
©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1679

INTRODUCTION
Light-sheet microscopy is an optical sectioning technique1–3 that
provides high imaging speed and high spatial resolution over long
periods of time, while minimizing energy load on the biological
system under observation4–15. Owing to these powerful capabili-
ties, light-sheet microscopy has emerged as a key method for live
imaging in cell biology and developmental biology16–20, as well
as in neuroscience21–23. By capturing fast developmental and
functional processes at the single-cell level across entire, complex
biological systems, light sheet–based imaging can address funda-
mental biological questions that are not accessible with previous
methods. In the domain of developmental biology, it has become
feasible to systematically follow populations of progenitor cells as
they form tissues, organs and even entire embryos. Such system-
level cell-lineage reconstructions provide important insights into
the stereotypy of developmental processes, link developmental
history to cell function in the developmental building plan of an
animal, aid in dissecting the role of differential gene expression
in directing cell-fate decisions, and facilitate experimental valida-
tion of mechanistic models of development24–33. In neuroscience,
light-sheet microscopy has made it possible to perform functional
imaging of large neuronal populations, entire brains5,34 and even
the entire CNS35. Such experiments have the potential to illumi-
nate how large neural networks perform complex computations
and generate behavior at the single-cell level22,36.

However, light-sheet imaging experiments produce vast
amounts of complex image data; from long-term imaging of
developing embryos to high-speed functional imaging of the
brain, each light-sheet recording consists of up to several tens
of terabytes of multidimensional image data (including three
spatial dimensions, time and multiple color channels). Thus, data
management, as well as image processing and data analysis, rather
than the experiments themselves, can easily become the bottleneck
on the path to biological discovery. A computational framework
that addresses these challenges, and does so with high data through-
put and at minimal cost to the investigator, is crucial for routinely
recording light-sheet data sets and for extracting biologically
relevant information.

Here we present detailed protocols for operating a computa-
tional pipeline that efficiently handles the spectrum of challenges
encountered with light-sheet microscopy image data, from high-
throughput lossless data compression to content-based multiview
image fusion. We furthermore provide protocols and software for
large-scale cell tracking in developmental image data sets, as well
as for large-scale image data visualization and annotation.

Development of the protocol
In the protocols presented here, we describe five main compu-
tational modules (Figs. 1 and 2; Supplementary Software 1–6):
first, our block-based lossless compression file format for
efficiently storing large amounts of image data and rapidly
retrieving arbitrary regions of interest; second, MATLAB scripts
for content-based registration and fusion of time-lapse, multiview
image data; third, our Tracking with Gaussian Mixture Models
(TGMM) software for automated large-scale segmentation and
tracking of fluorescently labeled cell nuclei; fourth, a branch of
the Collaborative Annotation Toolkit for Massive Amounts of
Image Data (CATMAID)37,38 for visualizing 5D microscopy
data sets and editing associated cell tracking results; and fifth,
MATLAB scripts for importing, analyzing and visualizing
large-scale cell-lineage reconstructions.

All protocols have been extensively tested on long-term in vivo
time-lapse recordings of multicellular organisms, such as fruit
fly, zebrafish and mouse embryos, primarily using data gener-
ated with SiMView light-sheet microscopy8,39. In addition, our
processing pipeline has been successfully applied to other micro-
scopy modalities, such as confocal fluorescence microscopes and
commercial light-sheet microscopes39, and other model systems,
such as Parhyale and Platynereis embryos40, as well as fruit fly
and zebrafish larvae5. Our framework tackles various large-scale
image processing challenges, including the analysis of multitera-
byte developmental image data sets for system-level cell tracking
(with tens of millions of tracked cell locations per embryo)39
and management of multiterabyte functional image data sets
produced by whole-brain5 or whole-CNS35 calcium imaging.

Efficient processing and analysis of large-scale
light-sheet microscopy data
Fernando Amat, Burkhard Höckendorf, Yinan Wan, William C Lemon, Katie McDole & Philipp J Keller

Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA. Correspondence should be addressed to P.J.K. (kellerp@janelia.hhmi.org)
or F.A. (amatf@janelia.hhmi.org).

Published online 1 October 2015; doi:10.1038/nprot.2015.111

Light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high
spatiotemporal resolution and over long time scales. Such experiments typically generate terabytes of multidimensional image
data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols
and software to tackle these steps, focusing on the imaging-based study of animal development. Our protocols facilitate
(i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore CPU architectures,
reducing image data size 30–500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing
and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. These software
modules are open source. They provide high data throughput using a single computer workstation and are readily applicable to a
wide spectrum of biological model systems.

http://www.nature.com/doifinder/10.1038/nprot.2015.111

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1680 | VOL.10 NO.11 | 2015 | nature protocols

Moreover, our modules for image compression, multiview fusion,
segmentation and cell tracking are also suitable for applications
that require real-time performance; i.e., our pipeline is capable of
processing speeds exceeding the data acquisition rate of the light-
sheet microscope, using a single computer workstation equipped
with a conventional compute unified device architecture (CUDA)-
enabled graphics card.

