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you should be more sensitive to visual features
that are more variable

…because they are more informative

claim:
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performance advantage

lawfulness of the world
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performance advantage
lawfulness of the worldanimals & brains can exploit the 

how might a system do this?

reduce redundancy / build compact representations
combat noise / correct errors

resolve ambiguities / reduce uncertainty
make predictions / improve future performance

lawfulness
performanceto achieve a

the world is lawful



the normative approach

lawfulness of the world
performance of a system

function to be performed
context in which function will be performed
constraints on the system that performs this function

[precision, accuracy, speed, energy, …]

determine best solution for achieving particular function
in particular context & subject to particular constraints

specify:

lawfulness
performance

[ maximizing information about patterns ]
[ natural visual world ]

[   bandwidth & 
noise constraints ]

[  tune sensitivity
     to variability   ]



sensationworld



actionworld

structure to be exploitedstructure
[& constraints to be met]

sensation



world sensation inference prediction action

structure to be exploited
[& constraints to be met]

structure



world sensation

PART 1
remove redundancy 

combat noise



world sensation inference

PART 2PART 1
remove redundancy 

combat noise
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world sensation inference prediction action

PART 3PART 2PART 1
remove redundancy 

combat noise
resolve ambiguity make & use 
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world sensation

PART 1
remove redundancy 

combat noise



[ this means that ]

[ this is]

Fred Attneave 1954



input message
‘stimulus s’

output message
‘response r’

recoding
(‘encoding’)

goal: maximize information

maximize response entropy

minimize redundancy
OR

low input noise0

channel w/
limited capacity

output
noise

  Barlow’s redundancy reduction hypothesis  

Horace Barlow 1961
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entropy

average # yes/no questions needed 
to determine output with certainty
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higher entropy

more uncertainty

greater reduction in uncertainty 
by making a measurement

H = 2 bits H = 1.75 bits



“classic” efficient coding  hypothesis  

machine

(low input noise)

tuning curvestimulus  A B A A A B   

goal: maximize information

maximize response entropy
low input noise0

Horace Barlow 1961
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response responseresponse

number of responses 
constraint on 

number of responses 
mean firing rate

constraint on 
number of responses 

mean firing rate
variance in firing rate

constraint on 

stimulus  tuning curve response   
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FIGURE 4. The matrix of  144 filters obtained by training on ZCA-whitened natural images. Each filter is a row of  the matrix W. 
The ICA basis functions on ZCA-whitened data are visually the same as the ICA filters. 

The full ICA transform from the raw image was 
calculated as the product of the sphering (ZCA) matrix 
and the learnt matrix: W, = WWz.  The basis function 
matrix, A, was calculated as W~ ~. A PCA matrix, Wp, 
was calculated from equation (7). The original (un- 
sphered) data were then transformed by all three 
decorrelating transforms, and for each the kurtosis of 
each of the 144 filters was calculated, according to the 
formula: 

K i - -  { ( l ' ~ i -  {bti))4) 3 ( 1 9 )  

Then the mean kurtosis for each filter type (ICA, PCA, 
ZCA) was calculated, averaging over all filters and input 
data. This quantity is used to quantify the sparseness of 
the filters, as will be explained in the Discussion. 

RESULTS 

The filters and basis functions resulting from training 
on natural scenes are displayed in Figs 3 and 4. Figure 3 

displays example filters and basis functions of each type. 
The PCA filters, Fig. 3(a), are spatially global and 
ordered in frequency. The ZCA filters and basis functions 
are spatially local and ordered in phase. The ICA filters, 
whether trained on the ZCA-whitened images, Fig. 3(c), 
or the original images, Fig. 3(d), are semi-local filters, 
most with a specific orientation preference. The basis 
functions, Fig. 3(e), calculated from the Fig. 3(d) ICA 
filters, are not local, and look like the edges that might 
occur in image patches of this size. Basis functions in the 
column Fig. 3(d) (as with PCA filters) are the same as the 
corresponding filters, since the matrix W (as with Wp) is 
orthogonal. This is the ICA-matrix for ZCA-whitened 
images. 

