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understanding brain function requires monitoring and 
interpreting the activity of large networks of neurons during 
behavior. Advances in recording technology are greatly 
increasing the size and complexity of neural data. Analyzing 
such data will pose a fundamental bottleneck for neuroscience. 
We present a library of analytical tools called thunder built 
on the open-source Apache spark platform for large-scale 
distributed computing. the library implements a variety  
of univariate and multivariate analyses with a modular, 
extendable structure well-suited to interactive exploration  
and analysis development. We demonstrate how these  
analyses find structure in large-scale neural data, including 
whole-brain light-sheet imaging data from fictively behaving 
larval zebrafish, and two-photon imaging data from behaving 
mouse. the analyses relate neuronal responses to sensory 
input and behavior, run in minutes or less and can be used on a 
private cluster or in the cloud. our open-source framework  
thus holds promise for turning brain activity mapping efforts  
into biological insights.

New technologies1–9 based on imaging and multielectrode arrays 
are making it possible to record simultaneously from hundreds 
or thousands of neurons and in some cases, such as the larval 
zebrafish7–9, nearly the entire brain. Given the growing size and 
complexity of neural recordings10, analyzing and interpreting 
the data will be a fundamental bottleneck for neuroscience11–14. 
For example, an hour of two-photon imaging in mouse can yield 
50–100 gigabytes (GB) of spatiotemporal data, and recording 
from nearly the entire brain of a larval zebrafish using light-sheet 
microscopy7,8 can yield 1 TB or more. At this scale, even simple 
calculations can take hours to run on a single workstation, let 
alone more complex analyses examining joint dynamical patterns 
across the brain.

Neural data pose unique challenges for analytics. The data are 
complex, and the ‘right’ analysis is rarely obvious. Every analysis 
provides a lens through which to see the data, and it is often nec-
essary to try different analyses interactively, whether by varying 
parameter choices or developing entirely new algorithms (Fig. 1a).  
The need for flexible analytics is especially crucial for large data 
sets; the more complex and heterogenous the response proper-
ties and dynamics, the wider the variety of analyses needed to 
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reveal their structure. Prototyping analyses for small data sets is  
straightforward on a workstation using existing tools, but for 
large data sets, especially those that exceed the memory of one 
machine, this becomes intractable. Large-scale neuroscience  
thus demands a flexible platform for creating analyses and 
inspecting results.

Over the last several years, the private technology sector has 
invested heavily in ‘big data’ approaches that leverage the power 
of distributed computing (networks or ‘clusters’ of interconnected 
compute nodes) to analyze large data sets15–17. MapReduce15 is a 
widely adopted programming model that divides a large compu-
tation into two steps: a ‘map’ step, in which data are partitioned 
and analyzed in parallel, and a ‘reduce’ step, in which intermedi-
ate results are combined or summarized. Many analyses can be 
expressed in this model18, but conventional systems that imple-
ment MapReduce, such as the open-source Hadoop MapReduce 
engine17, have key weaknesses. In particular, data must be loaded 
from disk for each operation, which can slow iterative computa-
tions (including many machine-learning algorithms), and makes 
interactive, exploratory analysis difficult. The recent, open-source 
Apache Spark platform extends and generalizes the MapReduce 
model while addressing this weakness, by introducing a primi-
tive for data sharing called a resilient distributed data set (RDD). 
With Spark, a user can cache a data set, or an intermediate result, 
in the memory (random-access memory; RAM) across cluster  
nodes, performing iterative computations faster than with 
Hadoop MapReduce19 and allowing for interactive analyses. 
Spark’s application programming interfaces (APIs) also allow 
a user to express distributed computations—not only map and 
reduce but also filtering for subsets of data, joining multiple 
data sets together and others—all as operations over RDDs. This 
abstraction enables simpler, more concise implementations and 
performance improvements, especially for complex sequences  
of operations19. Other scripting languages and abstractions  
simplify MapReduce jobs (e.g., Pig and Cascading) but are built 
on the Hadoop MapReduce engine and thus lack the advantages 
of in-memory data sharing. Another advantage of Spark’s APIs,  
in particular the Python API, is compatibility with existing  
libraries for scientific computing and visualization. Spark has  
primarily been used in industry, but these properties make it  
well-suited for neuroscience.
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Here we describe an open-source library of analytical tools for 
neuroscience built on Spark. Our library, called Thunder, imple-
ments a variety of algorithms in a modular and extendable user-
oriented library (Fig. 1). The tools we developed enable the rapid 
analysis and interpretation of large neural data sets and will be 
relevant to a wide variety of data. To demonstrate their capabil-
ity, we applied them to high-resolution calcium imaging data. 
We analyzed data from a paradigm, described in a companion 
paper20, that combines whole-brain light-sheet imaging7 with 
visual stimulation and behavior in paralyzed larval zebrafish12. 
These data include recordings from nearly all neurons in the brain 
and consist of time series from ~108 voxels, reflecting activity of 
~105 neurons21 and large areas of neuropil. We also analyzed two-
photon imaging data from behaving head-fixed mice, including 
responses from ~103 neurons (~106 pixels).

Our analyses quickly find patterns in neural data, revealing 
neuronal populations involved in both stimulus encoding and 
motor behavior. Although only demonstrated on calcium imag-
ing data, our tools could also be applied to imaging data from 
other indicators (e.g., voltage, neurotransmitter), high-resolution  
functional magnetic resonance imaging (fMRI), or electrophysio-
logical data and thus provide a general analytics platform for 
large-scale neuroscience.

results
Analysis framework
Large-scale neural data analysis should be fast, interactive, 
extendable and accessible to the neuroscience community. To 
achieve these goals, we built a library, Thunder (http://freeman-
lab.github.io/thunder), on top of the open-source computing plat-
form Spark19, using its Python API. Here we describe the library 
in detail: the input data it assumes, the analyses it performs, how 
they are implemented, how they can be extended and benchmarks 
of their performance.

Architecture and organization
In raw form, nearly all functional neural data sets (calcium imag-
ing, fMRI, electrophysiology) are collections of time series from 
different neural channels, such as voxels. Many computations can 
be parallelized over channels. Thus, a natural input format is a 
collection of key-value pairs. The key is an identifier, and the 
value is a response time series. Imaging data, for example, are 
key-value pairs where each key is an x-y-z coordinate and each 
value is the fluorescence time series. If records are stored on disk 
in a networked or distributed file system, platforms such as Spark 
can read them in parallel and perform a rich variety of computa-
tions. The keys can similarly index other kinds of neural channels, 
for example, electrodes in a multielectrode array. The key-value 
format is thus a general representation for neural recordings.

In practice, neural data are acquired and saved in a temporal 
sequence of the form (all channels at time 0), (all channels at time 1),  
etc., where the channels are, for example, voxels in imaging data. 
Before analysis, data must be converted into the common input 
format by collecting across time and writing key-value records to 
disk, i.e., rearranging the data as (all time points for channel 0), 
(all time points for channel 1), etc. Some version of this one-time 
operation would be necessary in any platform for analyzing how 
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Figure � | A platform for large-scale neural analytics. (a) Example 
analyses in Thunder. Input data are time series from different neural 
channels (e.g., voxels for imaging data). Univariate analyses (summary 
statistics, regression and tuning) apply the same operation to every 
channel. Multivariate analyses (dimensionality reduction and clustering) 
examine joint structure across channels. Mathematical notation  
(for illustration only): Y, data matrix, f, arbitrary nonlinear function,  
µ and σ, example summary statistics, X, design matrix for regression, or 
stimulus parameters, B, regression coefficients, θ, model parameters,  
U, V, factors from a matrix decomposition. (b–e) Implementing different 
neuroscience analysis workflows in Spark by applying distributed 
operations to an RDD. Mass-univariate analyses implemented through 
a map operation, which performs computations (e.g., fitting a 
regression model) on partitions of the data in parallel, followed by 
collecting the results (b). An iterative implementation of the singular 
value decomposition (c) uses repeated map and reduce operations to 
distribute a sequence of matrix computations, each using the result 
of the previous computation. The map operations perform local matrix 
multiplications, and the reduce steps perform addition. Caching the RDD 
means that data do not need to be loaded from disk for each iteration. 
The correlation between a time series and its local average (d) uses 
a map and reduceByKey to compute averages of voxels belonging to 
a spatial neighborhood and then joins these local averages to the 
original data to compute correlations in a final map operation. k-means 
clustering (e) uses a map to find the center closest to each point, and 
a reduceByKey to average the data points from each cluster and thus 
update the centers.

http://freeman-lab.github.io/thunder
http://freeman-lab.github.io/thunder
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the data vary over both space and time. Assuming a common 
input format additionally supports data sharing and domain- 
general analysis tools.

The first analysis step in Thunder uses the load function to turn 
input data into an RDD in Spark and apply any desired preprocess-
ing, as in: data = load(sc, ‘dataset’, ‘dff ’).cache(), where dataset is 
the location of the data, sc is the Spark context (a class that acts as 
the main entry point for Spark functionality) and dff specifies one 
of several preprocessing options. The optional .cache() marks the 
RDD for caching into RAM, which is important if it will be queried 
multiple times (e.g., during an iterative computation or during 
interactive analysis). A variety of RDD operations can then be per-
formed. The core of Thunder is expressing different neuroscience 
analyses in the language of RDD operations (Fig. 1b–e). Spark 
exposes RDD operations through APIs in the programming lan-
guages Scala, Java and Python. Thunder is primarily written in the 
Python API (PySpark) because it enables the use of robust numeri-
cal and scientific computing libraries (e.g., NumPy and SciPy), and 
provides the simplest front end for new users. Finally, Thunder is 
designed so that analyses can be run either as standalone scripts 
or interactively within the Python shell (or an iPython notebook), 
enabling immediate inspection and visualization of results.