Comparison with other methods
One of the key challenges in developing computational tools for
light-sheet microscopy image data is scalability. There is a vast
amount of literature and software related to the computational
problems discussed here, such as data compression, visualization,
registration, segmentation and tracking. However, many of these
existing approaches either break down or are too time-consuming
and resource-intensive when applied to multiterabyte image
data sets. In this section, we compare our computational modules
with existing methods that have been tested in similar data sets in
terms of image characteristics and (if applicable) size.

Annotation database

Background masking
and lossless

image compression

Content-based multi view
image registration

and fusion

3D drift correction,
intensity normalization

and image filtering

Automated segmentation
and cell tracking

with TGMM

Data visualization
and annotation
with CATMAID

Image database

Data import, annotation
and visualization

in MATLAB and Imaris

Step 1A(i–iv) Step 1A(v–ix) Step 1B(i–iv)

Step 1C(i–ii) Step 1D(i–vii) Step 1E(i–ix)

Raw image data
(3D + time, multiview, multicolor)

Core modules

Optional modules

Figure 1 | Overview of image processing and data analysis workflow. The
computational framework described in our protocols addresses typical data
management, image processing and data analysis challenges encountered in
light-sheet microscopy experiments. Starting with the raw image data sets,
which consist of up to several terabytes of 3D images recorded as a function
of time and comprise up to several color channels and view angles, the
computational modules described here facilitate rapid data compaction via
adaptive image background and foreground detection, background masking
and image compression in our lossless KLB file format optimized for large-
scale image data and multicore CPU architectures; high-throughput content-
based multiview image registration and fusion for SiMView-like multiview
data sets comprising up to four orthogonal views; 3D drift correction,
intensity normalization and adaptive background correction; automated
segmentation and cell tracking using our software framework TGMM; large-
scale image data visualization and editing of cell-lineage reconstructions
using a branch of CATMAID for 5D light microscopy image data sets; and
data import/export between TGMM, CATMAID and the commercial rendering
software Imaris. All of these software modules can be used individually or as
part of our integrated computational pipeline.

Light sheet 1 Light sheet 1Light sheet 2 Light sheet 2

Camera 1 Camera 2

Step I
Image acquisition

(e.g., four-view SiMView
image data)

Step II
Automated

fore- and background
detection

Step III
Lossless KLB compression

of 3D image foreground

Lossless size reduction:
10–200×

Step IV
Automated content-based

multi-view registration
and image fusion

Lossless size reduction:
up to 4×

Processing result
Fused and KLB-compressed 3D image data

Total lossless size reduction: 30–500×

Figure 2 | Lossless image compression and content-based multiview fusion.
The first set of modules in our computational framework for high-throughput
image processing is designed for rapid lossless data compaction of single-
view or multiview light-sheet microscopy data sets. Step I: acquisition of
light-sheet microscopy image data. These raw images are used as input
data in the next step. Step II: automated detection of image foreground
and background; i.e., detection of image regions that correspond to parts
of the specimen (foreground, shown in yellow) or to regions that are either
outside the specimen or do not contribute fluorescent signal (background,
shown in blue). Step III: masking of image background (i.e., populating the
automatically detected background regions, which contain only background
noise, with zeros) and lossless compression of the image data using the KLB
file format. Step IV: automated content-based multiview image registration
and image fusion. Steps II and III are applicable to both single-view and
multiview image data sets, whereas Step IV is designed for high-throughput
image fusion of SiMView-like multiview data sets comprising up to four
orthogonal views. These image processing steps combine the high-quality
image information of all recorded views into a single, information-rich image
stack of the entire specimen, and efficiently store the 3D image data in a
lossless image format. Thereby, the pipeline markedly reduces the size of the
raw image data (on average by a factor of 180, Fig. 4) without discarding
or changing parts of the original 3D image data that contain potentially
useful information. At the same time, the pipeline is real-time capable; that
is, all processing steps are completed in less time than required for image
acquisition itself (Table 1). Data compaction performance numbers are based
on the fruit fly, mouse and zebrafish imaging experiments shown in Figure 4.
Scale bar, 50 µm.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1681

Image compression. In our comparison of image-compression
formats, we focus on formats that have found widespread use and
that offer lossless compression capability, as researchers usually
want to store an unaltered version of their data. JPEG 2000 is one
of the most widely used image compression formats. However,
although the JPEG 2000 standard provides a description of 3D
compression, few implementations of this capability actually
exist. Most software packages compress image data plane by plane,
which is inefficient for retrieving arbitrary regions of interest in
large multidimensional image volumes. Moreover, it is difficult
to efficiently parallelize all JPEG 2000 coding and decoding steps,
which makes it challenging to take full advantage of modern mul-
ticore computing hardware.

HDF5 is another popular container for image files. Aside from
offering lossless data compression, HDF5 is capable of storing
data in blocks for fast retrieval of arbitrary regions of interest.
Unfortunately, the HDF5 interface does not parallelize writing
operations, which negatively affects speed.

