory shape was stereotyped across trials, here they diverged
depending on the direction of the stimulus.

modes of spontaneous activity
The analyses described thus far examined an explicit stimulus
or behavior. But large-scale analytics are equally powerful in the
‘spontaneous’ regime. In human functional imaging data, for
example, ICA reveals common patterns of activity during rest41.
Thunder includes a large-scale implementation of ICA. The first
step is to reduce dimensionality and whiten the data using SVD.
The data are then subjected to a sequence of iterative updates to
estimate the unmixing matrix42, efficiently implemented using
map-reduce operations (Online Methods) and benefiting from
caching (Fig. 2d).

We applied ICA to spontaneous activity in the zebrafish meas-
ured while the animal was immobilized in agar with no visual
stimuli other than the laser (same data set has been reported
previously7; the eyes were not excluded from laser stimulation;
Online Methods). We visualized the spatial modes recovered
by ICA by assigning each a color and composing them into a
map (Fig. 7, and Supplementary Videos 9 and 10). Two func-
tional networks were dominant: the ‘hindbrain oscillator’ con-
sisting of four clusters that exhibit slow lateralized oscillations
in the hindbrain and an area close by the inferior olive as well

as the ‘hindbrain-spinal network’. These analyses corroborate a
correlation-based measure7 but also find additional populations,
including lateralized, temporally sparse ‘explosions’ of activity
in both the tectum and the forebrain, and a family of function-
ally defined networks in the hindbrain with distinct dynamics.
Many of these functional networks include structures other than
cell bodies (i.e., axons and dendrites), which may have been
missed by cell body region of interest (ROI)-based analyses. The
ability to perform such analyses on whole-brain, subcellular-
resolution imaging data, especially when coupled with anatomical
methods43–45, will make it possible to link functional networks to
anatomy and connectivity.

discussion
We focused our examples on analysis of calcium imaging data
and performed all analyses on voxel-by-voxel data. Some calcium
imaging studies have taken this approach31, whereas others have
first defined ROIs, typically centered on somata, either manually14
or with semiautomated methods using anatomy46 or activity47.
Thunder both complements and facilitates ROI-based approaches.
The computations underlying any ROI-detection algorithm are
time-consuming, and Thunder can be used to efficiently imple-
ment them. However, most automated methods still effectively
require some manual inspection, which may become impracti-
cal for data sets consisting of many neurons; applying analyses
directly to voxels is particularly useful for exploratory analyses.
Cell bodies are readily identifiable from the resulting voxel-wise
maps. In some cases, so are signals of interest in single axons
or dendrites and in areas of neuropil. Finally, recordings from
larger regions of tissue in other animals may yield data sets with
ROI counts equal to or exceeding the voxel counts handled here;
Thunder could readily handle such data and is thus built to scale
alongside the coming technological advances in neuroscience.

Example analyses showed how our tools can reveal patterns
of biological importance in neural data. The zebrafish whole-
brain recordings would have been difficult to analyze without
the tools we introduced. Whole-brain maps of direction
selectivity revealed differences in the organization of stimu-
lus selectivity across brain areas. Dimensionality reduction of

10
0%

 ∆
F

/F
100 s

F
orebrain

M
idbrain

H
indbrain

50 µm

a b

c

Figure � | Analysis of whole-brain spontaneous
activity by ICA reveals functionally defined
networks. (a) Colored lines, temporal traces
associated with eight recovered independent
components. Components scaled to have similar
norm, units arbitrary. Black lines, calcium
responses (∆F/F) of example neurons within each
of the eight components. (b) Map derived from
ICA showing 8 of 20 components with the most
well-defined spatial structure (chosen by eye).
Absolute value of each component was used to
generate a separate color map; maps for the eight
components across 41 planes were combined
(after scaling each for contrast) with maximum
intensity projection through x, y or z.
(c) Magnifications of maximum intensity
projection (see boundaries in b) indicating
response patterns in tectal neuropil (left) and in
the hindbrain (right). Scale bars, 25 µm.

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nAture methods  |  ADVANCE ONLINE PUBLICATION  |  �

Articles

responses during optomotor and self-driven swimming behavior
identified groups of neurons with distinct dynamics, including
previously unknown signals such as ‘off ’ responses in the dor-
sal and lateral hindbrain. Combining additional experimental
assays with more complex model fitting in this system is likely
to yield rich insights into network dynamics during behavior.
In the future, current and new techniques2–4 will generate ever
larger data sets in a variety of organisms and will benefit from
the tools introduced here.

As in other computational fields where large data sizes are
becoming the norm, neuroscience will likely increasingly rely on
some form of distributed computing. Several factors motivated
our building a library on Spark in particular. First, Spark’s data
caching addresses the bottleneck of data loading, which funda-
mentally limits single-workstation solutions as well as distributed
computing solutions built on the Hadoop MapReduce engine,
which Spark matches or outperforms for many computations19.
Caching is particularly important for iterative computations,
which arise frequently in machine-learning algorithms and sta-
tistical methods. Spark also addresses the issue of ease of use, by
lowering requirements on users’ prior experience with distributed
systems. Through its APIs, the abstraction of RDDs and optimized
job scheduling, writing analyses in Spark is more concise than in
other platforms and faster, while requiring minimal control over
the distribution and execution of work19. We designed Thunder
itself so that anyone with minimal Python experience can use all
of the analyses. Finally, because we developed Thunder in Spark’s
Python API, analyses in Thunder can be applied interactively in
a Python shell (or an iPython notebook), and results can imme-
diately be inspected, visualized and shared.

Modern distributed computing has the potential to change ana-
lytics in neuroscience. Thunder and Spark, however, are a notable
departure from more common analysis approaches, for example,
running Matlab on a single workstation. An investment of time,
and possibly money, will be required to use the tools advocated
here, but we took steps to make it easier to start. First, we pro-
vided an Amazon EC2 launch script that creates a Spark cluster
with Thunder preinstalled. We also provided instructions that
facilitate installation of Spark on at least one common university
cluster environment. The provided benchmarks can guide selec-
tion among cluster sizes for particular use cases.

A key advantage of our approach is that it makes large-scale
neural analytics accessible to a broad community. Spark is open-
source, as is our library. It relies on the scientific computing
routines in Python (through Numpy and Scipy), which are also
freely available and increasingly popular tools for data science.
A cluster is required, but the cloud computing resources of
Amazon (EC2) are available to all. The domain-general speci-
fication of both input data and stimulus or behavioral variables
makes it straightforward to apply the analyses to imaging data
from other species and modalities or to other neural data, such
as recordings from large multielectrode arrays. In particular,
our library and related onoing efforts to use Spark for analyzing
light-field imaging data (M. Broxton, L. Grosenick, B. Poole and
K. Deisseroth; personal communication) are complementary and
can be integrated. With a working knowledge of Python, and
of basic distributed operations, members of the neuroscience
community will be able to extend Thunder with new, more
complex analyses48,49.