In order to show the full variety of ICA filters, Fig. 4 
shows, with lower resolution, all 144 filters in the matrix 
W. The general result is that ICA filters are localized and 
mostly oriented. Unlike the basis functions displayed in 
Olshausen & Field (1996), they do not cover a broad 
range of spatial frequencies. However, the appropriate 
comparison to make is between the ICA basis functions, 

time spatial location

spatial location

Srinivasan, Laughlin, & Dubs 1982
Dan, Atick, Reid 1996 van Hateren & Ruderman, 1998

Olshausen & Field, 1996
Bell & Sejnowski, 1995, 1997

Atick & Redlich 1990
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IMAGE ANALYSIS

Methods
The six scenes used in this study were photographed with a
Keystone 3572 camera (35 mm) using XP1 Kodak mono-
chrome film. The scenes were taken from various places
around England and Greece. No attempt was made to se-
lect particular types of scene, but images were chosen that
had no artificial objects (buildings, roads, etc.). Although it
was hoped that these scenes were typical natural scenes, no
effort was made to ensure this, and they may therefore rep-
resent biased samples.

The negatives were digitized on a laser densitometer
(Joyce Loebel) into 256 X 256 pixels with a depth of 8 bits/
pixel (256 density levels). The images were analyzed on a
Sun Workstation computer using conventional software de-
veloped by the author.

Calibration
The modulation transfer function (MTF) of the optical sys-
tem (lens and developing process) was determined from the
response of the system to a point source. A photograph of a
point source was taken with the same camera and film, and
the negative was developed in the same manner as the six
natural scenes. The results described below were corrected
in accordance with this MTF.

IMAGE ANALYSIS: AMPLITUDE SPECTRA OF
NATURAL IMAGES
In this section we discuss a particular property of natural
images as illustrated by their amplitude or power spectra.
This topic is discussed in greater detail in another paper.
However, since the conclusions of this section play an impor-
tant part in the next section, it is discussed briefly here.

Natural images, on the whole, appear to be rather com-
plex. They are filled with objects and shadows and various
surfaces containing various patterns at a wide range of orien-
tations. Amid this complexity, it may seem surprising that
such images share any consistent statistical features. Con-
sider the six images shown in Fig. 6. Such images may seem
widely different, but as a group they can be easily distin-
guished from a variety of other classes of image. For exam-
ple, random-dot patterns are statistically different from all
six of these natural images. This difference is best de-
scribed in terms of the amplitude spectra or power spectra of
the images, where the amplitude spectrum is defined as the
square root of the power spectrum.

The two-dimensional amplitude spectra for two of the six
images are shown in Fig. 7. The spectra of these images are
quite characteristic and are quite different from that of
white noise, which is by definition flat. They show greatest
amplitude at low frequencies (i.e., at the center of the plot)
and decreasing amplitude as the frequency increases. The

f

A B C

D E F
Fig. 6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only
the central region was directly analyzed (160 X 160). See the text or details.

David J. Field
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likelihood that
observed stimulus

was generated
in LOW context

probability
that context
stayed LOW

prior 
probability of
LOW context

probability
that context

changed to HIGH

prior 
probability of
HIGH context

posterior
probability of
LOW context



likelihood
how probable 

are your measurements 
given your hypotheses?

prior
how much do you 

expect your hypotheses 
based on your experiences?

posterior
how probable 

are your hypotheses 
about state of the world?

*see Wei Ji’s tutorial
from Cosyne 2019
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x

y

x

z

Kersten & Yuille 2003 David Mack
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Bayesian observer

P(     ,    )

infer contextcontext

encoding
what features 

should be prioritized 
to test hypotheses?

posterior
how probable 

are your hypotheses 
about state of the world?

prediction

stimulus  

feature

encoding

feature

ra
te

Mlynarski & AMH, 2018

encoding
what features 

should be prioritized 
to maximize information?



world actionsensation inference prediction

PART 3PART 2PART 1
remove redundancy 

combat noise
resolve ambiguity make & use 

predictions

gather information (e.g. infotaxis)
maximize reward (e.g. reinforcement learning)