To overcome these limitations, we developed the Keller Lab
Block (KLB) lossless image-compression format, which combines
high compression ratios, fast read/write speeds and a flexible
block architecture that enables efficient access to arbitrary regions
of interest (Figs. 3 and 4; Supplementary Figs. 1–3). Inspired by
Parallel BZip2, a common Linux compression module, we parti-
tion images in 5D blocks and compress all blocks in parallel using
BZip2. Both reading and writing operations are parallelized, and
they scale linearly with the number of cores in the CPU (Fig. 5).
In addition, we provide a simple API for interfacing the open-
source C++ code with various platforms, as well as an interface
file for the SWIG tool, which can be used to autogenerate wrap-
per code for various languages, including Java, C#, Python, Perl
and R (Supplementary Software 1).

By using a variety of fluorescence microscopy data sets, we
compared KLB performance with that of other state-of-the-art
compression formats (Fig. 3 and Supplementary Figs. 1–3),
including one of the most efficient multithreaded implementations

100 101 102 100 101 102100 101 102103

Compression ratio Write speed ratio Read speed ratio

Z
eb

ra
fis

h
em

br
yo

M
ou

se
em

br
yo

F
ru

it
fly

em
br

yo

Zebrafish GCaMP

Raw

Masked

Raw

Masked

Raw

Masked

S
m

al
l

La
rg

e

Raw

Masked

Confocal

KLB versus TIFF (uncompressed)
KLB versus TIFF (LZW compression)
KLB versus JPEG 2000

Figure 3 | Performance comparison of lossless image compression formats.
Performance of the KLB lossless compression format versus LZW-TIFF
(green) and JPEG 2000 (blue) lossless compression formats with respect
to compression ratio (first column), write speed (second column) and read
speed (third column). The JPEG 2000 benchmark uses the multithreaded
commercial library PICTools Medical SDK (Accusoft). A performance
comparison of KLB and uncompressed TIFF formats is included as well
(orange). LZW-TIFF and uncompressed TIFF benchmarks use the ‘imread’
and ‘imwrite’ functions provided by the Image Processing Toolbox in
MATLAB. All performance data are provided as ratios with KLB performance
in the numerator; i.e., ratios larger than one (gray lines) indicate superior
performance of the KLB file format. The comparison was performed using
a variety of fluorescence microscopy image data sets located on a high-
performance network-attached storage server connected to the image
processing workstation via 10 Gb s−1 glass fiber. Benchmark data sets include
SiMView light-sheet microscopy recordings of fruit fly, mouse and zebrafish
embryonic development (data sets 1–8), confocal microscopy data of a
zebrafish embryo (data set 9) and SiMView functional image data of brain
activity in a larval zebrafish (data set 10). Developmental data sets (data
sets 1–8) were analyzed as raw and masked versions in order to illustrate
the importance of background masking for maximizing data storage and
to access efficiency. Please see steps I–III in Figure 2 for a description of
the concepts underlying background masking. Note that read speeds for uncompressed TIFF files are particularly low, as a large fraction of time is spent on
accessing the large files. If image data sets are small enough for a local storage solution—i.e., when using the same computer for long-term data storage
and image processing—the data access time overhead encountered for uncompressed image data can be slightly reduced, e.g., through the use of a high-
performance RAID array. For benchmarks performed with image data sets stored locally on a high-performance RAID array built from solid-state drives (SSDs),
please see Supplementary Figure 1. For information about the block-size dependency of KLB performance, please see Supplementary Figure 2.

100

101

102

103

104

S
iz

e
(M

B
)

Fruit fly Mouse
(small)

Mouse
(large)

Zebrafish

Raw
Raw, KLB compressed

Masked, KLB compressed
Fused, KLB compressed

44× 522× 31× 131×Figure 4 | Multiview image data compaction for light-sheet microscopy.
Comparison of image file sizes obtained by taking advantage of our
pipeline for image data compaction (Fig. 2) to varying degrees. Data set
sizes are shown for raw, uncompressed image data sets (dark blue, step I
III in Fig. 2), for KLB-compressed raw data sets (light blue), background-
masked, KLB-compressed data sets (orange, steps I–III in Fig. 2) and for
multiview fused, background-masked, KLB-compressed data sets (red,
steps I–IV in Fig. 2). Even when recording only single views of a specimen,
i.e., if multiview image fusion is not applicable, background masking and
lossless KLB compression alone already lead to a substantial reduction in
data size, without loss of information. The four types of image data sets
included in this comparison represent single time points of time-lapse
recordings of fruit fly, mouse and zebrafish embryos acquired with
SiMView light-sheet microscopy. The factors shown above each set of bars
indicate total data set size reduction from raw, uncompressed multiview
data format to fused, background-masked, KLB-compressed data format. Note that data set sizes shown in this figure represent image size per time point and
thus scale linearly to large-scale light-sheet microscopy time-lapse recordings comprising thousands of time points and tens of terabytes of image data.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1682 | VOL.10 NO.11 | 2015 | nature protocols