This work stands at the intersection of two of the most excit-
ing frontiers of modern neuroscience: recording from very large
populations of neurons and using distributed computing to
find patterns in very large data sets. By bridging these domains,
we offer an analytical framework for large-scale neuroscience.

methods
Methods and any associated references are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

AcknoWledgments
We thank K. Carlisle and R. Lines for help installing and running Spark on the
Janelia Farm Research Campus Compute Cluster, D. Ganguli and M. Zaharia for
advice on using Spark, G. Merlino for advice on benchmarking, C. Ziemba,
C. Stock and T.J. Florence for help testing EC2 installation procedures, P. Keller
for his help and advice in building the light-sheet microscope, B. Coop and
T. Tabachnik for their help with hardware design, M. Coleman for writing the
light-sheet microscope control software Zebrascope and continuing support,
S. Narayan for help with zebrafish experiments, K. Svoboda and S. Peron for
help setting up the mouse two-photon imaging, B. MacLennan for help with
mouse surgeries, D.G.C. Hildebrand and M. Koyama for discussions, the Janelia
Farm Research Campus vivarium staff for fish and mouse husbandry, and
V. Jayaraman, G. Murphy, K. Svoboda and P. Keller for comments on an earlier
draft of the manuscript. This work was supported by the Howard Hughes
Medical Institute.

Author contriButions
J.F. and M.B.A. conceived of the project. J.F. developed the analysis library and
analyzed the data. N.V., M.B.A. and T.K. developed the zebrafish light-sheet
imaging experimental preparation. N.V., M.B.A., Y.M., T.K. and J.F. collected the
zebrafish data. N.J.S. developed the mouse experimental preparation, collected
the data reported in Figure 3 and helped develop the analysis of those data.
D.V.B. contributed to zebrafish experiments. J.R. contributed code to the analysis
library. C.-T.Y. and L.L.L. developed the Tg(elavl3:H2B-GCaMP6s)jf5 transgenic fish
line. J.F. and M.B.A. wrote the paper, with input from all authors.

comPeting FinAnciAl interests
The authors declare no competing financial interests.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Grewe, B.F., Langer, D., Kasper, H., Kampa, B.M. & Helmchen, F.
High-speed in vivo calcium imaging reveals neuronal network activity
with near-millisecond precision. Nat. Methods �, 399–405 (2010).

2. Broxton, M. et al. Wave optics theory and 3-D deconvolution for the light
field microscope. Opt. Express 2�, 25418–25439 (2013).

3. Quirin, S., Peterka, D.S. & Yuste, R. Instantaneous three-dimensional
sensing using spatial light modulator illumination with extended depth of
field imaging. Opt. Express 2�, 16007–16021 (2013).

4. Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal
activity using light-field microscopy. Nat. Methods ��, 727–730
(2014).

5. Churchland, M.M. et al. Neural population dynamics during reaching.
Nature ���, 51–56 (2012).

6. Holekamp, T.F., Turaga, D. & Holy, T.E. Fast three-dimensional fluorescence
imaging of activity in neural populations by objective-coupled planar
illumination microscopy. Neuron ��, 661–672 (2008).

7. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain
functional imaging at cellular resolution using light-sheet microscopy.
Nat. Methods �0, 413–420 (2013).

8. Panier, T. et al. Fast functional imaging of multiple brain regions in
intact zebrafish larvae using Selective Plane Illumination Microscopy.
Front. Neural Circuits �, 65 (2013).

9. Portugues, R., Feierstein, C.E., Engert, F. & Orger, M.B. Whole-brain
activity maps reveal stereotyped, distributed networks for visuomotor
behavior. Neuron ��, 1328–1343 (2014).

10. Alivisatos, A.P. et al. Neuroscience. The brain activity map. Science 33�,
1284–1285 (2013).

http://www.nature.com/doifinder/10.1038/nmeth.3041
http://www.nature.com/doifinder/10.1038/nmeth.3041
http://www.nature.com/doifinder/10.1038/nmeth.3041
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�0  |  ADVANCE ONLINE PUBLICATION  |  nAture methods

Articles

11. Briggman, K.L., Abarbanel, H. & Kristan, W.B. Optical imaging of neuronal
populations during decision-making. Science 30�, 896–901 (2005).

12. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation
in zebrafish. Nature ���, 471–477 (2012).

13. Churchland, M.M., Yu, B.M., Sahani, M. & Shenoy, K.V. Techniques for
extracting single-trial activity patterns from large-scale neural recordings.
Curr. Opin. Neurobiol. ��, 609–618 (2007).

14. Huber, D. et al. Multiple dynamic representations in the motor cortex
during sensorimotor learning. Nature ���, 473–478 (2012).

15. Dean, J. & Ghemawat, S. MapReduce: simplified data processing on large
clusters. Commun. ACM ��.�, 107–113 (2008).

16. Isard, M. et al. Dryad: distributed data-parallel programs from sequential
building blocks. ACM SIGOPS Operating Systems Review ��, 59–72 (2007).

17. Shvachko, K., Kuang, H., Radia, S. & Chansler, R. The Hadoop Distributed
File System. in IEEE 26th Symposium on Mass Storage Systems and
Technologies 1–10 (2010).

18. Chu, C.-T. et al. Map-reduce for machine learning on multicore. Adv. Neural
Inf. Process. Syst. ��, 281 (2007).

19. Zaharia, M., Chowdhury, M., Das, T., Dave, A. & Ma, J. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation 2–15 (2012).

20. Vladimirov, N. et al. Light-sheet functional imaging in behaving zebrafish.
Nat. Methods http://www.nature.com/doifinder/10.1038/nmeth.3040
(27 July 2014).

21. Naumann, E.A., Kampff, A.R., Prober, D.A., Schier, A.F. & Engert, F.
Monitoring neural activity with bioluminescence during natural behavior.
Nat. Neurosci. �3, 513–520 (2010).

22. Roweis, S. EM algorithms for PCA and SPCA. Adv. Neural Inf. Process. Syst.
626–632 (1998).

23. Sofroniew, N.J., Cohen, J.D., Lee, A.K. & Svoboda, K. Natural whisker-
guided behavior by head-fixed mice in tactile virtual reality. J. Neurosci.
3�, 9537–9550 (2014).

24. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal
activity. Nature ���, 295–300 (2013).

25. Keller, G.B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in
primary visual cortex of the behaving mouse. Neuron ��, 809–815 (2012).

26. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral
state in mouse visual cortex. Neuron ��, 472–479 (2010).

27. Valmianski, I. et al. Automatic identification of fluorescently labeled brain
cells for rapid functional imaging. J. Neurophysiol. �0�, 1803–1811 (2010).

