intro: the why of normative approaches
12:00 - 1:00
part 1: sensory coding

part 2: inference
1:20 - 2:20
part 3: action selection

2:40 - 3:40 | hands-on problems

3:40 - 4:00 | outlook
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A wing would be a most mystitying structure it one did not know
that birds flew. One might observe that it could be extended a con-
siderable distance, that it had a smooth covering ot feathers with
conspicuous markings, that it was operated by powerful muscles, and
that strength and lightness were prominent teatures ot its construc-
tion. These are important facts, but by themselves they do not tell
us that birds fly. Yet without knowing this, and without understand-
ing something of the principles of flight, a more detailed examination
of the wing itselt would probably be unrewarding.

Horace Barlow, 1961






psychophysics & stimulus generation: Jonathan Victor, Mary Conte
Victor & Conte (2012), JOSA A; Victor, Thengone, & Conte (2013), J Vision
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psychophysics & stimulus generation: Jonathan Victor, Mary Conte
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&a%%


















high-

)
®
®

human sensitivity (

=

low

| | |
.BO |

/
correlated fNEERE (M=l B M

random



high- 5
. ®
T o -
Z 5
= - @
C c ®
U)_Bs _
& 5
5 2 s
low

correlated FjgErEE:

random

LI —lll
I:lllll h|-

e

I '.IJI{I—.H

ié“ir"-.f
ks

- My

AMH, Briguglio, Conte,
Victor, Balasubramanian & Tkacik 2014



claim:

you should be more sensitive to visual features
that are more variable

...because they are more informative



claim;:
variable
.y AN
you should be more sensitive to visual features ...

performance advantage

...because they are more informative

lawfulness of the world



the world is lawful

animals & brains can exploit the lawfulness of the world
to achieve a performance advantage

how might a system do this”?

reduce redundancy / build compact representations
combat noise / correct errors
resolve ambiguities / reduce uncertainty
make predictions / improve future performance



the normative approach

lawfulness of the worla :>
performance of a system

specify:
function to be performed [ maximizing information about patterns ]

context in which function will be performed | natural visual world |

constraints on the system that performs this function [ bandwidth &
[precision, accuracy, speed, energy, ...] noise constraints |

determine best solution for achieving particular function [ tune sensitivity
In particular context & subject to particular constraints to variability ]






structure structure to be exploited
|& constraints to be met]
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PART 1

remove redundancy
combat noise
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remove redundancy resolve ambiguity
combat noise
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PART 1

remove redundancy
combat noise




When we begin to consider
perception as an information-handling
process, it quickly becomes clear that
much of the information received by
any higher organism 1s redundant.

[ this means that ] if we know at a

given moment the states of a limited
number of receptors (i.e., whether they
are firing or not firing), we can make
better-than-chance inferences with re-
spect to the prior and subsequent states
of these receptors, and also with respect
to the present, prior, and subsequent
states of other receptors.

[ this is] precisely equivalent to an
assertion that the world as we know it
1s lawful.

It ap-
pears likely that a major function of
the perceptual machinery is to strip
away some of the redundancy of stimu-
lation, to describe or encode incoming
information in a form more economical
than that in which it impinges on the
receptors.

Fred Attheave 1954



Barlow’s redundancy reduction hypothesis

goal: maximize information I(12;S) = H(R) — H()&LS)

O low input noise

maximize response entropy — H ( R)
OR
minimize redundancy R=1—H(R)/C
recoding output channel w/
(‘encoding’) noise limited capacity

Input message output message
‘'stimulus s’ ‘response r’
—————| P(R|S) © C

Horace Barlow 1961



entropy H (R)

average # yes/no questions needed
to determine output with certainty

1/2
1/4 1/4 1/4 1/4 174

Pbﬂﬂﬂ P Uj_l:h:ll:l_”a —
A B C D A B C D



machine 1 machine 2
1/2
1/4 1/4 1/4 1/4 1/4
P[DDDQ P[Dh
JA B C D JA B C D

machine 1:

entropy

average # yes/no questions needed
to determine output with certainty

# questions  probabillity
per option ©  of option

#Qa-Pa+ #QpPs + #Qc*Pc + #Qp+Pp

Hi = 2*(1/4) + 2*(1/4) + 2*(1/4) + 2*(1/4)
= 2 [bits]

Hy = 7



machine 1 machine 2 entropy

1/2
1/4  1/4  1/4  1/4 1/4 average # yes/no questions needed
P P 1/8 1/8 . . .
to determine output with certainty
A B C D A B C D