Sutton & Barto, 2018
Vergasola, Villermaux, Shraiman, 2007



policydynamics actionstate

world agent

Sutton & Barto, 2018



policydynamics

valuereward function

state

world agent
reward

action

Sutton & Barto, 2018



day 1, trial 1

day 5, trial 10
https://tinyurl.com/vfwo8ze



day 1, trial 1

day 5, trial 10
https://tinyurl.com/vfwo8ze

25oC

30oC

Ofstad, Zuker & Reiser, Nature (2011)
* fly tracking by Ctrax (Branson et al. 2009)
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policy value



explore / exploit tradeoff

exploit: take action that gives highest
expected value

explore: take action that has lower expected value
but could result in higher long-term payoff

-greedy:

softmax:

explore
exploit

explore
exploit

greedy
random

statesactions

valuepolicy greedy: exploit



goal: maximize expected long-term reward

return, starting at time

return

all rewards equally important
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don’t discount (far sighted)
fully discount (myopic)

discount factor

current rewards more important than distant ones
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represents actual future rewards (unknown to agent)

dynamics
of environment

policy reward
function

can instead compute expected future rewards, starting in state , following policy
consider one timestep in the future:



define state-value function, starting in state , following policy

prediction of rewards to come
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define state-value function, starting in state , following policy

Bellman equation
state-value functionfor



define state-value function, starting in state , following policy

state-value function

action-value function

Monte Carlo:

temporal

learns from experience
via bootstrappingestimate via sampling

learn optimal from simulated experiences

learn optimal
given 

via bootstrappingProgramming:
Dynamic

difference (TD)



define state-value function, starting in state , following policy

state-value function

new
estimate

old
estimate

step
size target old

estimate

temporal difference (TD) :  improve estimate of value through experience



define state-value function, starting in state , following policy

state-value function

Q-learning, SARSA

prediction error



trace-decay parameter

only current state
can be updated
eligibility falls by
each timestep

“eligibility” of state

here, states can only be updated as they are visited
to update states that were visited in the past, we can use eligibility traces

time



here, states can only be updated as they are visited
to update states that were visited in the past, we can use eligibility traces



Ofstad, Zuker & Reiser, Nature (2011)
* fly tracking by Ctrax (Branson et al. 2009)

day 1, trial 1

day 5, trial 10
https://tinyurl.com/vfwo8ze



back at 2:40



problem set & code

worksheet
(handout)

http://bit.ly/cosyne2020-tutorial
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problem set
1 | problem setup
2 | sensory coding

3 | inference
4 | action selection

the bee the best discriminability of incoming frequency signals? Use Fig 3A to sketch what you’d intuitively
expect this to look like, based on the distributions of frequencies in the forests and fields [in Problem 2.3,
we’ll revisit this from the perspective of the spike count distribution]. How would this change if the detector
only had to function in the forests? Only in the fields? Sketch this in Fig 3B.

Figure 3: Tuning detectors to different distributions

2.2 Now, consider the impact of the discretization into spike counts. Consider a detector that produces a
minimum of 0 spikes and a maximum of 5 spikes. Use the forest-only detector that you drew in Fig 3B to
sketch the distribution of spike counts that this detector would produce in the forest. Sketch this in Fig 3C.

2.3 What would you expect this distribution of spike counts to look like if its entropy were maximized?
Sketch this in Fig 4A. [Note that maximizing the entropy of this distribution is equivalent to maximizing
the information that the detector’s output (spike counts) conveys about its input (frequency values) in the
absence of noise; for more background, check out Jorge Menéndez’s primer on info theory [4]]. Work back-
wards from this maximum-entropy distribution to draw the forest-only nonlinearity that would produce this
distribution; sketch this in Fig 4B. Assuming that the distributions in Fig 1B are Gaussian, what mathematical
function should the nonlinearity take in order to guarantee this output distribution?

2.4 Use Fig 4C to sketch the distribution of outputs that this detector (which was optimized for the forest)
would produce in the field. What is the entropy of this distribution? Now think about this result in the context
of adapting to changes in the environment. If this detector was “adapted” to the forest (i.e., optimized as in
the previous problem) when the bee suddenly moves from the forest to the field, what is the challenge with
adapting to this change?