28. Borst, A., Haag, J. & Reiff, D.F. Fly motion vision. Annu. Rev. Neurosci.
33, 49–70 (2010).

29. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual
cortex. J. Neurosci. 2�, 7520–7536 (2008).

30. Grama, A. & Engert, F. Direction selectivity in the larval zebrafish tectum
is mediated by asymmetric inhibition. Front. Neural Circuits �, 59 (2012).

31. Nikolaou, N. et al. Parametric functional maps of visual inputs to the
tectum. Neuron ��, 317–324 (2012).

32. Gabriel, J.P., Trivedi, C.A., Maurer, C.M., Ryu, S. & Bollmann, J.H.
Layer-specific targeting of direction-selective neurons in the zebrafish
optic tectum. Neuron ��, 1147–1160 (2012).

33. Del Bene, F. et al. Filtering of visual information in the tectum by an
identified neural circuit. Science 330, 669–673 (2010).

34. Kubo, F. et al. Functional architecture of an optic flow-responsive area
that drives horizontal eye movements in zebrafish. Neuron ��, 1344–1359
(2014).

35. Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of
visual response properties in the zebrafish tectum. Neuron ��, 941–951
(2005).

36. Dreosti, E., Vendrell Llopis, N., Carl, M., Yaksi, E. & Wilson, S.W. Left-right
asymmetry is required for the habenulae to respond to both visual and
olfactory stimuli. Curr. Biol. 2�, 440–445 (2014).

37. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural
activity imaging. J. Neurosci. 32, 13819–13840 (2012).

38. Park, H.C. et al. Structural comparison of zebrafish Elav/Hu and their
differential expressions during neurogenesis. Neurosci. Lett. 2��, 81–84
(2000).

39. Kimura, Y. et al. Hindbrain V2a neurons in the excitation of spinal
locomotor circuits during zebrafish swimming. Curr. Biol. 23, 843–849
(2013).

40. Kinkhabwala, A. et al. A structural and functional ground plan for neurons
in the hindbrain of zebrafish. Proc. Natl. Acad. Sci. USA �0�, 1164–1169
(2011).

41. Fox, M.D. & Raichle, M.E. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat. Rev. Neurosci.
�, 700–711 (2007).

42. Hyvärinen, A. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans. Neural Netw. �0, 626–634
(1999).

43. Satou, C. et al. Transgenic tools to characterize neuronal properties of
discrete populations of zebrafish neurons. Development ��0, 3927–3931
(2013).

44. Bock, D.D. et al. Network anatomy and in vivo physiology of visual
cortical neurons. Nature ���, 177–182 (2011).

45. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in
the direction-selectivity circuit of the retina. Nature ���, 183–188
(2011).

46. Oberlaender, M. et al. Automated three-dimensional detection and
counting of neuron somata. J. Neurosci. Methods ��0, 147–160
(2009).

47. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Automated analysis
of cellular signals from large-scale calcium imaging data. Neuron �3,
747–760 (2009).

48. Pillow, J.W. et al. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature ���, 995–999 (2008).

49. Paninski, L. et al. A new look at state-space models for neural data.
J. Comput. Neurosci. 2�, 107–126 (2010).

http://www.nature.com/doifinder/10.1038/nmeth.3040

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041 nAture methods

online methods
Summary. Details of the Thunder library, and of the reported
example analyses and experiments, are provided here. Additional
material is available at a webpage about Thunder (http://freeman-
lab.github.io/thunder/) and a web page highlighting example
analyses and providing access to example data (http://research.
janelia.org/zebrafish).

Deployment options. Spark can be deployed in ‘standalone
mode’ on a private cluster or on Amazon’s EC2 cloud computing
services; it can also be deployed on top of the Apache Mesos or
Hadoop YARN resource managers, but we do not consider those
use cases here.

Private cluster. For private cluster usage, we deployed Spark in
standalone mode on a general purpose compute cluster sched-
uled by Univa grid engine (UGE), containing 256 nodes running
Scientific Linux 6.3. Here we provide details on the deployment
process and how we integrated Spark with the UGE scheduler, so
administrators of other private research clusters can replicate our
work. A custom qsub job class was created so that Spark could
be spun up dynamically on a user-designated quantity of nodes.
After the qsub is issued, with the number of nodes specified, the
grid engine scheduler designates a set of nodes that will be used
to run the Spark job. Once all of the nodes are available, a driver
(master) is started on one of them (using the start-master.sh script
included with the Spark distribution), then sends that driver the
addresses of the remaining nodes. The driver then uses the start-
all.sh script to start those workers. After starting a job, a user
can ssh into the driver and run Spark. When finished, the user
exits the ssh session and issues a qdel to stop the Spark job. This
triggers the stop-all.sh script on the driver, which takes down the
Spark cluster in an organized fashion. For accessing data, Spark is
often run on top of a Hadoop Distributed File System, but it can
also access data directly from a networked-filed system, so long
as it is available to all the nodes. We used a NFS served by several
EMC Isilon clusters.

EC2. We created a custom EC2 launch script that extends the
spark-ec2.py script (included with the Spark distribution) for
launching an EC2 cluster in standalone mode with the desired
number of nodes and instance types as well as several other con-
figuration options. The launch scripts deploy Spark on a clus-
ter, create an HDFS and preconfigure the cluster by installing
Thunder and its dependencies. Once the cluster has launched, it
can be logged into, and analyses can be performed.

Data format. All analyses in Thunder operate on an RDD of
records, where each record is a (key, value) tuple, where key
is either an integer or a tuple of integers and value is a numpy
array. Only a subset of analyses use keys explicitly, but all analyses
assume this format for consistency. Additionally, some saving
operations (see below) use keys to format results. These key-value
records can, in principle, be stored in a variety of Spark-accessible
formats in a cluster-accessible file system (for examplet, HDFS or
NFS). The core functionality of Thunder does not depend on the
file format, only that raw data are parsed appropriately into an
RDD of key-value records. The primary loading method we used
assumes a text file input, where the rows are neural channels and

the columns are the keys and values, each number separated by
a space (with the first three numbers providing the x-y-z key in
the case of imaging data). Different planes are stored in separate
files, but this is optional. Future work can make use of alterna-
tive and more efficient file formats, for example, flat binary files.
For analyses that require covariates (for example, behavioral or
stimulus variables), they can be provided directly as numpy arrays
(if working entirely in Python), or alternatively loaded from text
files or MAT files.

Components. Thunder currently includes four core packages:
clustering, factorization, regression and time series statistics, as
well as an io package for loading and saving, and a util package
with common utilities. Here we describe the key components of
each package and provide examples of code. More detailed code
examples are available in the Supplementary Protocol and online
(http://freeman-lab.github.io/thunder/ and http://research.
janelia.org/zebrafish).