# questions  probability
H = 2 bits H = 1.75 bits per option of option

#Qa-Pa+ #QpPs + #Qc*Pc + #Qp+Pp

Hi = 2*(1/4) + 2*(1/4) + 2*(1/4) + 2*(1/4)
= 2 |bits]

Ho = 1.75 |bits]




machine 1

1/2
1/4 1/4 1/4  1/4 vz
PlDDDQ PH ‘\ [,
A B C D A B C D

H = 2 bits

machine 2

H =1.75 bits

entropy

average # yes/no questions needed
to determine output with certainty

higher entropy

l

more uncertainty

l

greater reduction in uncertainty
by making a measurement



“classic” efficient coding hypothesis
(low input noise)

goal: maximize information I(R;S)= H(R) — H(R{S)

O low Iinput noise
maximize response entropy — H(R)

— Stimulus —) ABAAAB —>»

Horace Barlow 1961



stimulus

2 levels
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stimulus

2 levels

response

stimulus



stimulus

2 levels 4 levels

response
> W O O

stimulus



stimuluS =] tuning curve response =——yp
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Simon Laughlin 1981 contrast ol



constraint on constraint on constraint on

number of responses [V number of responses [NV number of responses [V

mean firing rate /s

mean firing rate /s
variance in firing rate 02

P(r) P(r) P(r)
response T response T° response T°

P(r) = 1/N - (_f) B S (_ (7"‘“)2)

p p V2mo? 20°




r(z,y) «< k(z,y) ® s(z,y)

response linear filter stimulus



r(z,y) «< k(z,y) ® s(z,y)

R |
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83 &

spatlal Iocatlon — time — — time —
Bell & Sejnowski, 1995,
Srinivasan, Laughlin, & Dubs 1982 Olshausen & Field,
Atick & Redlich 1990 Dan, Atick, Reid 1996 van Hateren & Ruderman,

ML LBV
L!llllllll

1997

1996
1998



r(z,y) «< k(z,y) ® s(z,y)
|

Fourier transform

l

[R(f)* oc [K(f)I* - IS(F)I*



log(power spectrum)

5
<,
¢
|

log(spatial frequency

linear filter response
K (f)*-1S()I°
whiten

K(f)|>~f

Log,,amplitude

4.0

3.0

1.0

0.0

Log,,spatial frequenc

Field 1987



log(power spectrum)

iInput noise

stimulus —@—) linear filter response

O

utput noise

R(f)I* o< [K(f)|* - [S(HI?

whiten

low
input noise

low-pass
alfely
input noise

log(spatial frequency)

1

Contrast sensitivity
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Atick & Redlich 1992



log(sensitivity)

van Hateren 1992

R(f)|* o

iIncreasing
iInput noise

flllm

log(power) [aka variability]

K()IF-1S(HIF

log(sensitivity)

iIncreasing
iInput noise

log(spatial frequency)

Atick & Redlich 1992



[R(F)I? o< |[K(f)]* - 1S(f)I?
high
iInput noise

s

log(sensitivity)
human visual sensitivity
variability in natural images

log(power) [variability]

van Hateren 1992 AMH, Briguglio, Conte, Victor, Balasubramanian, Tkacik 2012
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PART 1

remove redundancy correct errors

combat noise
combat

'.x

redundancy
log(power) [va whiten

log(sensitivity)

histogram
equalize
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remove redundancy resolve ambiguity
combat noise




pack at 1:20
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DeWeese & Zador, 1998



P(0¢st, 57 <¢) P(Stwt),P(et‘

wants to estimate QOE

P(A,B) = P(B,A)
P(A|B)P(B) = P(B|A)P(A)
P(B|A) P(A)

Bayes Rule  P(A|B)

P(B)



P(0:|5¢,5r<t) P(St\et), P(0:] )

wants to estimate KNows

Bayes Rule P(A|B,C) =

P(et‘5t757<t) — P(







P(St‘et) P(9t|37<t)

P(s¢|57<t)

P(et‘sta 57‘<t) —

P(s¢|0:) P(0:|s,
ZP(9t|St787<t = = Z (St‘ t t‘s <t)
0+ P(St‘s7'<t)

P(s¢|sr<t) = Z P(s:]0:) P(0¢]|sr<t)

= ()



* P(0i|sr<t) = P(0:]5:<t)
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changing context 0;

0, Og

‘ ‘ _/\/'(st;et,aQ)

stimulus feature St




Ps

7~ A
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changing context 0;

HL (]'_pS) Ps
HH_ Ps (l_ps)

=|(1-ps) PE, + Ps (1 -PE))]

0, Og

‘ ‘ N(st;Ht,JQ)

stimulus feature St
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|
PtL zﬁ N(St;et:OL,O-z) [(1_p3) PtL_]_ _I_ pS (]. —Ptli]_)]

posterior
probability of
LOW context

likelihood that
observed stimulus

was generated

in LOW context

prior prior
probability of probability of
LOW context HIGH context

probability probability
that context that context
stayed LOW changed to HIGH



|
PtL :ﬁ N(St;OtZHL,O'Z) [(1_p3) PtL_l _I_ pS (]. _Ptli]_)]

posterior <«—o&—— likelihood — prior
how probable how probable how much do you
are your hypotheses are your measurements expect your hypotheses
about state of the world?? given your hypotheses? based on your experiences?