of JPEG 2000 (PICTools Medical SDK, Accusoft). When KLB
is used for locally stored image data (Supplementary Fig. 1),
it provides superior compression ratios (3% and 70% better
than JPEG 2000 or LZW-compressed TIFF, respectively) and
read/write speeds (3.2-fold and 4.5-fold faster than JPEG 2000
or LZW-compressed TIFF, respectively, using 16-CPU cores).
When KLB is used for network-attached image data (the typical
setting for large-scale image data sets, Fig. 3), improvements in
speed are even higher (3.3-fold and 7.5-fold faster than JPEG 2000
or LZW-compressed TIFF, respectively, using 16-CPU cores).
Compared with uncompressed TIFF format, KLB provides mark-
edly improved read/write speeds (3.1-fold and 16.5-fold faster
locally or over the network, respectively), which is a direct result
of the rapid data compaction in KLB and the reduced transfer
times for compressed image data. Thus, KLB outperforms state-
of-the-art file formats with respect to both compression ratio and
speed by taking full advantage of modern multicore CPUs, and it
offers lossless data compaction of large-scale image data sets with
minimal access latency.

Multiview image fusion. An efficient cross-platform multiview
image fusion method using embedded fluorescent beads sur-
rounding the sample has been incorporated in Fiji as part of the
‘Multiview Reconstruction’ plug-ins41. This bead-based method
allows registration of any number of views distributed in an
arbitrary geometry, without prior information about the rela-
tive location of each view. As a generalization of its initial design
for bead-based registration, the method has more recently been
extended to support image data containing other types of blob-
like features (such as fluorescent cell nuclei) that can be reliably
detected with a Difference of Gaussians filter.

In contrast, the multiview fusion module provided by our
processing pipeline (Supplementary Software 3) is complemen-
tary in several ways. Our module does not require and rely on
specific features to facilitate registration, but rather it uses all
image information present in the sample itself, irrespective of
the type of fluorescent label used in the experiment. Fast con-
tent-based registration is achieved by introducing the assump-
tion of a multiview imaging assay with up to four orthogonal
views (using up to two opposing light sheets and two opposing
cameras); i.e., our method is not capable of registering arbitrary
views. This latter constraint represents the main limitation of
our method. However, as a direct result of this design principle,
our method does not require the presence of fluorescent blob-
like structures in the sample to facilitate accurate registration

and image fusion. This approach thus offers the following three
advantages: (i) our method is applicable to large specimens and
high-magnification imaging experiments, for which the field of
view does not cover space outside the volume of the biological
specimen itself (and hence lacks space for beads); (ii) our method
provides flexibility for biological sample preparation, as it does
not require the sample to be embedded in an agarose gel or a
similar matrix suitable for anchoring beads; and (iii) our method
can partially compensate for the effect of light refraction along
the light path through the sample, as our alignment is based on
image information inside the sample. Our method is furthermore
designed for high-throughput image processing (Tables 1 and 2),
and it offers real-time capability for large-scale light-sheet micro-
scopy data sets: by using a single computer workstation, our
registration and fusion pipeline generally processes image data
at a rate faster than the data acquisition rate of the light-sheet
microscope39 (Table 1).

Image segmentation and cell tracking. There are several freely
available computational methods for nuclei segmentation and cell
tracking. These methods were specifically developed for cell-line-
age reconstructions using time-lapse light microscopy images of
fluorescently labeled nuclei. However, most of these approaches
have been developed for relatively small model organisms, such
as Caenorhabditis elegans embryos42–44, which undergo stere-
otyped development and comprise several hundred cells by the
end of embryonic development, or for very early developmental
stages of more complex multicellular organisms, such as the early
zebrafish blastula45,46 and the Drosophila blastoderm8,46. These
methods do not aim to facilitate automated cell lineaging in later
stages of development, and their underlying design principles
either produce high error rates in such data sets or do not scale
to the tens of thousands of cells encountered during advanced
embryogenesis of vertebrates and higher invertebrates39. An
accurate method that scales to large data sets is available for cell
nuclei segmentation47, although this method does not perform
cell tracking. Only very recently have existing methods48 for joint
segmentation and tracking been successfully extended to handle
data recorded in later developmental stages, although scalability
with increasing cell counts is still an issue. In contrast, compu-
tation time of the TGMM software included in our framework
(Supplementary Software 4) scales linearly with the number of
segmented and tracked objects while maintaining state-of-the-art
accuracy even in late developmental stages: on a single compu-
ter workstation equipped with a Tesla K20 graphics processing

TIFF (uncompressed)

TIFF (LZW compression)JPEG 2000

KLB

0

200

300

400

500

600

W
rit

e
sp

ee
d

(M
B

 s
–1

)

Number of cores

100

150 5 10
0

200

400

600

800

1,000

R
ea

d
sp

ee
d

(M
B

 s
–1

)