Loading. Thunder’s load function takes raw data (as described
above) and parses it into an RDD of (key, value) tuples. The
number of keys can be specified (for example, 3 keys for x-y-z
coordinates in imaging data, 1 key for simple indexing of chan-
nels). There are also a variety of preprocessing options available,
including mean subtraction and conversion to ∆F/F (by subtract-
ing and dividing by a baseline). These are easily extended by writ-
ing Python functions that accept a time series as input and return
the preprocessed time series. We also include in the load package
convenience functions for determining data set dimensionality
(from the keys) through a single reduce operation, and switching
between coordinate-wise and linear key indexing.

Saving. Results of analyses (for example, images, time series)
can be returned directly in the form of numpy arrays. If work-
ing in Python, these can be examined or visualized immediately
(for example, using matplotlib). For external compatibility,
we provide the ability to save to alternative formats, including
MAT files, images and text. The save function takes an RDD as
input and collects the results followed by writing to disk. In the
case of MAT files or images, if requested, the dimensions of the
data are derived from the keys, and outputs are automatically
reshaped (for example, into a two-dimensional image or a three-
dimensional volume).

Factorization. Factorization methods separate or decompose a
data matrix into smaller, lower-rank matrices by optimizing an
objective function. PCA finds a decomposition that minimizes
the squared error between the true data matrix and the matrix
reconstructed from the low-rank matrices. We implement PCA
through the singular value decomposition (SVD), and provide
two implementations of the SVD. The first is suitable for a ‘tall
and skinny’ matrix Y of size n × d, where n is the number of chan-
nels and d is the dimensionality (for example, number of time
points), n > > d, and d2 fits comfortably in the memory of a single
machine. This algorithm first computes a d × d gramian matrix
using a distributed implementation of the equation

gramian =
=
∑ y yi

T
i

i

n

1

http://freeman-lab.github.io/thunder/
http://freeman-lab.github.io/thunder/
http://research.janelia.org/zebrafish
http://research.janelia.org/zebrafish
http://freeman-lab.github.io/thunder/
http://research.janelia.org/zebrafish
http://research.janelia.org/zebrafish

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041nAture methods

where yi is the mean-subtracted response time course of channel i.
A local eigenvector decomposition of the resulting matrix
provides the right singular vectors (a small d × k matrix), and
another distributed operation computes the left singular vectors,
only for the desired number of vectors. In Thunder, if data is
an RDD of (key, value) pairs, with the response time course of
each channel as the value, this sequence of operations can be
expressed as

mat = RowMatrix(data)
cov = mat.gramian() / mat.nrows
eigw, eigv = eigh(cov)
inds = argsort(eigw)[::-1]
S = sqrt(eigw[inds[0:k]]) * sqrt(n)
V = eigv[:, inds[0:k]].T
U = mat.times(V.T / S)

where S and V are small arrays represented locally, and U is
another RDD of n (key, value) pairs, with the projection of each
data point into the low-dimensional space. The initial step cre-
ates a RowMatrix (a class from the util package). A RowMatrix is
backed by an RDD of (key, numpy array) pairs, and a variety of
common matrix operations can be performed on it using distrib-
uted operations. For example, the gramian method computes the
outer product of a matrix with itself, which can be expressed as a
map-reduce operation:

mat.rdd.map(lambda (k, y): outer(y, y)).reduce(add)

where the map step calculates the outer product of each array
with itself, and the reduce step uses the addition operator, which
is commutative and associative, to add these outer products
together. (In practice, this step can be made more efficient with
methods that support in-place addition, for example, an accu-
mulator, or aggregator, but the simpler version is given here for
clarity). The times method uses a map to multiply a large matrix
(represented by an RDD) with a smaller one:

mat.rdd.map(lambda (k, y): (k, inner(y, other)))

To compute the SVD when d is large (for example, >1,000), an
iterative computation based on expectation maximization22 is
more efficient, especially when only a small number of eigen-
vectors are required, because in Spark iterations do not require
reloading data from disk. The principal subspace is estimated by
iterating the following two update equations:

X C C C Y

C YX XX

=

=

−

−

()

()

T T

new
T T

1

1

These steps can be implemented using the following sequence of
two distributed matrix operations (where times and gramian are
as described above),

iter = 0
C = random.rand(k, d)
while (iter < maxiter) & (error > tol):
 C_inv = dot(C.T, inv(dot(C, C.T)))
 YY = mat.times(C_inv).gramian()

 YY_inv = inv(YY)
 CY = dot(C_inv, YY_inv)
 C = mat.rows().map(lambda y: outer(y, dot(y, CY))).

reduce(add)
 C = C.T

where mat is a RowMatrix containing the data. After conver-
gence, the rows of the k × d matrix C span the subspace of the
leading eigenvectors. Projecting the raw data into this (much
smaller) subspace and repeating the gramian calculation (and
subsequent map step) described above yields an orthonormal
basis (the singular vectors). Options for PCA (and for the SVD)
include the number of recovered singular vectors, which algo-
rithm to use, and tolerance and maximum number of iterations
for the iterative algorithm.

The source model for PCA is that the data is Gaussian-
 distributed with a low-rank covariance determined by the prin-
cipal components. ICA, in contrast, assumes that the components
are non-Gaussian and statistically independent from one another,
and estimates them by iteratively maximizing an objective func-
tion that computes the non-Gaussianity of the components. As is
common, Thunder’s ICA first reduces the dimensionality of the
data and whitens it using SVD. The analysis then uses an iterative
sequence of map and reduce operations (as in the iterative SVD
algorithm) to compute an unmixing matrix via a widely used
fixed-point algorithm42 (see mathematical details below). Options
for ICA include the number of eigenvectors to retain, the number
of independent components to estimate, maximum number of
iterations, and tolerance.

Regression. Regression analyses, sometimes called ‘mass-
 univariate’, describe the time series from each channel as a function
of some underlying covariates. These analyses are implemented
through a map operation (to perform the regression) followed by
a collect. Classes are used to separate the underlying regression
functions from the map operation, so they can more easily be
extended or modified. For example, the LinearRegressionModel
class has the following get method, which performs a regression
on a single time series:

def get(self, y):
 b = dot(self.X_pinv, y)
 predic = dot(b, self.X)
 resid = y - predic
 sse = sum((predic - y) ** 2)
 sst = sum((y - mean(y)) ** 2)
 r2 = 1 - sse / sst
 return b, r2, resid

where X is the design matrix and X_pinv is its pseudoinverse. The
distributed operation itself is implemented through a fit method
that uses a map to apply the regression to each time series,

def fit(self, data):
 result = data.mapValues(lambda y: self.get(y))

Thunder includes both linear and bilinear regression. “linear”
regression fits each time series as a linear combination of some
variables, plus a constant. “bilinear” uses two design matrices;

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041 nAture methods

it uses the first to estimate a basis function that is common to
each of several conditions, and uses the second to describe each
condition as a scaled version of that basis function (similar to the
GLM approach commonly used in fMRI data analysis50). These
analyses compute the regression coefficients, an R2 for each voxel,
and residuals from the fitted model. These values can easily be
passed to other algorithms. For example, a large number of regres-
sion coefficients per data point can be further simplified using
PCA or k-means. Tuning analyses estimate the parameters of a
tuning curve that relates an input value to a response. Thunder
includes both Gaussian and circular tuning curves, in each case
yielding a parameter for the central tendency and the dispersion.
The user can provide an input value associated with each data
point, or use a regression matrix to estimate a coefficient for each
of a smaller set of input values, and then compute tuning from
those coefficients.