Analyses and implementation
Thunder includes several univariate and multivariate analyses, 
organized into regression, factorization, clustering and time-series 
statistics (Fig. 1). The components of the analyses are modular, 
making it easy to combine or extend them.

Univariate analyses (sometimes called ‘mass-univariate’) 
perform a computation on each neural channel, for example, 
voxel-wise summary statistics or voxel-wise regression. These 

analyses are naturally expressed through a map operation that 
distributes the computation across the worker nodes of the 
cluster, followed by a ‘collect’ to return the result to the driver 
(Fig. 1b). We separate the computation performed on each  
channel from the RDD operation itself; for example, by using a 
high-level RegressionModel class that implements the mapping 
and using subclasses, each for particular models, that implement 
the fitting. This design enables users with only minimal knowl-
edge of Python to modify the underlying computations (e.g., the 
form of regression) or add new ones.

Multivariate analyses examine multiple channels, in some cases 
the entire data set. These analyses typically require (at least) a 
combination of map and reduce operations, where the map step 
distributes some computation across partitions of the data, and 
the reduce step uses a commutative and associative function to 
combine the results (Fig. 1c). Such analyses can be more involved 
to implement, but the algorithms we include provide a founda-
tion for future work. For example, many multivariate analyses 
use the singular value decomposition (SVD), which seeks to 
approximate an n × t matrix as the product of n × k and k × t  
matrices, where n is the number of channels and t the number 
of time points. We provide two large-scale implementations of 
the SVD. The first is suitable for ‘tall-and-skinny’ matrices (e.g., 
large n, small t); it uses a map to compute rank 1 outer products, 
a reduce (with addition) to aggregate the results and another map 
to project data into the recovered subspace. For the case of many 
time points (t > 1,000), we implemented an alternative large-
scale iterative algorithm based on expectation maximization22, 
which expresses a sequence of matrix updates as map and reduce 
steps (Fig. 1c), and can be faster than the direct method when a 
small number of singular vectors are required (see below).

Figure 2 | Performance benchmarks for  
Thunder. (a,b) Run times for a 50 GB data set 
(512 × 512 × 4 voxels, 6,300 time points),  
with 10, 20 and 30 nodes (a) and for a 250 GB 
data set (2,048 × 1,024 × 18, 894 time points), 
with 20, 40 and 60 nodes (b). std refers to 
standard deviation. Each node had 16 cores  
and 128 GB RAM (100 allocated to Spark),  
see Online Methods for additional 
specifications. All computations were  
performed on cached data and only include 
duration of computation (not loading or  
saving results, see e). For iterative 
computations, five iterations were used.  
Times reflect the minimum from three runs.  
(c) Run time as a function of data set size, 
using 60 nodes. Data dimensions were  
(2,048 × 1,024 × z, 1,500 time points),  
where z was varied from 2 to 32 to vary total 
size. Gray line, linear fit with intercept fixed at 0, slope = 0.029. (d) Run times for varying iterations of independent component analysis, applied to the 
same 50 GB data set from a, with and without data caching (run times for cached data include the initial time to load and cache). The slight increase 
in run time for caching with one iteration likely reflects a small serialization penalty for populating the cache. (e) Run-time breakdown on two cluster 
environments for the same two data sets from a,b; durations are shown for loading, parsing and caching data, performing the computation (identical 
to times reported in a,b for the private cluster) and collecting and saving the result. Numbers in center give combined time. Amazon EC2 cluster used 
‘compute optimized’ instances, each having 32 vCPUS (with hyper-threading, so this is roughly matched to the 16 real cores per node on the private 
cluster) and 60.5 GB RAM (53.3 allocated to Spark). (f) Run times for performing two analyses on a private cluster (with Spark) or on a single 12-core  
Linux workstation with 64 GB RAM (with Matlab), for the same data analyzed in c. Input data were identical in content (single files containing  
response time series from all voxels of a single plane) but a text file for Spark and a MAT file for Matlab. In both cases times include loading and  
parsing, computing, and (for Spark) collecting results. Ten iterations were used for ICA. For convenience, times here were extrapolated where  
possible (e.g., timing one iteration and multiplying by the number of iterations), and extrapolation was verified in a subset of cases.
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Many other analyses require RDD operations beyond map and 
reduce. For example, the filter operation can be used to extract 
spatial subregions during an analysis. Correlating each voxel’s 
time series to the average of a local neighborhood involves a flat-
Map and reduceByKey to average local groups of voxels, a join 
to combine the raw data with those averages and a final map to 
compute the correlation coefficients (Fig. 1d). k-means clustering 
involves a map step (to compute, for each point, the closest of the 
k centers), followed by a reduceByKey (to average the data points 
belonging to each cluster; Fig. 1e). With a working knowledge 
of these operations, and of Python, users can easily extend the 
analyses or create new ones. The components of Thunder can also 
be fluidly combined. For example, we could perform regression 
on every voxel and cluster the resulting regression coefficients or 
compute residuals from a model fit and use dimensionality reduc-
tion to examine structure in the noise. Both can be expressed in 
a few lines of code.

setup and installation
Running Thunder on a cluster requires first deploying Spark 
as well as installing Python and the necessary Python libraries, 
all available as open source. Spark can be deployed on a private 
cluster (e.g., at a university or research facility) or on Amazon’s 
EC2 cloud computing services. For EC2 usage, we provide a 
customized Spark EC2 launch script that creates a Spark cluster 
on EC2 and preinstalls Thunder (and its dependencies). For a 
university cluster running the Univa Grid Engine, we provide 
instructions for setting up Spark in standalone mode (Online 
Methods). The advantages of EC2 are ease of deployment and 
scalability (the number of nodes can be tailored to the data  
set and desired performance, see below). The disadvantage is 
that data must be transferred to cloud storage, but when many 
analyses are performed on the same data, this one-time cost  
may be insignificant.

Benchmarks
To characterize performance, we first measured run times for two 
data sets, three cluster sizes and nine analyses, all implemented on 
a private cluster running Spark. The test data sets were two-photon 
imaging data (Fig. 2a, 512 × 512 × 4 voxels, 6,300 time points, 
~15 min at 7.5 Hz, 50 GB) and light-sheet imaging data (Fig. 2b,  
2,048 × 1,024 × 18 voxels, 900 time points, ~15 min at 1 Hz, 
250 GB). We analyzed cached data, and the reported run times 
only include durations required to perform the computation, 
not time for loading and parsing input data or collecting and 

saving results (see below for run times of those steps; Online 
Methods). In general, run times increased with algorithm com-
plexity and decreased with cluster size (Fig. 2a,b). All voxel-
wise statistics completed in under 30 s, and iterative algorithms 
completed within a couple minutes; with 40 nodes, we were able 
to query the average time series of the larger data set in less 
than 5 s and estimate three singular vectors in under a minute. 
Performance on both data sets increased with cluster size. For 
the larger data set, performance nearly doubled from 20 to  
40 nodes (Fig. 2b; geometric mean improvement across analy-
ses, 1.89); on the smaller data set, it also increased from 10 to  
20 nodes (Fig. 2a, geometric mean improvement across analyses, 
1.58). In both cases, further increasing cluster size led to smaller 
improvements. This ceiling effect likely reflects communication 
overheads: as the number of nodes increases, less data are proc-
essed per node, and computation times are eventually dominated 
by the fixed cost per task of serializing and transferring data  
and code. In a separate test we examined performance for one 
analysis on a larger range of data set sizes; run times scaled  
linearly with data size, and analysis of 1.5 TB finished in under  
a minute (Fig. 2c). Together, these results suggest that the  
framework can efficiently process a variety of data sets and will 
scale well to more complex analyses.

To demonstrate the advantage of data caching, a capability 
unique to Spark, we computed run times on one data set for dif-
ferent numbers of independent component analysis (ICA) itera-
tions; in one case, the data were reloaded during every iteration 
and in the other, the data were loaded once and cached (Fig. 2d). 
As reported previously19, caching improves performance for itera-
tive algorithms because the cost to load data is incurred only once; 
the speedup resulting from caching is thus greater for more itera-
tions. Fast iterative algorithms can be especially useful for large-
scale problems; for example, we compared run times for iterative 
and direct implementations of the singular value decomposition  
(see above), each factoring an n × t matrix into n × k and k × t  
matrices, with k = 3. For a data set with dimensions n = ~108,  
t = ~102 (150 GB), using 40 nodes, the direct method took 92 s, and 
one iteration of the iterative method took 12 s. For a data set with 
n = ~108 and t = ~103 (750 GB), the direct method took 1,983 s,  
whereas one iteration of the iterative method took only 27 s. Thus, 
for larger t, the cost of even 10 iterations is about 0.1× the cost of 
the direct method.

In real use, analysis includes not only computation but loading 
(and parsing) data and saving results to disk. For the two data  
sets compared above, we provide these durations under two 

Figure 3 | Maps of in vivo two-photon calcium 
imaging data from mouse cortex revealing 
response modulation by locomotion.  
(a) Schematic of experimental preparation 
for two-photon calcium imaging of neural 
activity in mouse somatosensory cortex during 
locomotion. (b) Animal running speed and 
calcium responses (∆F/F) of example cells that 
showed modulation owing to running speed. 
Each response is the average of small groups of 
~50 voxels. (c) Map of running speed modulation 
from one imaging plane. Numbers indicate 
example cells from b. Color indicates preferred speed and brightness indicates strength of modulation (assessed as R2 from linear fit, maximum of 0.0125). 
(d) Map of local correlations. Brightness, correlation coefficient between calcium fluorescence of each voxel and the average of a local 7 × 7 neighborhood.
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environments: a private cluster with a net-
worked file system and an Amazon EC2 
cluster with ‘compute optimized’ instance 
types running a Hadoop distributed file 
system (Fig. 2e and Online Methods). For 
regression, the run time is dominated by 
loading and parsing. For a more complex 
analysis (ICA), relatively more time is 
spent on computation. Performance pat-
terns were similar between the private 
cluster and EC2, as were overall run times 
(Fig. 2e). We also performed the same tests 
using the ‘general purpose’ instance type 
(data not shown). These instances have a 
quarter the cores and half the RAM of the 
compute-optimized instances but are also a quarter of the cost; 
in that case run times were ~3× slower for these instances, with 
longer load times in particular.