15

Number of cores

0 5 10

a bFigure 5 | Image compression performance using multicore CPUs.
(a,b) Write (a) and read (b) speeds as a function of available CPU cores,
for the uncompressed TIFF file format (dark blue), as well as lossless
KLB (red), JPEG 2000 (orange) and LZW-TIFF (light blue) file formats.
The benchmark was performed using data set 6 in Figure 3. Note that
uncompressed and LZW-compressed TIFF file formats do not benefit
from multicore CPU architectures. JPEG 2000 can partially leverage
the processing power of a small number of CPU cores (no performance
increase observed beyond 4 CPU cores). In contrast, KLB performance
scales almost linearly with the number of CPU cores, even when using
multicore processing architectures with as many as 16 CPU cores.
The JPEG 2000 benchmark uses the multithreaded commercial library PICTools Medical SDK (Accusoft). LZW-TIFF and uncompressed TIFF benchmarks use
the ‘imread’ and ‘imwrite’ functions provided by the Image Processing Toolbox in MATLAB. Error bars represent s.d. for n = 5 iterations of the benchmark. For
information about the block-size dependency of KLB performance, please see Supplementary Figure 2.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1683

unit (GPU), processing speed is on average 26,000 cells per min,
which enables real-time performance in all tested scenarios39.
The software is designed for easy use without prior domain
knowledge, and it requires adjustment of only two framework
parameters when applied across multiple model systems and
imaging modalities. We note that the most important factor that
influences tracking accuracy is the temporal sampling of cell
movements in the time-lapse data, although image quality and
cell density can affect results as well39.

Data visualization and editing of cell-lineage annotations.
OMERO49 is a software solution that is exceptional in its data
organization features. OMERO facilitates organizing, remote
browsing and analysis of multidimensional microscopy data. It
excels at providing unified access to images and metadata from
multiple sources and a plethora of file formats in a multiuser
environment. As such, it supports specialized applications that
are beyond its own scope. Newer versions of OMERO store data
in their original files; this strategy is guaranteed to be lossless,
but it is reliant on third-party choices of data file layout and
compression algorithms, which are crucial parameters when
balancing storage efficiency and interactive visualization.

Multiple software options provide the ability to concur-
rently visualize image data and edit cell-lineage reconstructions.
goFigure2 is an open-source cross-platform software50 specifically
designed for this task. Similarly to CATMAID, it uses a database to
store all segmentation and tracking information, which allows it
to efficiently handle millions of data points and to import results
into other modules for downstream analysis. goFigure2 uses the
VTK library51 for visualization and 3D rendering, which provides
more visualization options than CATMAID. However, as images
are not partitioned in small chunks of data (tiles) ahead of time,
navigating the data along the time axis of a time-lapse imaging
experiment requires constantly loading image stacks from disk.
This requirement precludes real-time interaction with large image
data sets. Imaris (Bitplane) is a commercial scientific software
for data visualization, segmentation and analysis of 3D and 4D
microscopy data sets, and it includes a module for cell tracking.
Like goFigure2, Imaris offers 3D rendering options for advanced
data visualization and, if a sufficient amount of GPU memory
is available, consecutive time points are cached for smooth
transition between time points in a short temporal window.
However, all data (images, segmentation and tracking annota-
tions) associated with a given project are stored in a single HDF5-
like file, which appears to substantially slow performance when
using multiterabyte image data sets and millions of tracked data
points. Moreover, neither goFigure2 nor Imaris allows concurrent
remote data access by multiple users; this capability is particularly
valuable for large-scale collaborative projects that involve multi-
ple entities around the globe.

These limitations are addressed in CATMAID37,38, which
allows rapid, uninterrupted browsing of multiterabyte data sets
and concurrent large-scale data annotation involving tens of
millions of data points, even when accessing the data remotely
through the internet (Fig. 6). Our branch of the CATMAID
framework (Supplementary Software 5) currently supports light
microscopy image data sets with up to five dimensions (three
spatial dimensions, time and color).

Alternative software solutions for visualizing large-scale (i.e.,
larger than locally available memory) 5D data sets on single com-
puter workstations are increasingly becoming available, and they
include both commercial and open-source software, such as Arivis
Vision 4D, Amira, Vaa3D (refs. 52,53) and BigDataViewer54. Each
of these software packages includes different visualization tools,
although most of them follow similar principles, such as the use
of multiscale block-based file formats for efficient data access in
regions of interest at the appropriate level of resolution. Some
of these software solutions furthermore already include or are
starting to incorporate editing and annotation tools on top of
their visualization engines.

Experimental design
All software modules are available from http://www.janelia.org/
lab/keller-lab and as Supplementary Software 1–6, and they have
been tested on multiple operating systems (including Windows,
Linux and Mac OS), except for the backend required by the
web application CATMAID, which has only been tested on a
Linux platform. However, CATMAID can, in principle, also
be set up on other operating systems. We provide source code
and documentation for all modules to enable their adaption to
specific needs and various types of imaging experiments.
Although all five modules can be used independently, they are

Table 1 | Computation time requirements of image processing
pipeline.