Clustering. Clustering analyses try to associate data points with
particular categories based on a distance metric. The included
algorithm, k-means, assigns each data point to one of k clusters
using an iterative algorithm. The implementation of the algorithm
proceeds in two primary steps. The first step uses a map operation
to compute, for each record, the closest of the current k cluster
centers. The second step uses a reduceByKey (followed by a map)
to identify the average of each cluster based on the current assign-
ment. The cluster centers are then updated, and the procedure
is repeated until convergence. Parameters include the number
of cluster centers, the maximum number of iterations, and the
tolerance for convergence.

Time series. Time series analyses compute statistics on each
channel, either simple summary statistics, or more complex
time series calculations. As with regression, most of these opera-
tions are implemented through a single map and collect, with
class-specific methods that handle specific time series opera
tions. Stats computes simple summary statistics, including
mean, median, std, or norm. Fourier estimates the statistics
of the Fourier transform, specifically, the coherence and phase
of the time series at a specified frequency (coherence is Fourier
amplitude normalized by the amplitude of all frequencies, yield-
ing a number between 0 and 1 that is more interpretable than
raw amplitude.) CrossCor computes the cross correlation between
data and a signal of interest at multiple time lags. If the maximum
lag is large, the resulting cross-correlation functions can be fur-
ther simplified using PCA or k-means. LocalCorr estimates the
correlation between each time series and the average time series of
its neighbors, useful for detecting structures with reliable activity
independent of any covariates. Query extracts local averages from
spatio-temporal data. The user specifies a set of indices to include
in the average, corresponding to a set of linearized coordinates.

Data sets for benchmarking. Four different data sets were
used for benchmarking. Data were represented as floats; this is
assumed for all sizes reported in all benchmarks, and yields sizes
that correspond closely to the size of data in RAM after loading,
as provided by Spark’s performance monitoring metrics. On disk,
data were stored as unsigned integers, and thus had smaller file
sizes.The first data set (Fig. 2a,d,e) was two-photon imaging data,
with dimensions of 512 × 512 × 4 (x-y-z) × 6300 (time), and size

of approximately 50 GB. The second (Fig. 2b,e) was light-sheet
imaging data, with dimensions of 2,048 × 1,024 × 18 (x-y-z) × 900
(time), and size of approximately 250 GB. A different light-sheet
imaging data set was used to test a wider range of sizes (Fig. 2c,f);
these data had x-y dimensions of 2,048 × 1,024, with 1,500 time
points, and the number of planes was varied from 2 to 32 to adjust
the total size from ~100 to 1,600 GB (sizes in Fig. 2f were rounded
to the nearest 100 GB). A final light-sheet imaging data set was
used to report comparisons between the iterative and direct SVD
for different numbers of time points; these data had x-y-z dimen-
sions of 972 × 2,048 × 40, and the number of time points was
either 240 or 1200 (with sizes of 150 and 750 GB).

Cluster environments for benchmarking. Tests were run using
Spark 0.9.1 and its associated deploy scripts for EC2 tests (which
used the Amazon Machine Image ami-35b1885c). Benchmarks
for the private cluster used Spark running on a general purpose
high performance compute cluster at the Janelia Farm Research
Campus, containing 256 nodes running Scientific Linux 6.3 and
scheduled by Univa Grid Engine. The nodes are equipped with
16 cores (2.7 GHz Intel Sandy Bridge, E5-2680), 128 GB RAM,
10 Gb ethernet, and single hard drives. The environment also
contains a DDN GridScaler running GPFS and several EMC Isilon
clusters serving NFS to the compute cluster (see above for how
Spark was deployed). Benchmarks on Amazon EC2 (Fig. 2e) were
run using a 20 or 40 node cluster (including the driver) with the
cc2.8xlarge (‘compute optimized’) instance type, each node having
32 vCPUs (Intel Sandy Bridge, E5-2670), 60.5 GB RAM, and
4 × 840 GB storage, at a cost of $2.00 per hour per node. This instance
type was chosen to match the capabilities of the private cluster;
EC2 cores use hyperthreading whereas the cores of the private
cluster do not, so the choice of 32 vCPUS meant that the two clus-
ters were matched for numbers of actual cores. In an additional
test reported above, the m3.2xlarge (‘general purpose’) instance
type was used, each node having 8 vCPUs (Intel Sandy Bridge,
E5-2670), 30 GB RAM, and 2 × 80 GB drives, at a cost of $0.56
per hour per node. EC2 clusters were launched with Thunder
preinstalled using a custom launch script (see above). The cluster
ran HDFS, and raw data were transferred from Amazon’s S3 into
HDFS using a distributed copy before analyses (taking approxi-
mately 5 min for the 50 GB data set with 20 nodes, and 10 min for
the 250 GB data set with 40 nodes). Number of input partitions
when running on EC2 was set manually to match the automatic
partitioning determined when running on the private cluster.

RAM configuration for benchmarking. For private cluster usage
each node had 16 cores and 128 GB RAM. For cc2.8xlarge (‘compute-
optimized’) EC2 instances, each node had 32 vCPUs and 60.5 GB
RAM. For m3.2xlarge (‘general purpose’) EC2 instances, each node
had 8 vCPUs and 30 GB RAM. On the private cluster, 100 GB were
made available to Spark; on EC2, 53.3 or 26.2 GB; the remaining
memory was allocated to the operating system. In both environ-
ments, 60% of Java heap space was used for Spark’s memory cache
(the default), so total RAM available for data caching per node was
approximately 60 GB, 32 GB and 16 GB, respectively.

File formats for benchmarking. Data were stored as integers. For
cluster-based analyses with Thunder, data were stored as text files
containing key-value records, and separate planes were stored

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041nAture methods

in separate files. For analysis on a workstation in Matlab, data
were saved to MAT files as matrices of unsigned integers, with
rows as voxels and columns as time points, also with one file
per plane.