*see Wel JiI's tutorial
from Cosyne 2019 @

A

y

Kersten & Yuille 2003 David Mack



encoding

what features
should be prioritized
to maximize information?




context

Mlynarski & AMH, 2018

1
— 0O N(St;etzeLagz) [(1—2?3) PtL—l T Ps (1 _Ptlil)

stimulus

feature

encoding —— posterior

what features how probable
should be prioritized are your hypotheses
to toaeshizgpotoasasdon?  about state of the world?

encoding infer context

Bayesian observer

P/ =P(H,M)

rate

—

feature

t

prediction P |



PART 1 PART 2 PART 3

remove redundancy resolve ambiguity make & use
combat noise predictions

B el sovmen Wamentl
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gather information (e.g. infotaxis)
maximize reward (e.g. reinforcement learning)

Vergasola, Villermaux, Shraiman, 2007
Sutton & Barto, 2018



state action

Sutton & Barto, 2018



world
reward
I ‘ aCtlon

Sutton & Barto, 2018



day 1, trial 1

day 5, trial 10
https://tinyurl.com/viwo8ze



day 1, trial 1

day 5, trial 10 Ofstad, Zuker & Reiser, Nature (2011)
https://tinyurl.com/vfwo8ze * fly tracking by Ctrax (Branson et al. 2009)



states s

actions a







explore / exploit tradeoff
exploit: take action that gives highest
expected value

explore: take action that has lower expected value
but could result in higher long-term payoff

greedy: A= argrrnax qﬂ'(S, CL) exploit
a

€-greedy: (1 —€) A = greedy exploit

€ A = random explore

softmax: 7T(CL|S) X exXp (,3 qﬂ-(s, a))
B — oo exploit
8—0 explore



goal: maximize expected long-term reward

return (&

G4 = return, starting at time ¢

= Ri11+ Riyo + Ry s + ... all rewards equally important



goal: maximize expected long-term reward

return (&

G4 = return, starting at time ¢

= Ri11+ Riyo + Riy3 + ... all rewards equally important

= Ri41+ Repo + Reyz + ..



goal: maximize expected long-term reward
return GG

GG, = return, starting at time ¢
= Ri11+ Riyo + Riy3 + ... all rewards equally important
2
= Ri 1+ YRiyo + Y " Riyr3 + ... current rewards more important than distant ones

discount factor v € |0, 1]

v =1 don’t discount (far sighted)
v =0 fully discount (myopic)



goal: maximize expected long-term reward
return GG

G

return, starting at time ¢

Rii1+ Ripo+ Rey s+ ... all rewards equally important

= Ry 1+ 7 [Rt_|_2 + YR 3 + ] current rewards more important than distant ones

G discount factor 7y € [0, 1]

v=1 don’tdiscount (far sighted)
Gt = Rt_|_1 -+ ")/Gt_|_1 ~v =0 fully discount (myopic)



G, represents actual future rewards (unknown to agent)

can instead compute expected future rewards, starting in state s, following policy

consider one timestep in the future:

Er[Ri11]S: = s] = Zw(a\s) Zp(s'\s, a) r(s,a,s’)

policy dynamics reward
of environment function




define state-value function, starting in state s, following policy 7

VUr (S) — EW[ Gt St =] ] prediction of rewards to come

Gt = Rip1 +7Giy1 En|[Ryy1|S: = 5| = ZW(CLLS) ZP(S,LSa a) r(s,a,s’)



define state-value function, starting in state s, following policy 7

Ur(8) = Eﬂ-[Rt+1 +7Ge1 | Sp = 8]

Ex[Ri11|S: = s] = Zw(a|s) Zp(s’|s, a) r(s,a,s’)



define state-value function, starting in state s, following policy 7

oe(s) = EW[RH e | s, = s]

= Z m(als) Zp(s'\s, a) [ r(s,a,s’)

+ v Er [Gt-l-l ‘ St1 = 3']]

vr(s")




define state-value function, starting in state s, following policy 7

vr(5) = EW[RH + 7G| S, = s]