Computational module
Computation

time (s)

Computation
time per time

point (s)

clusterPT.m

•  sCMOS image correction
•  Background masking
•  KLB lossless compression

8.36 per time point 8.36

clusterMF.m

•  Multiview registration
•  Multiview image fusion

19.49 per ten time
points

1.95

localAP.m

•  Parameter interpolation 5.09 per experiment 0.04

clusterTF.m

•  Multiview image fusion 7.88 per time point 7.88

ProcessStack

•  Hierarchical segmentation 2.73 per time point 2.73

TGMM

•  Cell tracking
•  Detection of cell divisions
•  Filtering of cell lineages

8.29 per time point 8.29

The table shows computation time requirements of each module of the image processing pipeline,
from image correction, masking and lossless compression of the raw image data with clusterPT.m
(Step 1A(i)) to cell tracking and reconstruction of cell lineages with TGMM (Step 1C(ii)). All measure-
ments were performed using adaptive blending for image fusion. The benchmarks are based on the
processing of 120 time points of a typical SiMView four-view light-sheet microscopy experiment
capturing the development of an entire Drosophila embryo. The four-view image data were recorded in
30-s intervals; that is, the test data set represents one hour of live imaging. Image processing up
to final multiview image fusion (clusterPT.m, clusterMF.m, localAP.m, clusterTF.m) took 18.23 s per
time point and is thus almost twice as fast as the image acquisition process itself. Segmentation,
cell tracking and reconstruction of cell lineages (ProcessStack, TGMM) took 11.02 s per time point,
including all read/write operations. Thus, the total computation time per time point (29.25 s) is
shorter than the time point interval in the image acquisition process.

http://www.janelia.org/lab/keller-lab
http://www.janelia.org/lab/keller-lab

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1684 | VOL.10 NO.11 | 2015 | nature protocols

also capable of communicating results to each other and form
an integrated processing pipeline. It is furthermore possible to
integrate the respective functionality of each module in other
software packages (for example, we offer full ImageJ/Fiji support
for our block-based image file format). Finally, all modules can be
run efficiently on a single computer workstation equipped with
MATLAB (MathWorks) and a CUDA-enabled graphics card, and
most of our modules are capable of taking full advantage of mod-
ern multicore CPUs and GPUs, as well as cluster environments.

Applications of the protocol
The methods described here can be applied to image data from
a variety of imaging techniques39, including custom-built light-
sheet microscopes, commercial light-sheet microscopes and con-
focal fluorescence microscopes. In our laboratory, we are routinely
using this set of computational tools for image data management
and processing of SiMView5,8 and hs-SiMView35 light-sheet
microscopy image data sets spanning a range of biological model
systems, including zebrafish embryos and larvae, Drosophila
embryos, larvae, pupae and adults, mouse embryos, Platynereis
embryos and Parhyale embryos. This list can, in principle, be
extended to any biological specimen suitable for imaging with

optical sectioning fluorescence microscopy
in general and light-sheet microscopy in
particular. Specific examples of previous
use cases in systems neuroscience include
data management of large-scale functional
imaging data of the zebrafish larval brain5
and the CNS of larval Drosophila35, which
were acquired using state-of-the-art cal-
cium indicators GCaMP5G (ref. 55) and
GCaMP6s (ref. 56), respectively. In the
field of developmental biology, the meth-
ods presented here have previously been
used for data management, multiview
fusion, whole-embryo long-term cell
tracking, as well as data curation and visu-
alization in zebrafish, Drosophila, mouse
and Platynereis embryos8,39,40,57. For cell
tracking and cell lineaging applications,
such as our cell-lineage reconstruction
of the early Drosophila nervous system,
our tools are typically most effective for
image data of organisms ubiquitously
expressing nuclei-localized fluorescent
markers. In the following paragraphs, we
provide information about application
details specific to individual modules of
the processing pipeline.

We note that, although our content-
based multiview fusion module does not
support arbitrary optical geometries, it is
compatible with some of the most com-
monly encountered light-sheet microscope
configurations. Aside from the SiMView
four-view geometry (providing up to four
camera/light-sheet view combinations
through the use of two detection arms
and two light sheets whose optical axes
are arranged as a cross), it is also possible

to process data from multiview setups that rely on mechanical
rotation by 180° to acquire complementary views of the specimen,
as well as from bidirectional illumination setups that use two
light sheets along the same illumination axis. Such configurations
include OpenSPIM setups58,59, as well as commercial light-sheet
microscopes—e.g., the Lightsheet Z.1 by Carl Zeiss.

Our TGMM software can generally be used to track blob-like
structures in various types of 2D or 3D time-lapse images, as
long as object movements between consecutive time points do
not exceed object size. CATMAID is capable of visualizing arbi-
trary 5D image data, and it allows generating and editing object
annotations that can be naturally organized in tree-like struc-
tures, thus encompassing essentially any type of segmentation and
tracking task. CATMAID was initially developed for visualizing
and annotating large electron microscopy data sets generated in
the field of connectomics for reconstructing the wiring diagram
of the brain at nanometer resolution60. This software is thus
also well suited to microscopy data of neural tissues from light-
based imaging modalities61–63.