Benchmarking test details. Code for performing all Thunder
benchmarks are included in the helper functions thundertest-
runner.py and thunderdatatest.py. Important details of the tests,
and how they were performed, are provided here. Cached data
were used for the tests reported in Figure 2a–c. This means that
data were initially loaded and parsed (using Thunder’s load func-
tion) and cached, and a count() operation was performed to force
computation and cache the data. Run times were measured for
performing the corresponding analysis, using count to force the
computation. In the case of iterative computations, five iterations
were used. For PCA and ICA, 3 components were estimated, and
for k-means, 3 clusters were used. No results were collected to
the driver or saved to disk. For the tests reported in Figure 2d
comparing times with and without caching, the tests without
caching were run by simply never caching, thus requiring that
data were loaded and parsed on every iteration. The tests with
caching included the time to load and cache on the first iteration
only. For the tests reported in Figure 2e, different stages were
timed separately. For loading and parsing, time was computed to
complete a count operation on the data loaded and parsed with
the load function, which incorporates costs due to file IO as well
as file content parsing and object creation. The compute time was
the time to perform the computation, as induced by a count(),
on cached data, as reported in Figure 2a,b. The saving time was
the time to collect a single number per channel from a cached
data set to the driver and save the result to disk in MAT format.
In normal use, the total time to perform all operations would
be slightly lower than the times reported in Figure 2e because
some components would be executed at the same time. For all
tests in Figure 2a,b,e, run times reported are the minimum of
three successive runs. For the remaining tests, a single run time
was computed.

Workstation comparison. For the single workstation implementa-
tion, planes of data were loaded sequentially from MAT files. For
each plane, to avoid performing computations on the entire plane
(which was impossible due to memory usage), subsets of each
plane were analyzed in a loop, with parallelization enabled by par-
for from the Matlab Parallel Computing toolbox. For regression,
matrix computations were used to estimate the same parameters
as in the Thunder implementation for every voxel. For ICA, the
appropriate matrix computations were performed to compute and
maintain partial updates to the component matrix B (see above)
using only the data from that plane. In Thunder, results were col-
lected to the driver, but no results were saved for either imple-
mentation. For the iterative analysis, 10 iterations were used. For
convenience, total run times were extrapolated where appropriate
(for example computing the run time on one plane or one iteration,
and then multiplying by the total number). The validity of these
extrapolations were confirmed in a small number of test cases.

Mouse two-photon imaging. All experiments were conducted
according to protocols approved by the Institutional Animal Care
and Use Committee of the Howard Hughes Medical Institute,

Janelia Farm Research Campus. Mouse surgeries and imaging
were performed in a manner similar to previous reports14. Male
adult (>3 month) C57BL/6Crl mice (Jackson Labs: 000664)
were infected with the genetically encoded calcium indicator
GCaMP6s24 under control of the human synapsin-1 promoter
using the recombinant adeno-associated virus (serotype 2/1; pro-
duced by the University of Pennsylvania Gene Therapy Program
Vector Core). A 3 mm window was inserted in a craniotomy made
over left barrel cortex (3.4 mm lateral and 1.5 mm posterior to
Bregma). A titanium headpost was attached to the skull to permit
head fixation. Experiments were performed 2 to 4 weeks post-
infection. GCaMP6s was excited at 1,000 nm with a Ti-Sapphire
laser using a custom two-photon microscope with a resonant
scanner and fast z-focusing. Images were acquired continu-
ously at 7.5 Hz using ScanImage software51, with dimensions of
512 pixels × 512 pixels × 4 planes.

Mouse behavior apparatus. Head-fixed mice ran on a spherical
treadmill in a tactile virtual reality environment as described
elsewhere23. Briefly, the position of two motorized walls was coupled
to the movement of the ball in closed-loop, allowing for the simula-
tion of a winding corridor. Wall position was not considered in the
analyses reported here, only running speed. Instantaneous speed
was derived by tracking motion of the ball at 500 Hz, and smoothed
with a Savitzky–Golay filter with window of 400 ms. The entire
apparatus was mounted underneath the two-photon microscope.
Typical experiments lasted 30–60 min, generating ~50–100 GB of
imaging data per experiment (stored as unsigned integers).

Zebrafish animals and trangenesis. All experiments were con-
ducted according to protocols approved by the Institutional
Animal Care and Use Committee of the Howard Hughes Medical
Institute, Janelia Farm Research Campus. Zebrafish lines used in
this study were Tg(elavl3:GCaMP5G) previously described7,37,38
in the nacre background52, and a nuclear-localized GCaMP6s
line Tg(elavl3:H2B-GCaMP6s)jf5 in the casper background53. The
nuclear-localized GCaMP6s fish was generated using the Tol2
transposon system54, in which the calcium indicator GCaMP6s24,
was fused with sequence encoding human histone H2B at the 5′
end to restrict its expression to the nucleus55. The gene encoding
the H2B-GCaMP6s fusion was subcloned into a Tol2 vector that
contained zebrafish elavl3 promoter56. The transgene construct
and transposase RNA were injected into 1–4-cell-stage embryos,
and the transgenic lines were isolated by the high expression of
bright green fluorescence in the central nervous system in the
next generation57. Embryos were reared according to standard
protocols at 28.5 °C (ref. 58), and experiments were performed
on animals 5–7 d post fertilization at room temperature. Fish
lines and DNA constructs for elavl3:GCaMP6s and elavl3:H2B-
GCaMP6s are available upon request.

Zebrafish imaging. Larval zebrafish were paralyzed by brief
immersion into 1 mg/ml alpha-bungarotoxin solution, and
embedded in a custom-made chamber20. A custom light-sheet
microscope, described in detail elsewhere20, was used to image
GCaMP fluorescence while larval zebrafish were placed horizon-
tally and intended motor output recorded electrically and visual
stimuli presented from below. Most of the optics were similar to
those described in ref. 7. The key differences20 were as follows: the

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041 nAture methods

detection arm was rotated 90 degrees to vertical orientation, so
that the zebrafish could be positioned horizontally, an orthogonal
excitation arm was added to scan the tissue between the eyes, and
the side excitation arm was dynamically switched off when posi-
tioned over the eye to avoid laser stimulation of the eyes. Volumes
of images were acquired continuously at 1 Hz (800 ms imaging
time and 200 ms piezo reset time), and streamed in binary format
to a RAID6 disk array in real time, using a custom LabView (64-bit)
program Zebrascope (Coleman Technologies). Image stack dimen-
sions were typically 2,048 × 1,024 pixels (x-y) by 41 planes (z).
Typical experiments lasted ~15–30 min, generating ~250–500 GB
of imaging data per experiment (stored as unsigned integers).
The data reported in Figure 7 were identical to those reported
previously7, and thereby differed in the imaging details: zebrafish
were embedded in a column of agarose and positioned vertically
in a light-sheet microscope with only one excitation arm, and eyes
were not excluded from stimulation.