Finally, we compared a cluster running Spark to a single 
powerful workstation running Matlab, across four data sizes 
(from the same data set used in Fig. 2c). Of course, the cluster  
will outperform the workstation but for an end user deciding  
between alternatives, the magnitude of improvement is of  
relevance. Spark’s performance increase was as large or larger 
than expected based on the number of nodes (40×), achiev-
ing an improvement of at least 200× for an iterative analysis 
(Fig. 2f). The key limitation of any single workstation solution 
is that, owing to memory limitations, portions of the data must 
be loaded and processed sequentially, leading to slow run time 
despite fast core computations (e.g., matrix multiplication). This 
is especially problematic for iterative analyses; in contrast, Spark 
can cache the entire data in RAM. Also of practical interest, the 
price of one such workstation could pay for ~300 h of 40-node 
cluster usage on EC2, with 1.2 TB total RAM and 320 virtual 
CPUs (vCPUs).

two-photon imaging example
For an initial demonstration of our framework, we analyzed two-
photon calcium imaging data from layer 2/3 somatosensory cor-
tex neurons in head-fixed mice running on a spherical treadmill 
in a tactile virtual reality environment23 (Fig. 3a). The genetically 
encoded calcium indicator GCaMP6s was delivered via infection 
with adenoassociated virus (AAV2/1, synapsin-1 promoter)24. In 
the visual cortex, neurons exhibit tuning to running speed25 and 
locomotion-induced modulation26. We used Thunder to perform 
a voxel-wise interrogation of locomotion-induced modulation 
in the somatosensory cortex (Fig. 3b,c). Analysis of these data, 
which are typically 50–100 GB, at the level of voxels is possible 
but burdensome with ordinary methods (e.g., Matlab; Fig. 2e). 
We used mass-univariate tuning analyses to compute for each 
voxel how well its response was predicted by running speed, and 
the running speed to which it responded best. We combined these 
two properties into a map in which brightness indicates the reli-
ability of prediction and hue indicates tuning (Fig. 3c). We also 
used local correlation27 to estimate reliably responsive neurons 
independent of covariates (Fig. 3d). Both the tuning and local 
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Figure � | Direction tuning maps of whole-brain 
neural activity measured in a larval zebrafish 
with light-sheet microscopy while zebrafish 
were presented visual stimuli. (a) Schematic 
of experimental preparation. Ephys refers to 
electrophysiological recordings for monitoring 
behavior (Online Methods). (b) Maps of direction  
tuning across the brain derived by fitting every 
voxel with a tuning-curve model that separately 
describes the temporal response profile and the 
tuning to direction. Color, preferred direction 
(see legend in c); saturation, tuning width  
(i.e., circular variance); brightness, response 
strength (Online Methods). White means 
responsive but without unidirectional tuning. 
Image shows maximum intensity projection 
through 39 planes covering 195 µm.  
(c) Magnified regions of the habenula, tectum 
and hindbrain, each from a single imaging plane. 
Scale bars, 10 µm. Time series show responses 
of example cells. Black traces, ∆F/F averaged 
from small groups of ~100 voxels; responses 
averaged across five presentations. Color traces, 
prediction of best-fitting tuning curve model 
(Online Methods). Gray vertical bars, stimulus 
on; white vertical bars, stimulus off.
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correlation maps can be used to help identify and segment indi-
vidual neurons. A comparison of the two maps suggests a large 
fraction of responsive neurons were modulated by locomotion. 
The ability to quickly and flexibly generate such maps will be of 
immediate use for the wide variety of two-photon imaging data 
currently being collected.

large-scale applications
The capabilities of our framework are well illustrated through 
applications to data generated by techniques such as light-
sheet7,8,20 and light-field2,4 microscopy. A recently developed 
combination of light-sheet imaging in the larval zebrafish with 
visual stimulation and behavioral monitoring20 enables simulta-
neous recording from virtually all neurons in the brain during 
sensorimotor behavior. The resulting data are typically hundreds 
of gigabytes per experiment and thus demand tools such as the 
ones we developed. Here we show how Thunder reveals pat-
terns of biological importance in these data. Detailed examples 
of implementation and sample data sets are available via http://
research.janelia.org/zebrafish/.

direction selectivity
Across the animal kingdom, organisms have both sensory neurons 
and behaviors tuned to the direction of visual motion28,29. In the 
zebrafish optic tectum, mechanisms of direction selectivity have been 
characterized both at the single cell and the network level30–33. Light-
sheet imaging with visual stimulation20, combined with appropriate 
analyses, can reveal patterns of direction selectivity across virtually 
the entire brain. We generated a transgenic fish Tg(elavl3:H2B-
GCaMP6s)jf5 that expresses nuclear-localized GCaMP6s24 in almost 
all neurons (Online Methods). We measured neural responses while 
presenting fish with a whole-field moving stimulus that changed 

direction every 20 s (Fig. 4a), using a light-sheet configuration that 
avoided stimulation of the eyes20 (Online Methods).

Direction selectivity is commonly characterized by measuring 
responses to moving patterns and fitting the responses with a suit-
able model9,29,31,34. In Thunder, a combination of mass-univariate 
tuning (as described above) and regression can model ~108 time 
series in parallel, by first estimating the response to each direc-
tion and then fitting a circular tuning curve. For visualization, we 
constructed a map in which every voxel is colored by its preferred 
direction (hue), tuning width (saturation) and response strength 
(brightness) (Fig. 4b, and Supplementary Videos 1 and 2). The tec-
tum showed heterogeneous tuning of neighboring cells, consistent 
with previous reports35. Medial and ventral parts of the midbrain 
and hindbrain showed strong and coarse preferences for direction 
(left, right or forward) (Fig. 4b). Parts of the forebrain, includ-
ing the habenula36, also showed heterogeneity, including many 
cells that responded to the moving stimulus but nearly equally to 
all directions (Fig. 4c). Differences in tuning heterogeneity may 
signify qualitative differences in the types of computations that 
these areas perform. In particular, the coarse biases, being in the 
hindbrain, likely reflect circuits underlying motor coordination, 
whereas the heterogeneity in visually responsive areas may reflect 
fine-scale visual computation. Note that this particular analysis 
assumes unimodal tuning to direction, so responses tuned to ori-
entation, but not direction, will appear untuned; by design, extend-
ing Thunder with bimodal tuning would be straightforward.

maps of sensorimotor responses
Whereas mass-univariate analyses characterize voxels independ-
ently, many response properties, especially those involved in motor 
control, involve the joint dynamics of neural populations11,13, 
and demand appropriate multivariate analyses. We characterized  

Figure � | Maps of sensorimotor responses 
in larval zebrafish. (a) Maps of response 
dynamics obtained by reducing each voxel to 
a pair of numbers (weights on the first two 
principal components) using PCA. In the color 
wheel (bottom left), the first two principal 
components are the red and yellow-green 
traces, and different linear combinations 
describe a family of dynamics: angle (hue) 
indicates response shape, and radius 
(brightness) indicates response strength. These 
values determine the hue and brightness for 
each voxel in the map. Shown is maximum 
intensity projection through 15 planes (each 
5 µm apart). (b) Stimulus sequence and 
calcium responses (∆F/F) of individual neurons; 
examples highlight different response types. 
(c) Map derived from an experiment in which 
the fish swam sporadically in response to a 
constantly slowly moving stimulus. Lagged 
cross-correlation and PCA were used to reduce 
each voxel to a pair of numbers, capturing 
the timing of response relative to swimming 
and visualized as in a. Shown is maximum 
intensity projection through 47 planes (each 
5 µm apart). (d) Swimming strength (from 
electrophysiological recordings) and calcium 
responses (∆F/F) of individual neurons during 
self-driven swimming.
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motor dynamics during stimulus-driven behavior using a simple 
visual stimulus alternating between forward motion and station-
ary pattern, in a fish expressing cytoplasmic GCaMP5G7,37 pan-
neuronally under the elavl3 promoter38.

Neurons across the hindbrain and midbrain exhibited a variety 
of dynamics in response to the stimulus. Principal component 
analysis (PCA) is a method for characterizing common dynamical 
patterns in such heterogeneous assemblies11,13. Thunder performs 
PCA through large-scale implementations of the singular value 
decomposition (SVD) (see above and Online Methods), which we 
applied here to the stimulus-cycle averaged neural responses. This 
analysis revealed a coordinated sequence of events after the onset 
of stimulus across the brain (Fig. 5a,b). For spatial visualization, 
we applied a polar transform to recode every voxel’s projection 
onto the first two components into an angle and an amplitude. 
This representation is sensible because it depicts separately the 
temporal shape of the response (as a color) and the strength (as 
brightness), yielding a visualization of response dynamics across 
the brain (Fig. 5a, and Supplementary Videos 3 and 4). Early 
responses appeared in the optic tectum (calcium signals peaking 
within the first 3–5 s, green), followed by the hindbrain (blue-
green), including what appear to be thick axonal bundles in the 
ventral hindbrain, and columns of neurons that, based on their 
location, may correspond to a stripe of glutamatergic neurons 
(specifically, alx neurons) known to be involved in motor sig-
naling39,40. We found delayed responses (blue) in the anterior 
hindbrain as well as in parts of the cerebellum, which were also 
more variable across stimulus presentations (Fig. 5b). Notably, 
two regions exhibited ‘off ’ responses (i.e., larger responses dur-
ing the period of no stimulus motion): areas of neuropil in the 
lateral hindbrain (magenta), as well as two small clusters of cells 
located far laterally.