Finally, our KLB compression algorithm can be applied to any
type of image data (consisting of signed or unsigned integers with
a depth of 8, 16, 32 or 64 bits, as well as 32-bit or 64-bit floating

Table 2 | Memory requirements of image processing pipeline.

Computational module
Module

configurationa
Estimated memory

consumptionb

clusterPT.m

•  sCMOS image correction rotationFlag = 0 1.2 × (2n + 2) × S

•  Background masking
•  KLB lossless compression

rotationFlag ≠ 0 Up to 1.2 × (2n + 4) × S

clusterMF.m

•  Multiview registration Wavelet fusion, 4 views 13.2 × S

•  Multiview image fusion Wavelet fusion, 2 views Up to 10.8 × S

Other fusion, 4 views 9.6 × S

Other fusion, 2 views Up to 8.4 × S

clusterTF.m

•  Multiview image fusion Wavelet fusion, 4 views 9.6 × S

Wavelet fusion, 2 views 7.2 × S

Other fusion, 4 views 6.0 × S

Other fusion, 2 views 3.6 × S

clusterCS.m

•  3D drift correction
•  Intensity normalization

All settings 5.5 × S

clusterFR.m

•  Local background correction All settings 3.6 × S
The table shows conservative estimates of memory consumption of various core modules of the image processing pipeline.
The estimate considers all major computations and an additional buffer of 20% to account for minor computations.
aThe configuration setting ‘other fusion’ refers to the use of adaptive blending, geometrical blending or averaging in the modules
clusterMF.m or clusterTF.m (parameter ‘fusionType’). bThe formulas for estimated memory consumption include two parameters, one
specific to clusterPT.m (parameter ‘n’) and one that applies to all modules (parameter ‘S’). Parameter ‘n’ is the maximum number
of image channels that are combined to build segmentation masks in clusterPT.m; i.e., it is equal to the number of columns of
the matrix ‘references’ if this matrix is not empty, or equal to 1 if the matrix ‘references’ is empty. Parameter S is the size of a
single-view, single-channel image stack at a single time point, assuming that image data are stored in uint16 format (i.e., S is equal
to the number of voxels in the image stack times two bytes).

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1685

point data with up to five dimensions),
irrespective of its source. In principle, any
type of microscopy data benefit from the
file size reduction and high read and write
speeds achieved by KLB. The block-based
design of KLB is furthermore particularly
helpful when working with large image
volumes, such as image data of entire
developing embryos39, as well as large
neural tissues or entire brains treated with
chemical clearing methods61–63, as the
KLB format provides rapid access to local
image regions with minimal overhead.

Level of expertise needed to implement
the protocol
Until recently, access to light-sheet micro-
scopes was largely restricted to research
laboratories with the expertise required for
building custom microscopes. However, with the market launch
of various commercial light-sheet microscopes, such as the Carl
Zeiss Lightsheet Z.1, this imaging technique is now available to
essentially all researchers. As discussed above, our software mod-
ules can be applied to data sets produced with both custom and
commercial microscopes.

As our laboratory consists of researchers with very diverse
backgrounds, from mathematics and optical physics to biol-
ogy, we took care to build our computational tools such that
they can be used effectively without the need for a strong com-
putational background. For example, image data in our KLB
compression file format can be written and read through Fiji
or MATLAB interfaces in exactly the same way that a TIFF file
would be written or read. Our content-based MATLAB scripts
for multiview image fusion are designed such that all configu-
ration parameters are located in a simple MATLAB script that
launches and manages each processing job automatically. Thus,
the user essentially just needs to be familiar with the MATLAB
interface itself and some basic commands for editing end run-
ning MATLAB scripts. When using computer clusters, a higher
level of expertise is required in order to modify the respective
support infrastructure provided by our software for submitting
jobs in a given cluster environment.

Our segmentation and tracking software TGMM follows a simi-
lar design: the executable reads a configuration file that contains
the parameters set by the user. Moreover, we provide executables
that allow running our software out-of-the-box on Windows
operating systems. Linux and Mac OS X users need to compile
the code once to generate binaries, and thus some familiarity with
CMake and C++ compilers is required for initial installation. All
of these steps are documented in detail in our protocol and in the
manuals included in our software packages.

The step that requires the most computational expertise is the
setup of the CATMAID software: in addition to the installation
of the application itself, the use of CATMAID requires setting up
an HTTP server and a PostgreSQL database. We provide detailed
documentation of these steps, but we also note that they are usu-
ally carried out by IT personnel or the system administrator of the
academic institution. Once this initial setup is complete, users can
simply interact with the program through a web browser, which
does not require any particular expertise.