Zebrafish stimuli and behavior, general. A diffusive plastic
screen was attached to the bottom of the chamber, to allow red
monochrome images to be projected from below using a mini
projector. Electrical recordings from the ventral root of the spinal
cord, or motor neuron axons, were made and processed according
to previously described techniques12,59. For comparisons to neu-
ral data (for example, Figs. 5 and 6) electrophysiological signals
were downsampled by taking the maximum signal within each
temporal window of volume acquisition.

Direction selectivity. Moving gratings of spatial period 1 cm
were presented at 12 angular directions, 30° apart, in clockwise
sequence. The gratings moved at 1 cm/s for a period of 10 s, after
which a gray screen appeared for 10 s. For the data shown in
Figure 4, the sequence of 12 angles was repeated 5 times (in iden-
tical order). For the data shown in Figure 6b, the sequence was
repeated 8 times.

Optomotor response. A red/black grating of spatial period 1.2 cm
moving forward, from head to tail, at a speed of 0.24 cm/s was
presented to the fish, alternating between periods of motion and
static grating. For the data shown in Figure 5a,b, the period was
40 s (20 s moving, 20 s static), and the sequence was repeated
9 times. For the data shown in Figure 6a, the period was 20 s
(10 s moving, 10 s static), and the sequence was repeated 14 times.
During visual motion, vigorous fictive swimming was observed,
while during no motion, the fish swam little.

Self-driven swimming. A red/black grating of period 1.2 cm
moving forward, from tail to head, at a speed of 0.05 cm/s was
presented continuously to the fish, while the entire hindbrain
and parts of the midbrain were imaged using one light sheet
from the side. Motor activity was monitored as explained above.
Stimulus speed was titrated online to elicit motor output ~50%
of the time.

Analysis details. Here we detail the computations and algorithms
underlying the example analyses presented in Figures 3–7. Each
was implemented using routines in Thunder (separately or com-
bined), but below we focus on the analyses themselves, rather than
implementation (Supplementary Protocol).

Motion correction. For all analyses and data sets, sample motion
in raw imaging data was corrected using plane-by-plane cross-
correlation based image registration. Specifically, for every plane,
the two-dimensional Fourier transform was used to compute the
cross-correlation between the image at time tn and the image at
t0, and the peak of the cross-correlation was used to determine an
optimal displacement in x and y, which was then applied to the
image at tn. For the mouse two-photon imaging data, an additional
line-by-line motion compensation procedure was performed, as
described elsewhere14. Image registration was performed using
Matlab; all other computations were performed in Spark and
Thunder.

Preprocessing. The input to analyses was the fluorescence of
every voxel from motion-registered images. As described above,
these data were represented and stored as records, each a key-
value pair, where the key is the x-y-z coordinate of each voxel, and
the value is an array with the response time series. Preprocessing
of the time series was handled by Thunder’s load function. For
all example analyses (except for local correlation, which used raw
fluorescence), fluorescence for every voxel was converted into
∆F/F (yielding what is hereafter referred to as a response time
course) as:

y t F t F F c() (())/()= − +
Where F(t) is the fluorescence image at time t for each pixel, F is
the mean, and a small constant c prevents division by 0.

Speed tuning. Speed tuning was characterized using regression
followed by tuning curve estimation. Regression was used to esti-
mate, for every voxel, the relative responses to different speeds.
The instantaneous speed was binned into 12 equally spaced bins,
yielding a binary matrix X1 of dimension 12 × t describing the
speed at each moment in time (where t is the duration of the
experiment). Least-squares was used to estimate the response to
each speed:

b X X X y= −()1 1
1

1
T

where y is the response time course of a single voxel. R2 was
computed from this linear fit as a measure of response predict-
ability. The speed-specific responses were then fit with a Gaussian
tuning curve. Rather than perform a nonlinear fit, the best-fitting
parameters were approximated by computing a weighted mean
and variance. A composite map (Fig. 3c) was generated by using
the tuning parameter (the weighted mean) as the hue and the R2
as the brightness. In Thunder, these analyses were implemented
using the RegressionModel and TuningModel classes from the
regression package.

Local correlations. As a covariate-independent measure of
response reliability, local correlations60 were computed for every
voxel by correlating the fluorescence time course of each voxel
with the average of a local 7 × 7 pixel neighborhood:

localcorri j
i j

i j

i j

i j
,

,

,

,

,|| || || ||
= •

y

y

y

y

where yi,j is the response of a voxel at position i,j, and yij is
the average response of the neighborhood defined by the interval

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041nAture methods

(i − 3, i + 3) and the interval (j − 3, j + 3), || || denotes the vector
norm. In Thunder, this analysis was implemented using the
LocalCorr class from the timeseries package.

Direction tuning. Direction selectivity was characterized using
regression followed by tuning curve estimation, except here
additionally incorporating the temporal profile of the response.
Responses were first averaged across repeated presentations.
Regression was used to estimate, for every voxel, a single temporal
basis function, and a scalar associated with each presented direc-
tion. Let X1 be the s × t binary design matrix specifying the timing
of stimulus presentation, where s is the number of time points per
stimulus, and t is the total duration (t = sd where d is the number
of directions). Let X2 be the d × t design matrix specifying which
of the d directions were presented at each time point. For every
voxel, least-squares was used to estimate the average temporal
response profile pooled across directions.

b X X X y= −()1 1
1

1
T

where y is the response time course of a single voxel. For
non-overlapping conditions, this is identical to computing the
average time course to stimulus presentation (ignoring direction).
The voxel-specific temporal profile b was then used to construct,
for each voxel, a new design matrix through element-wise multi-
plication with the nonzero elements of X2, and used for a second
least-squares procedure to estimate the direction-specific weights.
Finally, the direction-specific weights were fit with a circular Von
Mises function. Rather than perform a nonlinear fit, the param-
eters of the best-fitting Von Mises were estimated directly by
computing the circular mean and circular variance of the direc-
tions weighted by the responses61. This yielded, for each voxel,
a preferred direction and a tuning width. Response strength was
computed as the norm of the response time course. The resulting
three numbers determined the hue, saturation, and brightness
(in HSV color space) of a composite map (Fig. 4b). Contrast was
enhanced by scaling and thresholding the brightness map. In
Thunder, this analysis was performed using the RegressionModel
and TuningModel classes from the regression package.