More subtle aspects of motor response dynamics can be 
revealed through more refined experimental designs, which in 
turn demand more targeted dimensionality reduction. In one 
such experiment, we isolated aspects of motor generation using 
a continuous, slow stimulus (Online Methods), which elicited 
‘self-driven’ swims. Because the stimulus was constant, the swim 
durations were determined by the fish, not the stimulus, and the 
instantaneous strength of the animal’s swimming was captured 
with an independent electrophysiological recording12,20.

Response patterns were characterized by correlating the 
response of each voxel with the animal’s swimming at differ-
ent temporal lags, and embedding and visualizing the ensem-
ble of lagged-correlations in a low-dimensional space (Fig. 5c). 
Thunder’s modularity implements this analysis by combining 
mass-univariate cross-correlation with PCA. In the resulting 

map (Fig. 5c, and Supplementary Videos 5 and 6), there were 
fewer responses in the tectum compared to the block-alternation 
experiment, consistent with a primarily sensory role for those sig-
nals. Two functional networks were instead dominant (Fig. 5c).  
The first (cyan-green) exhibited responses locked to the ani-
mal’s swimming, in similar populations to those described  
above (Fig. 5a). But a second, sparser population (magenta-red)  
showed elevated activity preceding swimming and lower  
activity during swimming (Fig. 5c,d). Inspection of individ-
ual neuron traces (Fig. 5d) showed that responses followed  
the offset of swimming, after which they increased their  
responses (toward a plateau), apparently until initiation of  
the subsequent swim, at which point their activity abruptly 
dropped. Although the dynamics of the calcium indicator may 
be partially responsible for the ramping nature of the responses, 
we believe this is unlikely to be the cause, owing to the slow 
timescale (5–10 s) of the signal increase (relative to the rise  
and decay time constants of GCaMP5G37). These neurons were 
primarily localized to two regions, a horseshoe-like structure  
in the dorsal hindbrain and two far lateral clusters of neurons  
in the medial part of the hindbrain (Fig. 5c,d), and show  
how analyses of whole-brain data can reveal small neuronal 
populations with distinctive dynamics.

dynamical portraits
Dimensionality reduction reveals the spatial organization of 
dynamics (Fig. 5), but can also reveal how patterns of neural 
activity evolve over time on a trial-by-trial basis. We repeated 
the optomotor experiment during simultaneous recording of 
behavior. We used PCA to estimate a low-dimensional space 
and then project the complete time course of neural responses 
(across individual trials) into the low-dimensional state space 

b

D
im

 1

D
im

 2

Dim 3

a

D
im

 2

Dim 1

Swims

Swim strength
– +

Stim
 o

ff

Stim on

Figure � | Dynamical portraits of larval zebrafish whole-brain activity via 
dimensionality reduction. (a) Trial-by-trial trajectories through a neural 
state space, derived using PCA (Online Methods) from a data set like that 
reported in Figure �a,b; each trace corresponds to one presentation of 
the stimulus (12 s motion, 12 s stationary). Trace color (black to blue), 
strength of swimming derived from electrophysiology. Black dots and  
gray shaded region, trial onset. Blue shaded region, stimulus onset.  
(b) Trial-by-trial trajectories related to stimulus direction, derived using 
regression and PCA (Online Methods), from a data set similar to that 
reported in Figure �. Each trace corresponds to one presentation of the 
stimulus (10 s motion, 10 s stationary). Color, stimulus direction, as in 
Figure �c. Black dots indicate trial (and stimulus) onset.
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(Online Methods). The resulting trajecto-
ries (Fig. 6a and Supplementary Video 7)  
show how neural activity evolves through time. Trajectories before 
and immediately after the onset of stimulus were stereotyped across 
trials but exhibited variability later, likely reflecting variability in 
behavior. Indeed, on individual trials, successive swims after the 
onset of stimulus corresponded to deflections in state space. Unlike 
voxel-wise tuning (Figs. 3 and 4), these results demand simulta-
neous measurement across the brain and multivariate analyses 
that can examine the entire data set, especially to link single-trial  
dynamics to behavior13.

As a second example, we estimated trial-by-trial trajecto-
ries from responses to moving, oriented gratings (similar to 
the experiment reported in Fig. 4). For this analysis, we com-
bined regression (to extract variability related to the different 
stimulus directions) with dimensionality reduction (Fig. 6b, 
Supplementary Video 8 and Online Methods). Whereas before 
trajectory shape was stereotyped across trials, here they diverged 
depending on the direction of the stimulus.

modes of spontaneous activity
The analyses described thus far examined an explicit stimulus 
or behavior. But large-scale analytics are equally powerful in the 
‘spontaneous’ regime. In human functional imaging data, for 
example, ICA reveals common patterns of activity during rest41. 
Thunder includes a large-scale implementation of ICA. The first 
step is to reduce dimensionality and whiten the data using SVD. 
The data are then subjected to a sequence of iterative updates to 
estimate the unmixing matrix42, efficiently implemented using 
map-reduce operations (Online Methods) and benefiting from 
caching (Fig. 2d).

We applied ICA to spontaneous activity in the zebrafish meas-
ured while the animal was immobilized in agar with no visual 
stimuli other than the laser (same data set has been reported 
previously7; the eyes were not excluded from laser stimulation; 
Online Methods). We visualized the spatial modes recovered 
by ICA by assigning each a color and composing them into a 
map (Fig. 7, and Supplementary Videos 9 and 10). Two func-
tional networks were dominant: the ‘hindbrain oscillator’ con-
sisting of four clusters that exhibit slow lateralized oscillations 
in the hindbrain and an area close by the inferior olive as well 

as the ‘hindbrain-spinal network’. These analyses corroborate a  
correlation-based measure7 but also find additional populations, 
including lateralized, temporally sparse ‘explosions’ of activity 
in both the tectum and the forebrain, and a family of function-
ally defined networks in the hindbrain with distinct dynamics. 
Many of these functional networks include structures other than 
cell bodies (i.e., axons and dendrites), which may have been 
missed by cell body region of interest (ROI)-based analyses. The  
ability to perform such analyses on whole-brain, subcellular- 
resolution imaging data, especially when coupled with anatomical 
methods43–45, will make it possible to link functional networks to 
anatomy and connectivity.

discussion
We focused our examples on analysis of calcium imaging data 
and performed all analyses on voxel-by-voxel data. Some calcium 
imaging studies have taken this approach31, whereas others have 
first defined ROIs, typically centered on somata, either manually14 
or with semiautomated methods using anatomy46 or activity47. 
Thunder both complements and facilitates ROI-based approaches. 
The computations underlying any ROI-detection algorithm are 
time-consuming, and Thunder can be used to efficiently imple-
ment them. However, most automated methods still effectively 
require some manual inspection, which may become impracti-
cal for data sets consisting of many neurons; applying analyses 
directly to voxels is particularly useful for exploratory analyses. 
Cell bodies are readily identifiable from the resulting voxel-wise 
maps. In some cases, so are signals of interest in single axons 
or dendrites and in areas of neuropil. Finally, recordings from 
larger regions of tissue in other animals may yield data sets with 
ROI counts equal to or exceeding the voxel counts handled here; 
Thunder could readily handle such data and is thus built to scale 
alongside the coming technological advances in neuroscience.

Example analyses showed how our tools can reveal patterns 
of biological importance in neural data. The zebrafish whole-
brain recordings would have been difficult to analyze without  
the tools we introduced. Whole-brain maps of direction  
selectivity revealed differences in the organization of stimu-
lus selectivity across brain areas. Dimensionality reduction of 
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Figure � | Analysis of whole-brain spontaneous 
activity by ICA reveals functionally defined 
networks. (a) Colored lines, temporal traces 
associated with eight recovered independent 
components. Components scaled to have similar 
norm, units arbitrary. Black lines, calcium 
responses (∆F/F) of example neurons within each 
of the eight components. (b) Map derived from 
ICA showing 8 of 20 components with the most 
well-defined spatial structure (chosen by eye). 
Absolute value of each component was used to 
generate a separate color map; maps for the eight 
components across 41 planes were combined 
(after scaling each for contrast) with maximum 
intensity projection through x, y or z.  
(c) Magnifications of maximum intensity 
projection (see boundaries in b) indicating 
response patterns in tectal neuropil (left) and in 
the hindbrain (right). Scale bars, 25 µm.
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responses during optomotor and self-driven swimming behavior 
identified groups of neurons with distinct dynamics, including 
previously unknown signals such as ‘off ’ responses in the dor-
sal and lateral hindbrain. Combining additional experimental 
assays with more complex model fitting in this system is likely 
to yield rich insights into network dynamics during behavior. 
In the future, current and new techniques2–4 will generate ever 
larger data sets in a variety of organisms and will benefit from 
the tools introduced here.