=" n(als) Y- p(s'ls,0 [( ) +7 a(s >]

Bellman equation
for state-value function



define state-value function, starting in state s, following policy 7

’UW(S) = Z 7r(a,|s) Zp(s'ls, a,) 'r(s, a, S') + Y 'U7r(3,) state-value function
a s’

= (S, a,) action-value function
: : / /
Dynamic given p(s'[s,a), r(s,a,s). tempora
Programming:  learn optimal Vx, g« , % via bootstrapping difference (TD)

learns from experience
Monte Carlo: estimate vy, @« via sampling, via bootstrapping

learn optimal 7« from simulated experiences



define state-value function, starting in state s, following policy 7

Un (S) = Z 7r(a,|s) Zp(s’ls, a,) 'r(s, a, S') + Y ’Uw(s') state-value function
a s’

temporal difference (TD) : improve estimate of value through experience

new _ old 4+ step tarqet N old
estimate estimate size J estimate
Via(s) = Vils) + @ | G — Vils) |

~ (R + ")’Vt(S'))



define state-value function, starting in state s, following policy 7

’UW(S) = Z 7r(a,|s) Zp(s’ls, a,) [r(s, a, s') + Y 'U7r(3, )] state-value function

Viri(s) = Vi(s) +a| (R+Vi(s)) — Vils) |

Qi+1(8,a) = Qi(s,a) + [(R + Q¢ (s, a’)) — Q:(s, a)] Q-learning, SARSA

prediction error 5t



here, states can only be updated as they are visited
to update states that were visited in the past, we can use eligibility traces

Vira(s) = Vi(s) + @[ (R+Vi(s) - Vi(s) | Zu(s)

“eligibility” of state S

7 ( ) )\’YZt_l(S) S 75 St trace-decay parameter A € [0, 1}
ACH
_ A = (0 onlycurrent state
1+ A'YZt—l(S) s = Sy canybe updated

A =1 eligibility falls by 7Y
each timestep

20 ]I\ N

| 1 | | 1 time



here, states can only be updated as they are visited
to update states that were visited in the past, we can use eligibility traces

’
AyZs—1(3) s # St

Viri(s) = Vt(8)+a[(R+7Vt(3’))_ %(S)l Zi(s) = 1+ XyZs_1(s) s =5,

A=0 A>0
{ -«
w * {
4




day 1, trial 1

Ofstad, Zuker & Reiser, Nature (2011) day 5, trial 10
* fly tracking by Ctrax (Branson et al. 2009) https://tinyurl.com/vfwo8ze



pack at 2:40
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problem set & code
http://bit.ly/cosyne2020-tutorial

worksheet
(handout)


http://bit.ly/cosyne2020-tutorial

outline problem set worksheet
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probability P(f)

spike counts
spike counts
Huu
spike counts
O = N Wb U

0 frequency f frequency f probability
frequency f

forest

4 | action selection

spike cqunts
o = N ) A O
N
spike counts
Fw

per flower
Spitie counts
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)
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)
C
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v |9
S
q (40]
b
|9
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R probability frequency f
frequency f

probability

2 Sensory Coding

; code available
2.3 What would y6u expect ... (thanks to Sashank Pisupati!)

2.4( Use Fig 4C )o sketchi ...

do these firstt —»

http://bit.ly/

el ycRe -l QORI nd  *2.5 Parameterize the nonlinearity ... cosyne2020-tutorial

after you've finished Numerically, jind the optimal ...
all 3 sections
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probability P(f)

spike counts

field forest

frequency f

spike counts

probability

field

spike counts

probability



probability P(f)

spike counts

field forest
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context [N _

preserve information preserve information

about frequency about context
Mlynarski & AMH, 2018
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preserve information preserve information
about frequency about context

Mlynarski & AMH, 2018
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Policy - reorienting probability ~ Policy - reorienting angle

= 1 -
= g1
S 0.5 |
E%), ﬂ0.5
a 0 | | ‘ S ‘

-1 -0.5 0 0.5 1 0 90 180

Change in value Change in orientation

. Value in field
5
< 0.5
>

O .

0 0.5 1

Frequency

*simulations and movie
by Sashank Pisupati




Policy - reorienting probability ~ Policy - reorienting angle

= 1 -
= g1
S 0.5 |
E%), ﬂ0.5
a 0 | | ‘ S ‘

-1 -0.5 0 0.5 1 0 90 180

Change in value Change in orientation

. Value in field
5
< 0.5
>

O .

0 0.5 1

Frequency

*simulations and movie
by Sashank Pisupati




structure structure to be exploited
|& constraints to be met]
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