Principal component analysis. Dimensionality reduction was
used to characterize the dynamics of neural activity in both space
(Fig. 4) and time (Fig. 5). The input to the analysis was the n × t
matrix Y, containing the response time course of every voxel to
each of several repeated presentations of the stimulus (n is the
number of voxels; t is the number of time points). To identify a
low-dimensional subspace for the data, repeated presentations
were first averaged to yield a n × t̂ matrix Ŷ, where t̂ is the dura-
tion of a single stimulus presentation (the same analysis can be
performed on the full, non-averaged data matrix). Row means
were subtracted, and the singular value decomposition (SVD)
was computed:

Ŷ USV= T

The principal components (the columns of V) are vectors of
length t̂ describing the time course of each component, and the
scores (the columns of U) are vectors of length n, describing
the projection of each voxel on the direction given by the cor-
responding component, forming the projections onto the volume,

i.e., whole-brain maps. As described above, Thunder provides
two-large scale implementations of the SVD, both in the factoriza-
tion package. In either case, scores were used to generate response
maps (for example, Fig. 5a,c). Specifically, for each voxel, the first
two scores were converted from Cartesian to polar coordinates;
the angle was used to determine the hue, and the magnitude was
used to determine the brightness (the saturation was set to 1).
Every angle corresponds to a different linear combination of the
first two components; the time courses of each of these linear
combinations were used to construct a ‘color wheel’ (Fig. 5a) map-
ping color to time course shape. As for direction selectivity maps,
brightness was scaled and thresholded to increase contrast.

For trial-averaged data, the principal components correspond
to trial-averaged trajectories in time through a state-space. To
recover trial-by-trial trajectories through the same space (as
shown in Fig. 6), regression followed by PCA was used to recover
the principal subspace, and the complete time courses were then
projected into the principal subspace,

J U Y= T

yielding a k × t matrix of trajectories J, where k is the dimen-
sionality of the subspace (either 2 or 3). These analyses were per-
formed using the entire data set (i.e., including the responses of
all recorded neurons). For the optomotor response (Fig. 6a), the
initial regression was simply trial-averaging; for direction selec-
tivity (Fig. 6b), the initial regression marginalized across time the
responses to the different directions. State space trajectories were
smoothed with linear interpolation (separately for each trial), for
visualization only (Fig. 6). In Thunder, these analyses were imple-
mented using a combination of the RegressionModel and PCA
classes from the regression and factorization packages.

Cross-correlation. Cross-correlation followed by dimensional-
ity reduction (as above) was used to relate neuronal dynamics
to swimming behavior. First, electrophysiological recordings
were filtered using a running s.d.12, then downsampled to the
frequency of the volumetric brain scans by computing the maxi-
mum within the temporal window during which each imaging
volume was acquired. Cross-correlations (with a maximum lag
of l = 17) were computed between each voxel’s mean-subtracted
response time course and this downsampled signal. Specifically,
the cross-correlation for voxel n at a lag of m was given by

crosscorrm n
n

n

m

m
, || || || ||

= •y
y

e
e

where yn is the response time course of voxel n, em is the electro-
physiological signal shifted in time by m (and padded with 0 s).
The resulting n × (2l + 1) collection of data was used as input
to PCA to embed the ensemble of cross-correlation kernels in
a low-dimensional space; visualization of this space (Fig. 4c,d)
was performed as described above (Fig. 4a,b). In Thunder, this
analysis was performed using the CrossCorr class from the
timeseries package and the PCA class from the factorization pack-
age for dimensionality reduction.

Independent component analysis. ICA is an unsupervised learn-
ing algorithm that aims to decompose a multivariate data set into

©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3041 nAture methods

underlying, additive signals, assuming they are non-Gaussian and
statistically independent. The generative model is:

Y PA=

where Y is the n × t data matrix, P is the n × c matrix of source
signals or components (columns are spatial modes), and A is the
c × t matrix of mixing coefficients (rows are temporal modes).
ICA seeks a matrix W that unmixes the data

P YW=

such that a function of the non-Gaussianity of the spatial sources
is maximized. Before estimating this matrix, data are typically
preprocessed through whitening and dimensionality reduc-
tion42,47. Whitening was implemented by computing an SVD on
the data matrix Y as described above, and projecting the response
time course of each voxel onto the leading eigenvectors and
scaling by inverse eigenvalues:

Ŷ YVS= −1

yielding the whitened, lower-dimensional n × k data matrix Ŷ,
where V and S are restricted to the desired number of leading
eigenvectors k. The unmixing matrix B in the space of the whitened
data was estimated using a fixed-point algorithm42, iteratively
applying the update equation:

ˆ (ˆ (ˆ))/a nnewB Y YB B= −3 3

(Raising to the power of 3 is element-wise.) On each iteration,
B was additionally orthogonalized:

B B B Borth
T= −() /1 2

These updates were repeated until convergence. For the analysis
shown in Figure 7, k = 100 dimensions and c = 20 components
were used, and ~20 iterations were required. Finally, the mixing

and demixing matrices were transformed to the original data
space by undoing the whitening transform

W VS B

A B SV

=

=

−1

T T

The matrix A contains in its rows the mixing coefficients—
the time courses associated with each spatial independent
component—and the spatial components are given by YW.
In Thunder, this analysis was performed using ica from the
factorization package, which makes use of svd for initial dimen-
sionality reduction.

50. Dale, A.M. Optimal experimental design for event-related fMRI. Hum. Brain
Mapp. �, 109–114 (1999).

51. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software
for operating laser scanning microscopes. Biomed. Eng. Online 2, 13
(2003).

52. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L. & Raible, D.W.
nacre encodes a zebrafish microphthalmia-related protein that regulates
neural-crest-derived pigment cell fate. Development �2�, 3757–3767
(1999).

53. White, R.M. et al. Transparent adult zebrafish as a tool for in vivo
transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

54. Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2
transposable element identified the minimal cis-sequence and a highly
repetitive sequence in the subterminal region essential for transposition.
Genetics ���, 639–649 (2006).

55. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables
sensitive analysis of chromosome dynamics in living mammalian cells.
Curr. Biol. �, 377–385 (1998).

56. Sato, T., Takahoko, M. & Okamoto, H. HuC:Kaede, a useful tool to label
neural morphologies in networks in vivo. Genesis ��, 136–142 (2006).

57. Fisher, S., Grice, E.A., Vinton, R.M. & Bessling, S.L. Evaluating the
biological relevance of putative enhancers using Tol2 transposon-mediated
transgenesis in zebrafish. Nat. Protoc. �, 1297–1305 (2006).

58. Westerfield, M. The Zebrafish (University of Oregon Press, 1993).
59. Ahrens, M.B., Huang, K.H., Narayan, S., Mensh, B.D. & Engert, F. Two-

photon calcium imaging during fictive navigation in virtual environments.
Front. Neural Circuits �, 104 (2013).

60. Cheng, A., Gonçalves, J.T., Golshani, P., Arisaka, K. & Portera-Cailliau, C.
Simultaneous two-photon calcium imaging at different depths with
spatiotemporal multiplexing. Nat. Methods �, 139–142 (2011).

61. Fisher, N.I. Statistical Analysis of Circular Data (Cambridge University
Press, 1995).