As in other computational fields where large data sizes are 
becoming the norm, neuroscience will likely increasingly rely on 
some form of distributed computing. Several factors motivated 
our building a library on Spark in particular. First, Spark’s data 
caching addresses the bottleneck of data loading, which funda-
mentally limits single-workstation solutions as well as distributed 
computing solutions built on the Hadoop MapReduce engine, 
which Spark matches or outperforms for many computations19. 
Caching is particularly important for iterative computations, 
which arise frequently in machine-learning algorithms and sta-
tistical methods. Spark also addresses the issue of ease of use, by 
lowering requirements on users’ prior experience with distributed 
systems. Through its APIs, the abstraction of RDDs and optimized 
job scheduling, writing analyses in Spark is more concise than in 
other platforms and faster, while requiring minimal control over 
the distribution and execution of work19. We designed Thunder 
itself so that anyone with minimal Python experience can use all 
of the analyses. Finally, because we developed Thunder in Spark’s 
Python API, analyses in Thunder can be applied interactively in 
a Python shell (or an iPython notebook), and results can imme-
diately be inspected, visualized and shared.

Modern distributed computing has the potential to change ana-
lytics in neuroscience. Thunder and Spark, however, are a notable 
departure from more common analysis approaches, for example, 
running Matlab on a single workstation. An investment of time, 
and possibly money, will be required to use the tools advocated 
here, but we took steps to make it easier to start. First, we pro-
vided an Amazon EC2 launch script that creates a Spark cluster 
with Thunder preinstalled. We also provided instructions that 
facilitate installation of Spark on at least one common university 
cluster environment. The provided benchmarks can guide selec-
tion among cluster sizes for particular use cases.

A key advantage of our approach is that it makes large-scale 
neural analytics accessible to a broad community. Spark is open-
source, as is our library. It relies on the scientific computing 
routines in Python (through Numpy and Scipy), which are also 
freely available and increasingly popular tools for data science. 
A cluster is required, but the cloud computing resources of 
Amazon (EC2) are available to all. The domain-general speci-
fication of both input data and stimulus or behavioral variables 
makes it straightforward to apply the analyses to imaging data 
from other species and modalities or to other neural data, such 
as recordings from large multielectrode arrays. In particular, 
our library and related onoing efforts to use Spark for analyzing 
light-field imaging data (M. Broxton, L. Grosenick, B. Poole and 
K. Deisseroth; personal communication) are complementary and 
can be integrated. With a working knowledge of Python, and  
of basic distributed operations, members of the neuroscience 
community will be able to extend Thunder with new, more  
complex analyses48,49.

This work stands at the intersection of two of the most excit-
ing frontiers of modern neuroscience: recording from very large 
populations of neurons and using distributed computing to 
find patterns in very large data sets. By bridging these domains,  
we offer an analytical framework for large-scale neuroscience.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Summary. Details of the Thunder library, and of the reported 
example analyses and experiments, are provided here. Additional 
material is available at a webpage about Thunder (http://freeman-
lab.github.io/thunder/) and a web page highlighting example 
analyses and providing access to example data (http://research.
janelia.org/zebrafish).

Deployment options. Spark can be deployed in ‘standalone 
mode’ on a private cluster or on Amazon’s EC2 cloud computing 
services; it can also be deployed on top of the Apache Mesos or 
Hadoop YARN resource managers, but we do not consider those 
use cases here.

Private cluster. For private cluster usage, we deployed Spark in 
standalone mode on a general purpose compute cluster sched-
uled by Univa grid engine (UGE), containing 256 nodes running 
Scientific Linux 6.3. Here we provide details on the deployment 
process and how we integrated Spark with the UGE scheduler, so 
administrators of other private research clusters can replicate our 
work. A custom qsub job class was created so that Spark could 
be spun up dynamically on a user-designated quantity of nodes. 
After the qsub is issued, with the number of nodes specified, the 
grid engine scheduler designates a set of nodes that will be used 
to run the Spark job. Once all of the nodes are available, a driver 
(master) is started on one of them (using the start-master.sh script 
included with the Spark distribution), then sends that driver the 
addresses of the remaining nodes. The driver then uses the start-
all.sh script to start those workers. After starting a job, a user 
can ssh into the driver and run Spark. When finished, the user 
exits the ssh session and issues a qdel to stop the Spark job. This 
triggers the stop-all.sh script on the driver, which takes down the 
Spark cluster in an organized fashion. For accessing data, Spark is 
often run on top of a Hadoop Distributed File System, but it can 
also access data directly from a networked-filed system, so long 
as it is available to all the nodes. We used a NFS served by several 
EMC Isilon clusters.

EC2. We created a custom EC2 launch script that extends the 
spark-ec2.py script (included with the Spark distribution) for 
launching an EC2 cluster in standalone mode with the desired 
number of nodes and instance types as well as several other con-
figuration options. The launch scripts deploy Spark on a clus-
ter, create an HDFS and preconfigure the cluster by installing 
Thunder and its dependencies. Once the cluster has launched, it 
can be logged into, and analyses can be performed.

Data format. All analyses in Thunder operate on an RDD of 
records, where each record is a (key, value) tuple, where key 
is either an integer or a tuple of integers and value is a numpy 
array. Only a subset of analyses use keys explicitly, but all analyses  
assume this format for consistency. Additionally, some saving 
operations (see below) use keys to format results. These key-value 
records can, in principle, be stored in a variety of Spark-accessible 
formats in a cluster-accessible file system (for examplet, HDFS or 
NFS). The core functionality of Thunder does not depend on the 
file format, only that raw data are parsed appropriately into an 
RDD of key-value records. The primary loading method we used 
assumes a text file input, where the rows are neural channels and 

the columns are the keys and values, each number separated by 
a space (with the first three numbers providing the x-y-z key in 
the case of imaging data). Different planes are stored in separate 
files, but this is optional. Future work can make use of alterna-
tive and more efficient file formats, for example, flat binary files. 
For analyses that require covariates (for example, behavioral or 
stimulus variables), they can be provided directly as numpy arrays 
(if working entirely in Python), or alternatively loaded from text 
files or MAT files.

Components. Thunder currently includes four core packages: 
clustering, factorization, regression and time series statistics, as 
well as an io package for loading and saving, and a util package 
with common utilities. Here we describe the key components of 
each package and provide examples of code. More detailed code 
examples are available in the Supplementary Protocol and online  
(http://freeman-lab.github.io/thunder/ and http://research. 
janelia.org/zebrafish).

Loading. Thunder’s load function takes raw data (as described 
above) and parses it into an RDD of (key, value) tuples. The 
number of keys can be specified (for example, 3 keys for x-y-z 
coordinates in imaging data, 1 key for simple indexing of chan-
nels). There are also a variety of preprocessing options available, 
including mean subtraction and conversion to ∆F/F (by subtract-
ing and dividing by a baseline). These are easily extended by writ-
ing Python functions that accept a time series as input and return 
the preprocessed time series. We also include in the load package 
convenience functions for determining data set dimensionality 
(from the keys) through a single reduce operation, and switching 
between coordinate-wise and linear key indexing.

Saving. Results of analyses (for example, images, time series) 
can be returned directly in the form of numpy arrays. If work-
ing in Python, these can be examined or visualized immediately 
(for example, using matplotlib). For external compatibility, 
we provide the ability to save to alternative formats, including 
MAT files, images and text. The save function takes an RDD as 
input and collects the results followed by writing to disk. In the 
case of MAT files or images, if requested, the dimensions of the 
data are derived from the keys, and outputs are automatically 
reshaped (for example, into a two-dimensional image or a three- 
dimensional volume).

Factorization. Factorization methods separate or decompose a 
data matrix into smaller, lower-rank matrices by optimizing an 
objective function. PCA finds a decomposition that minimizes 
the squared error between the true data matrix and the matrix 
reconstructed from the low-rank matrices. We implement PCA 
through the singular value decomposition (SVD), and provide 
two implementations of the SVD. The first is suitable for a ‘tall 
and skinny’ matrix Y of size n × d, where n is the number of chan-
nels and d is the dimensionality (for example, number of time 
points), n > > d, and d2 fits comfortably in the memory of a single 
machine. This algorithm first computes a d × d gramian matrix 
using a distributed implementation of the equation

gramian =
=
∑ y yi

T
i

i

n

1

http://freeman-lab.github.io/thunder/
http://freeman-lab.github.io/thunder/
http://research.janelia.org/zebrafish
http://research.janelia.org/zebrafish
http://freeman-lab.github.io/thunder/
http://research.janelia.org/zebrafish
http://research.janelia.org/zebrafish
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where yi is the mean-subtracted response time course of channel i.  
A local eigenvector decomposition of the resulting matrix  
provides the right singular vectors (a small d × k matrix), and 
another distributed operation computes the left singular vectors, 
only for the desired number of vectors. In Thunder, if data is 
an RDD of (key, value) pairs, with the response time course of 
each channel as the value, this sequence of operations can be 
expressed as

mat = RowMatrix(data)
cov = mat.gramian() / mat.nrows
eigw, eigv = eigh(cov)
inds = argsort(eigw)[::-1]
S = sqrt(eigw[inds[0:k]]) * sqrt(n)
V = eigv[:, inds[0:k]].T
U = mat.times(V.T / S)

where S and V are small arrays represented locally, and U is 
another RDD of n (key, value) pairs, with the projection of each 
data point into the low-dimensional space. The initial step cre-
ates a RowMatrix (a class from the util package). A RowMatrix is 
backed by an RDD of (key, numpy array) pairs, and a variety of 
common matrix operations can be performed on it using distrib-
uted operations. For example, the gramian method computes the 
outer product of a matrix with itself, which can be expressed as a 
map-reduce operation:

mat.rdd.map(lambda (k, y): outer(y, y)).reduce(add)

where the map step calculates the outer product of each array 
with itself, and the reduce step uses the addition operator, which 
is commutative and associative, to add these outer products 
together. (In practice, this step can be made more efficient with 
methods that support in-place addition, for example, an accu-
mulator, or aggregator, but the simpler version is given here for 
clarity). The times method uses a map to multiply a large matrix 
(represented by an RDD) with a smaller one:

mat.rdd.map(lambda (k, y): (k, inner(y, other)))