Figure 4: Finding optimal detectors
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Parameterize the nonlinearity and discretize its output between 0 and a maximum spike count of
. Numerically, find the optimal parameters of the nonlinearity that maximize the information that the

…

behavior in order to exploit this. Because there is a different relationship between flower color and reward
in the forest versus the fields, the bee has to learn all of this in a context-dependent manner.

We’re going to take a very particular type of approach to this problem. Rather than assuming that the
bee has unlimited computing power and infinite training data, as might be a more typical machine learning
approach, we’re going to explicitly consider the constraints that biological systems have to overcome in
solving this type of problem. Specifically, we’ll assume the following:

(i) the bee does not have perfect color acuity; there is only a limited range of colors that it can distinguish
at any one time.

(ii) the bee does not explicitly know whether it’s in the field or the forest; it has to infer this from the pattern
of flowers that it sees.

(iii) the bee doesn’t know which flowers produce nectar; it has to learn this through it’s own experience in
an on-line fashion.

We’ll work through this problem in steps. We’ll first consider how the bee’s limited acuity could impact its
color perception (Section 2). We’ll then consider how the bee could use this limited color information to infer
whether it is in the forest or the field (Section 3). Finally, we’ll consider how the bee could learn to associate
this color information with different outcomes (the presence or absence of nectar), and change its behavior
accordingly (Section 4). Each section will be broken down into a series of shorter problems that you can
work out using pen and paper. At the end of each section, you’ll find extra problems (marked with *) that are
more involved, and often require some coding; please work though the entire set of non-starred problems
before returning to these starred problems.

2 Sensory Coding
For simplicity, we’ll assume that the bee can use only a single “frequency detector” to encode incoming
light signals. This detector transforms these signals into discrete spike counts via a saturating nonlinearity,
as shown in Fig 2A. It’s easiest to think of this transformation in two steps: first, an incoming frequency is
transformed via a continuous nonlinearity, and then the output of this nonlinearity is discretized into a small
number of spike counts. You can then imagine “tuning” this nonlinearity by adjusting its slope and offset
(upper and lower panels in Fig 2B, respectively), prior to the discretization step. Note that the discretization
makes this a lossy transformation, which means that some information about the incoming frequency value
is lost when converting to a spike count.

frequency
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Figure 2: A simplified frequency detector.

2.1 First, consider the role of the continuous nonlinearity. If the bee is to use this single (fixed) detector for
both the forests and the fields, how should the nonlinearity be positioned along the frequency axis to give
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We’ve discussed normative frameworks for sensory coding, inference, and action selection. We’re now
going to connect elements of each of these frameworks within the context of a problem that nearly all
animals need to solve: foraging. This problem is inspired by work from Montague, Dayan, Person, and
Sejnowski [1]. It also brings in elements from work by Laughlin [2] and DeWeese and Zador [3]. You can
find these papers (and more) at the end of the problem set.
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Figure 1: Problem Setup.

1 Problem setup
Consider a bee foraging in an environment that consists of patches of forests and fields. Each type of patch
contains different types of flowers with different amounts of nectar. The colors of the flowers (and the colors
alone) predict how much nectar they produce. We’ll parameterize this color using the frequency of light (i.e.,
purple flowers are signaled by higher frequencies / lower wavelengths of light). The forests contain mostly
blue and purple flowers, while the fields contain mostly red and yellow flowers (Fig 1A). If we were to count
the number of flowers of a given color frequency in each type of patch (forest versus field), we would find
two distinct but overlapping histograms (Fig 1B). In the forests, the more purple the color (i.e. the higher the
frequency), the more nectar a flower will have on average. In the field, it’s the opposite; lower frequencies
yield more nectar (Fig 1C).

The bee’s goal is to collect as much nectar as possible. In order to do this, the bee has to learn (through
its own experience) which flowers are more likely to produce nectar, and it has to learn how to change its
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Parameterize the nonlinearity and discretize its output between 0 and a maximum spike count of
. Numerically, find the optimal parameters of the nonlinearity that maximize the information that the

output spike counts convey about the input frequency
…

outline

come back to these
after you’ve finished
all 3 sections

*

*

…

code available
(thanks to Sashank Pisupati!)

http://bit.ly/
cosyne2020-tutorial
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world actionsensation inference prediction

structure to be exploited
[& constraints to be met]

structure
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