To compute the SVD when d is large (for example, >1,000), an 
iterative computation based on expectation maximization22 is 
more efficient, especially when only a small number of eigen-
vectors are required, because in Spark iterations do not require 
reloading data from disk. The principal subspace is estimated by 
iterating the following two update equations:

X C C C Y

C YX XX

=

=

−

−

( )

( )

T T

new
T T

1

1

These steps can be implemented using the following sequence of 
two distributed matrix operations (where times and gramian are 
as described above),

iter = 0
C = random.rand(k, d)
while (iter < maxiter) & (error > tol):
   C_inv = dot(C.T, inv(dot(C, C.T)))
   YY = mat.times(C_inv).gramian()

  YY_inv = inv(YY)
  CY = dot(C_inv, YY_inv)
   C = mat.rows().map(lambda y: outer(y, dot(y, CY))).

reduce(add)
   C = C.T

where mat is a RowMatrix containing the data. After conver-
gence, the rows of the k × d matrix C span the subspace of the 
leading eigenvectors. Projecting the raw data into this (much 
smaller) subspace and repeating the gramian calculation (and 
subsequent map step) described above yields an orthonormal 
basis (the singular vectors). Options for PCA (and for the SVD) 
include the number of recovered singular vectors, which algo-
rithm to use, and tolerance and maximum number of iterations 
for the iterative algorithm.

The source model for PCA is that the data is Gaussian-
 distributed with a low-rank covariance determined by the prin-
cipal components. ICA, in contrast, assumes that the components 
are non-Gaussian and statistically independent from one another, 
and estimates them by iteratively maximizing an objective func-
tion that computes the non-Gaussianity of the components. As is 
common, Thunder’s ICA first reduces the dimensionality of the 
data and whitens it using SVD. The analysis then uses an iterative 
sequence of map and reduce operations (as in the iterative SVD 
algorithm) to compute an unmixing matrix via a widely used 
fixed-point algorithm42 (see mathematical details below). Options 
for ICA include the number of eigenvectors to retain, the number 
of independent components to estimate, maximum number of 
iterations, and tolerance.

Regression. Regression analyses, sometimes called ‘mass-
 univariate’, describe the time series from each channel as a function 
of some underlying covariates. These analyses are implemented 
through a map operation (to perform the regression) followed by 
a collect. Classes are used to separate the underlying regression 
functions from the map operation, so they can more easily be 
extended or modified. For example, the LinearRegressionModel 
class has the following get method, which performs a regression 
on a single time series:

def get(self, y):
   b = dot(self.X_pinv, y)
   predic = dot(b, self.X)
   resid = y - predic
   sse = sum((predic - y) ** 2)
   sst = sum((y - mean(y)) ** 2)
   r2 = 1 - sse / sst
   return b, r2, resid

where X is the design matrix and X_pinv is its pseudoinverse. The 
distributed operation itself is implemented through a fit method 
that uses a map to apply the regression to each time series,

def fit(self, data):
   result = data.mapValues(lambda y: self.get(y))

Thunder includes both linear and bilinear regression. “linear” 
regression fits each time series as a linear combination of some 
variables, plus a constant. “bilinear” uses two design matrices; 
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it uses the first to estimate a basis function that is common to 
each of several conditions, and uses the second to describe each 
condition as a scaled version of that basis function (similar to the 
GLM approach commonly used in fMRI data analysis50). These 
analyses compute the regression coefficients, an R2 for each voxel, 
and residuals from the fitted model. These values can easily be 
passed to other algorithms. For example, a large number of regres-
sion coefficients per data point can be further simplified using 
PCA or k-means. Tuning analyses estimate the parameters of a 
tuning curve that relates an input value to a response. Thunder 
includes both Gaussian and circular tuning curves, in each case 
yielding a parameter for the central tendency and the dispersion. 
The user can provide an input value associated with each data 
point, or use a regression matrix to estimate a coefficient for each 
of a smaller set of input values, and then compute tuning from 
those coefficients.

Clustering. Clustering analyses try to associate data points with 
particular categories based on a distance metric. The included 
algorithm, k-means, assigns each data point to one of k clusters 
using an iterative algorithm. The implementation of the algorithm 
proceeds in two primary steps. The first step uses a map operation 
to compute, for each record, the closest of the current k cluster 
centers. The second step uses a reduceByKey (followed by a map) 
to identify the average of each cluster based on the current assign-
ment. The cluster centers are then updated, and the procedure 
is repeated until convergence. Parameters include the number 
of cluster centers, the maximum number of iterations, and the 
tolerance for convergence.

Time series. Time series analyses compute statistics on each 
channel, either simple summary statistics, or more complex 
time series calculations. As with regression, most of these opera-
tions are implemented through a single map and collect, with 
class-specific methods that handle specific time series opera 
tions. Stats computes simple summary statistics, including  
mean, median, std, or norm. Fourier estimates the statistics  
of the Fourier transform, specifically, the coherence and phase 
of the time series at a specified frequency (coherence is Fourier 
amplitude normalized by the amplitude of all frequencies, yield-
ing a number between 0 and 1 that is more interpretable than 
raw amplitude.) CrossCor computes the cross correlation between 
data and a signal of interest at multiple time lags. If the maximum 
lag is large, the resulting cross-correlation functions can be fur-
ther simplified using PCA or k-means. LocalCorr estimates the 
correlation between each time series and the average time series of 
its neighbors, useful for detecting structures with reliable activity 
independent of any covariates. Query extracts local averages from 
spatio-temporal data. The user specifies a set of indices to include 
in the average, corresponding to a set of linearized coordinates.

Data sets for benchmarking. Four different data sets were 
used for benchmarking. Data were represented as floats; this is 
assumed for all sizes reported in all benchmarks, and yields sizes 
that correspond closely to the size of data in RAM after loading, 
as provided by Spark’s performance monitoring metrics. On disk, 
data were stored as unsigned integers, and thus had smaller file 
sizes.The first data set (Fig. 2a,d,e) was two-photon imaging data, 
with dimensions of 512 × 512 × 4 (x-y-z) × 6300 (time), and size 

of approximately 50 GB. The second (Fig. 2b,e) was light-sheet 
imaging data, with dimensions of 2,048 × 1,024 × 18 (x-y-z) × 900 
(time), and size of approximately 250 GB. A different light-sheet 
imaging data set was used to test a wider range of sizes (Fig. 2c,f); 
these data had x-y dimensions of 2,048 × 1,024, with 1,500 time 
points, and the number of planes was varied from 2 to 32 to adjust 
the total size from ~100 to 1,600 GB (sizes in Fig. 2f were rounded 
to the nearest 100 GB). A final light-sheet imaging data set was 
used to report comparisons between the iterative and direct SVD 
for different numbers of time points; these data had x-y-z dimen-
sions of 972 × 2,048 × 40, and the number of time points was 
either 240 or 1200 (with sizes of 150 and 750 GB).

Cluster environments for benchmarking. Tests were run using 
Spark 0.9.1 and its associated deploy scripts for EC2 tests (which 
used the Amazon Machine Image ami-35b1885c). Benchmarks 
for the private cluster used Spark running on a general purpose 
high performance compute cluster at the Janelia Farm Research 
Campus, containing 256 nodes running Scientific Linux 6.3 and 
scheduled by Univa Grid Engine. The nodes are equipped with  
16 cores (2.7 GHz Intel Sandy Bridge, E5-2680), 128 GB RAM, 
10 Gb ethernet, and single hard drives. The environment also 
contains a DDN GridScaler running GPFS and several EMC Isilon 
clusters serving NFS to the compute cluster (see above for how 
Spark was deployed). Benchmarks on Amazon EC2 (Fig. 2e) were 
run using a 20 or 40 node cluster (including the driver) with the 
cc2.8xlarge (‘compute optimized’) instance type, each node having  
32 vCPUs (Intel Sandy Bridge, E5-2670), 60.5 GB RAM, and  
4 × 840 GB storage, at a cost of $2.00 per hour per node. This instance  
type was chosen to match the capabilities of the private cluster; 
EC2 cores use hyperthreading whereas the cores of the private 
cluster do not, so the choice of 32 vCPUS meant that the two clus-
ters were matched for numbers of actual cores. In an additional 
test reported above, the m3.2xlarge (‘general purpose’) instance 
type was used, each node having 8 vCPUs (Intel Sandy Bridge, 
E5-2670), 30 GB RAM, and 2 × 80 GB drives, at a cost of $0.56 
per hour per node. EC2 clusters were launched with Thunder 
preinstalled using a custom launch script (see above). The cluster 
ran HDFS, and raw data were transferred from Amazon’s S3 into 
HDFS using a distributed copy before analyses (taking approxi-
mately 5 min for the 50 GB data set with 20 nodes, and 10 min for 
the 250 GB data set with 40 nodes). Number of input partitions 
when running on EC2 was set manually to match the automatic 
partitioning determined when running on the private cluster.

RAM configuration for benchmarking. For private cluster usage 
each node had 16 cores and 128 GB RAM. For cc2.8xlarge (‘compute-
optimized’) EC2 instances, each node had 32 vCPUs and 60.5 GB  
RAM. For m3.2xlarge (‘general purpose’) EC2 instances, each node 
had 8 vCPUs and 30 GB RAM. On the private cluster, 100 GB were 
made available to Spark; on EC2, 53.3 or 26.2 GB; the remaining 
memory was allocated to the operating system. In both environ-
ments, 60% of Java heap space was used for Spark’s memory cache 
(the default), so total RAM available for data caching per node was 
approximately 60 GB, 32 GB and 16 GB, respectively.

File formats for benchmarking. Data were stored as integers. For 
cluster-based analyses with Thunder, data were stored as text files 
containing key-value records, and separate planes were stored 
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in separate files. For analysis on a workstation in Matlab, data  
were saved to MAT files as matrices of unsigned integers, with 
rows as voxels and columns as time points, also with one file  
per plane.

Benchmarking test details. Code for performing all Thunder 
benchmarks are included in the helper functions thundertest-
runner.py and thunderdatatest.py. Important details of the tests, 
and how they were performed, are provided here. Cached data 
were used for the tests reported in Figure 2a–c. This means that 
data were initially loaded and parsed (using Thunder’s load func-
tion) and cached, and a count() operation was performed to force 
computation and cache the data. Run times were measured for 
performing the corresponding analysis, using count to force the 
computation. In the case of iterative computations, five iterations 
were used. For PCA and ICA, 3 components were estimated, and 
for k-means, 3 clusters were used. No results were collected to 
the driver or saved to disk. For the tests reported in Figure 2d 
comparing times with and without caching, the tests without 
caching were run by simply never caching, thus requiring that 
data were loaded and parsed on every iteration. The tests with 
caching included the time to load and cache on the first iteration 
only. For the tests reported in Figure 2e, different stages were 
timed separately. For loading and parsing, time was computed to 
complete a count operation on the data loaded and parsed with 
the load function, which incorporates costs due to file IO as well 
as file content parsing and object creation. The compute time was 
the time to perform the computation, as induced by a count(), 
on cached data, as reported in Figure 2a,b. The saving time was 
the time to collect a single number per channel from a cached 
data set to the driver and save the result to disk in MAT format. 
In normal use, the total time to perform all operations would 
be slightly lower than the times reported in Figure 2e because 
some components would be executed at the same time. For all 
tests in Figure 2a,b,e, run times reported are the minimum of 
three successive runs. For the remaining tests, a single run time 
was computed.

Workstation comparison. For the single workstation implementa-
tion, planes of data were loaded sequentially from MAT files. For 
each plane, to avoid performing computations on the entire plane 
(which was impossible due to memory usage), subsets of each 
plane were analyzed in a loop, with parallelization enabled by par-
for from the Matlab Parallel Computing toolbox. For regression, 
matrix computations were used to estimate the same parameters 
as in the Thunder implementation for every voxel. For ICA, the 
appropriate matrix computations were performed to compute and 
maintain partial updates to the component matrix B (see above) 
using only the data from that plane. In Thunder, results were col-
lected to the driver, but no results were saved for either imple-
mentation. For the iterative analysis, 10 iterations were used. For 
convenience, total run times were extrapolated where appropriate 
(for example computing the run time on one plane or one iteration, 
and then multiplying by the total number). The validity of these 
extrapolations were confirmed in a small number of test cases.

Mouse two-photon imaging. All experiments were conducted 
according to protocols approved by the Institutional Animal Care 
and Use Committee of the Howard Hughes Medical Institute, 

Janelia Farm Research Campus. Mouse surgeries and imaging 
were performed in a manner similar to previous reports14. Male 
adult (>3 month) C57BL/6Crl mice (Jackson Labs: 000664) 
were infected with the genetically encoded calcium indicator 
GCaMP6s24 under control of the human synapsin-1 promoter 
using the recombinant adeno-associated virus (serotype 2/1; pro-
duced by the University of Pennsylvania Gene Therapy Program 
Vector Core). A 3 mm window was inserted in a craniotomy made 
over left barrel cortex (3.4 mm lateral and 1.5 mm posterior to 
Bregma). A titanium headpost was attached to the skull to permit 
head fixation. Experiments were performed 2 to 4 weeks post-
infection. GCaMP6s was excited at 1,000 nm with a Ti-Sapphire 
laser using a custom two-photon microscope with a resonant 
scanner and fast z-focusing. Images were acquired continu-
ously at 7.5 Hz using ScanImage software51, with dimensions of  
512 pixels × 512 pixels × 4 planes.

Mouse behavior apparatus. Head-fixed mice ran on a spherical  
treadmill in a tactile virtual reality environment as described  
elsewhere23. Briefly, the position of two motorized walls was coupled  
to the movement of the ball in closed-loop, allowing for the simula-
tion of a winding corridor. Wall position was not considered in the 
analyses reported here, only running speed. Instantaneous speed 
was derived by tracking motion of the ball at 500 Hz, and smoothed 
with a Savitzky–Golay filter with window of 400 ms. The entire 
apparatus was mounted underneath the two-photon microscope. 
Typical experiments lasted 30–60 min, generating ~50–100 GB of 
imaging data per experiment (stored as unsigned integers).

Zebrafish animals and trangenesis. All experiments were con-
ducted according to protocols approved by the Institutional 
Animal Care and Use Committee of the Howard Hughes Medical 
Institute, Janelia Farm Research Campus. Zebrafish lines used in 
this study were Tg(elavl3:GCaMP5G) previously described7,37,38 
in the nacre background52, and a nuclear-localized GCaMP6s 
line Tg(elavl3:H2B-GCaMP6s)jf5 in the casper background53. The 
nuclear-localized GCaMP6s fish was generated using the Tol2 
transposon system54, in which the calcium indicator GCaMP6s24, 
was fused with sequence encoding human histone H2B at the 5′ 
end to restrict its expression to the nucleus55. The gene encoding 
the H2B-GCaMP6s fusion was subcloned into a Tol2 vector that 
contained zebrafish elavl3 promoter56. The transgene construct 
and transposase RNA were injected into 1–4-cell-stage embryos, 
and the transgenic lines were isolated by the high expression of 
bright green fluorescence in the central nervous system in the 
next generation57. Embryos were reared according to standard 
protocols at 28.5 °C (ref. 58), and experiments were performed 
on animals 5–7 d post fertilization at room temperature. Fish 
lines and DNA constructs for elavl3:GCaMP6s and elavl3:H2B-
GCaMP6s are available upon request.

Zebrafish imaging. Larval zebrafish were paralyzed by brief 
immersion into 1 mg/ml alpha-bungarotoxin solution, and 
embedded in a custom-made chamber20. A custom light-sheet 
microscope, described in detail elsewhere20, was used to image 
GCaMP fluorescence while larval zebrafish were placed horizon-
tally and intended motor output recorded electrically and visual 
stimuli presented from below. Most of the optics were similar to 
those described in ref. 7. The key differences20 were as follows: the 
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detection arm was rotated 90 degrees to vertical orientation, so 
that the zebrafish could be positioned horizontally, an orthogonal 
excitation arm was added to scan the tissue between the eyes, and 
the side excitation arm was dynamically switched off when posi-
tioned over the eye to avoid laser stimulation of the eyes. Volumes 
of images were acquired continuously at 1 Hz (800 ms imaging 
time and 200 ms piezo reset time), and streamed in binary format 
to a RAID6 disk array in real time, using a custom LabView (64-bit) 
program Zebrascope (Coleman Technologies). Image stack dimen-
sions were typically 2,048 × 1,024 pixels (x-y) by 41 planes (z).  
Typical experiments lasted ~15–30 min, generating ~250–500 GB 
of imaging data per experiment (stored as unsigned integers). 
The data reported in Figure 7 were identical to those reported 
previously7, and thereby differed in the imaging details: zebrafish 
were embedded in a column of agarose and positioned vertically 
in a light-sheet microscope with only one excitation arm, and eyes 
were not excluded from stimulation.

Zebrafish stimuli and behavior, general. A diffusive plastic 
screen was attached to the bottom of the chamber, to allow red 
monochrome images to be projected from below using a mini 
projector. Electrical recordings from the ventral root of the spinal 
cord, or motor neuron axons, were made and processed according 
to previously described techniques12,59. For comparisons to neu-
ral data (for example, Figs. 5 and 6) electrophysiological signals 
were downsampled by taking the maximum signal within each 
temporal window of volume acquisition.

Direction selectivity. Moving gratings of spatial period 1 cm 
were presented at 12 angular directions, 30° apart, in clockwise 
sequence. The gratings moved at 1 cm/s for a period of 10 s, after 
which a gray screen appeared for 10 s. For the data shown in 
Figure 4, the sequence of 12 angles was repeated 5 times (in iden-
tical order). For the data shown in Figure 6b, the sequence was 
repeated 8 times.

Optomotor response. A red/black grating of spatial period 1.2 cm  
moving forward, from head to tail, at a speed of 0.24 cm/s was 
presented to the fish, alternating between periods of motion and 
static grating. For the data shown in Figure 5a,b, the period was 
40 s (20 s moving, 20 s static), and the sequence was repeated  
9 times. For the data shown in Figure 6a, the period was 20 s  
(10 s moving, 10 s static), and the sequence was repeated 14 times. 
During visual motion, vigorous fictive swimming was observed, 
while during no motion, the fish swam little.

Self-driven swimming. A red/black grating of period 1.2 cm 
moving forward, from tail to head, at a speed of 0.05 cm/s was 
presented continuously to the fish, while the entire hindbrain 
and parts of the midbrain were imaged using one light sheet 
from the side. Motor activity was monitored as explained above. 
Stimulus speed was titrated online to elicit motor output ~50% 
of the time.

Analysis details. Here we detail the computations and algorithms 
underlying the example analyses presented in Figures 3–7. Each 
was implemented using routines in Thunder (separately or com-
bined), but below we focus on the analyses themselves, rather than 
implementation (Supplementary Protocol).

Motion correction. For all analyses and data sets, sample motion 
in raw imaging data was corrected using plane-by-plane cross-
correlation based image registration. Specifically, for every plane, 
the two-dimensional Fourier transform was used to compute the 
cross-correlation between the image at time tn and the image at 
t0, and the peak of the cross-correlation was used to determine an 
optimal displacement in x and y, which was then applied to the 
image at tn. For the mouse two-photon imaging data, an additional 
line-by-line motion compensation procedure was performed, as 
described elsewhere14. Image registration was performed using 
Matlab; all other computations were performed in Spark and 
Thunder.

Preprocessing. The input to analyses was the fluorescence of 
every voxel from motion-registered images. As described above, 
these data were represented and stored as records, each a key-
value pair, where the key is the x-y-z coordinate of each voxel, and 
the value is an array with the response time series. Preprocessing 
of the time series was handled by Thunder’s load function. For 
all example analyses (except for local correlation, which used raw 
fluorescence), fluorescence for every voxel was converted into 
∆F/F (yielding what is hereafter referred to as a response time 
course) as:

y t F t F F c( ) ( ( ) )/( )= − +  
Where F(t) is the fluorescence image at time t for each pixel, F  is 
the mean, and a small constant c prevents division by 0.

Speed tuning. Speed tuning was characterized using regression 
followed by tuning curve estimation. Regression was used to esti-
mate, for every voxel, the relative responses to different speeds. 
The instantaneous speed was binned into 12 equally spaced bins, 
yielding a binary matrix X1 of dimension 12 × t describing the 
speed at each moment in time (where t is the duration of the 
experiment). Least-squares was used to estimate the response to 
each speed:

b X X X y= −( )1 1
1

1
T

where y is the response time course of a single voxel. R2 was  
computed from this linear fit as a measure of response predict-
ability. The speed-specific responses were then fit with a Gaussian 
tuning curve. Rather than perform a nonlinear fit, the best-fitting 
parameters were approximated by computing a weighted mean 
and variance. A composite map (Fig. 3c) was generated by using 
the tuning parameter (the weighted mean) as the hue and the R2 
as the brightness. In Thunder, these analyses were implemented 
using the RegressionModel and TuningModel classes from the 
regression package.

Local correlations. As a covariate-independent measure of 
response reliability, local correlations60 were computed for every 
voxel by correlating the fluorescence time course of each voxel 
with the average of a local 7 × 7 pixel neighborhood:

localcorri j
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where yi,j is the response of a voxel at position i,j, and yij is  
the average response of the neighborhood defined by the interval 
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(i − 3, i + 3) and the interval (j − 3, j + 3), || || denotes the vector  
norm. In Thunder, this analysis was implemented using the 
LocalCorr class from the timeseries package.

Direction tuning. Direction selectivity was characterized using 
regression followed by tuning curve estimation, except here 
additionally incorporating the temporal profile of the response. 
Responses were first averaged across repeated presentations. 
Regression was used to estimate, for every voxel, a single temporal 
basis function, and a scalar associated with each presented direc-
tion. Let X1 be the s × t binary design matrix specifying the timing 
of stimulus presentation, where s is the number of time points per 
stimulus, and t is the total duration (t = sd where d is the number 
of directions). Let X2 be the d × t design matrix specifying which 
of the d directions were presented at each time point. For every 
voxel, least-squares was used to estimate the average temporal 
response profile pooled across directions. 

b X X X y= −( )1 1
1

1
T

where y is the response time course of a single voxel. For  
non-overlapping conditions, this is identical to computing the 
average time course to stimulus presentation (ignoring direction). 
The voxel-specific temporal profile b was then used to construct, 
for each voxel, a new design matrix through element-wise multi-
plication with the nonzero elements of X2, and used for a second  
least-squares procedure to estimate the direction-specific weights. 
Finally, the direction-specific weights were fit with a circular Von 
Mises function. Rather than perform a nonlinear fit, the param-
eters of the best-fitting Von Mises were estimated directly by 
computing the circular mean and circular variance of the direc-
tions weighted by the responses61. This yielded, for each voxel, 
a preferred direction and a tuning width. Response strength was 
computed as the norm of the response time course. The resulting 
three numbers determined the hue, saturation, and brightness 
(in HSV color space) of a composite map (Fig. 4b). Contrast was 
enhanced by scaling and thresholding the brightness map. In 
Thunder, this analysis was performed using the RegressionModel 
and TuningModel classes from the regression package.

Principal component analysis. Dimensionality reduction was 
used to characterize the dynamics of neural activity in both space 
(Fig. 4) and time (Fig. 5). The input to the analysis was the n × t 
matrix Y, containing the response time course of every voxel to 
each of several repeated presentations of the stimulus (n is the 
number of voxels; t is the number of time points). To identify a 
low-dimensional subspace for the data, repeated presentations 
were first averaged to yield a n × t̂  matrix Ŷ, where t̂ is the dura-
tion of a single stimulus presentation (the same analysis can be 
performed on the full, non-averaged data matrix). Row means 
were subtracted, and the singular value decomposition (SVD) 
was computed: 

Ŷ USV= T

The principal components (the columns of V) are vectors of  
length t̂ describing the time course of each component, and the 
scores (the columns of U) are vectors of length n, describing 
the projection of each voxel on the direction given by the cor-
responding component, forming the projections onto the volume,  

i.e., whole-brain maps. As described above, Thunder provides 
two-large scale implementations of the SVD, both in the factoriza-
tion package. In either case, scores were used to generate response 
maps (for example, Fig. 5a,c). Specifically, for each voxel, the first 
two scores were converted from Cartesian to polar coordinates; 
the angle was used to determine the hue, and the magnitude was 
used to determine the brightness (the saturation was set to 1). 
Every angle corresponds to a different linear combination of the 
first two components; the time courses of each of these linear 
combinations were used to construct a ‘color wheel’ (Fig. 5a) map-
ping color to time course shape. As for direction selectivity maps, 
brightness was scaled and thresholded to increase contrast.

For trial-averaged data, the principal components correspond 
to trial-averaged trajectories in time through a state-space. To 
recover trial-by-trial trajectories through the same space (as 
shown in Fig. 6), regression followed by PCA was used to recover 
the principal subspace, and the complete time courses were then 
projected into the principal subspace,

J U Y= T

yielding a k × t matrix of trajectories J, where k is the dimen-
sionality of the subspace (either 2 or 3). These analyses were per-
formed using the entire data set (i.e., including the responses of 
all recorded neurons). For the optomotor response (Fig. 6a), the 
initial regression was simply trial-averaging; for direction selec-
tivity (Fig. 6b), the initial regression marginalized across time the 
responses to the different directions. State space trajectories were 
smoothed with linear interpolation (separately for each trial), for 
visualization only (Fig. 6). In Thunder, these analyses were imple-
mented using a combination of the RegressionModel and PCA 
classes from the regression and factorization packages.

Cross-correlation. Cross-correlation followed by dimensional-
ity reduction (as above) was used to relate neuronal dynamics 
to swimming behavior. First, electrophysiological recordings 
were filtered using a running s.d.12, then downsampled to the 
frequency of the volumetric brain scans by computing the maxi-
mum within the temporal window during which each imaging 
volume was acquired. Cross-correlations (with a maximum lag 
of l = 17) were computed between each voxel’s mean-subtracted 
response time course and this downsampled signal. Specifically, 
the cross-correlation for voxel n at a lag of m was given by

crosscorrm n
n

n

m

m
, || || || ||

= •y
y

e
e

where yn is the response time course of voxel n, em is the electro-
physiological signal shifted in time by m (and padded with 0 s).  
The resulting n × (2l + 1) collection of data was used as input 
to PCA to embed the ensemble of cross-correlation kernels in 
a low-dimensional space; visualization of this space (Fig. 4c,d)  
was performed as described above (Fig. 4a,b). In Thunder, this 
analysis was performed using the CrossCorr class from the  
timeseries package and the PCA class from the factorization pack-
age for dimensionality reduction.

Independent component analysis. ICA is an unsupervised learn-
ing algorithm that aims to decompose a multivariate data set into 
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underlying, additive signals, assuming they are non-Gaussian and 
statistically independent. The generative model is:

Y PA=

where Y is the n × t data matrix, P is the n × c matrix of source 
signals or components (columns are spatial modes), and A is the 
c × t matrix of mixing coefficients (rows are temporal modes). 
ICA seeks a matrix W that unmixes the data 

P YW=

such that a function of the non-Gaussianity of the spatial sources 
is maximized. Before estimating this matrix, data are typically 
preprocessed through whitening and dimensionality reduc-
tion42,47. Whitening was implemented by computing an SVD on 
the data matrix Y as described above, and projecting the response  
time course of each voxel onto the leading eigenvectors and  
scaling by inverse eigenvalues:

Ŷ YVS= −1

yielding the whitened, lower-dimensional n × k data matrix Ŷ,  
where V and S are restricted to the desired number of leading 
eigenvectors k. The unmixing matrix B in the space of the whitened  
data was estimated using a fixed-point algorithm42, iteratively 
applying the update equation:

ˆ ( ˆ ( ˆ ) )/a nnewB Y YB B= −3 3

(Raising to the power of 3 is element-wise.) On each iteration,  
B was additionally orthogonalized:

B B B Borth
T= −( ) /1 2

These updates were repeated until convergence. For the analysis 
shown in Figure 7, k = 100 dimensions and c = 20 components 
were used, and ~20 iterations were required. Finally, the mixing  

and demixing matrices were transformed to the original data 
space by undoing the whitening transform

W VS B

A B SV

=

=

−1

T T

The matrix A contains in its rows the mixing coefficients— 
the time courses associated with each spatial independent  
component—and the spatial components are given by YW.  
In Thunder, this analysis was performed using ica from the  
factorization package, which makes use of svd for initial dimen-
sionality reduction.
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