Limitations
The segmentation and tracking modules of our processing pipe-
line were designed for cell tracking in images of nuclei-localized
fluorescent markers. Shapes of cell nuclei in such images can

Help Tracing tool

XY view

YZ view XZ view

Annotation database

a

b

Figure 6 | Image annotation and editing of cell-
lineage data using CATMAID. (a) Screenshot of
internet browser showing CATMAID GUI during
the manual curation of TGMM cell-lineage data
in a fruit fly embryo. Image data are displayed
superimposed with cell-lineage data points in
a tri-view arrangement (XY, YZ and XZ slices of
the specimen). Both image data and cell-lineage
annotations are stored remotely on a server to
avoid data duplication; that is, the same image
data set can be used for multiple cell lineaging
projects. The annotation database containing the
full cell-lineage reconstruction is shown in the
bottom right corner. (b) Enlarged view of a part
of the CATMAID toolbar, which provides utilities
for browsing the image data, as well as accessing
and editing data annotations.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1686 | VOL.10 NO.11 | 2015 | nature protocols

typically be well approximated as ellipsoid-like geometries39,
and this assumption is reflected in the TGMM software by mod-
eling the intensity profile of each nucleus as a 3D Gaussian.
Thus, the TGMM software will typically not perform as well in
images of objects with relatively irregular shapes, such as images
of membrane markers. The other main requirement of the cell
tracking protocol is that input image data should be well sam-
pled along the time axis. As a rule of thumb, if an object moves
between two consecutive time points by a distance larger than its
diameter, the propagation of the associated 3D Gaussian shape
parameters will probably not be successful. Finally, with regard
to hardware limitations, execution of the TGMM framework
requires a computer equipped with a CUDA-enabled nVidia
graphics card.

As mentioned in earlier sections, there are a few additional limi-
tations with respect to the other parts of our computational pipe-
line. First, our content-based multiview image fusion module does
not support arbitrary optical geometries (please see ‘Applications
of the protocol’ for details). Second, although the KLB lossless
compression file format accepts a range of numerical data types
(unsigned/signed integers, as well as floating point), best compres-
sion rates are typically obtained only for integer data types. With
regard to hardware limitations, a computer with multicore CPU is
required to take full advantage of the read and write speed improve-
ments enabled by the block-based design of our file format. Finally,
data visualization in CATMAID is limited to orthogonal cuts along
the three axes of the underlying Cartesian coordinate system; i.e.,
the GUI does not render oblique slices of the image data.

MATERIALS
EQUIPMENT
Data files

Data set 1, comprising example data for image masking and KLB image
compression. This archive is available for download from our laboratory website
(https://www.janelia.org/lab/keller-lab/software), and it contains a preconfigured
version of the first module (clusterPT.m) of our MATLAB-based image
processing pipeline for light-sheet microscopy data sets, all related auxiliary
functions, a README file with software documentation and the folder Image_
Data with example data. The example data consist of a SiMView four-view
recording (four image stacks with 125 images each) of a Drosophila embryo
at an early developmental time point. The data set serve the purpose of illus-
trating image background masking and KLB lossless image compression with
the MATLAB script clusterPT.m and follow the naming convention outlined
in the README file. Note that clusterPT.m functionality also includes a dead
pixel detector for removing respective image artifacts in scientific-grade
complementary metal-oxide semiconductor (sCMOS) camera image data;
however, dead pixels have already been corrected in this example data set.
Data set 2, comprising example data for multiview image registration and
fusion. This archive is available for download from our laboratory website
(https://www.janelia.org/lab/keller-lab/software), and it contains preconfig-
ured versions of the multiview image registration and fusion modules
(clusterMF.m, localAP.m, clusterTF.m) of our MATLAB-based image
processing pipeline for light-sheet microscopy data sets, all related auxiliary
functions, a README file with software documentation and the folder
Image_Data with example data. The KLB-compressed example data consist
of 11 time points of a SiMView four-view recording of an early Drosophila
embryo processed with clusterPT.m. The data set serves the purpose of
illustrating multiview image fusion of time-lapse light-sheet microscopy
data with the MATLAB scripts clusterMF.m, localAP.m and clusterTF.m.

Computer equipment
Hardware requirements. For most benchmarks, the computational pipeline
was deployed on a computer workstation equipped with two Intel Xeon
E5-2687W CPUs, 192 GB DDR3 memory, an nVidia Tesla Kepler K20 GPU,
six Seagate Savvio 10K.5 ST9900805SS hard disks combined in a RAID-6
data array, an Intel RMS25CB080 RAID module, an Intel X520-SR1 10Gb
fiber network adapter and Windows 7 Professional 64 bit. For optimal
processing speed, a good GPU and sufficient memory are of primary im-
portance. The Tesla graphics card can be replaced with a lower-cost GeForce
GTX Titan graphics card with little performance impact. Minimum require-
ments are an nVidia GPU with CUDA compute capability of 2.0 or higher.
Information on CUDA compute capabilities of various GPUs is available
at https://developer.nvidia.com/cuda-gpus. For a particularly cost-efficient
build, slower CPUs and hard disks will generally suffice, as these compo-
nents will only have a minor impact on processing speed.
The performance benchmarks of the data compaction and multiview
image fusion modules shown in Table 1 were performed on a computer
workstation equipped with two Intel Xeon E5-2667V2 CPUs, 256 GB DDR3
memory, an nVidia Quadro K2000D GPU, six Samsung 840 EVO 1 TB
solid-state drives (SSDs) combined in a RAID-6 data array, an LSI 2208
RAID module, an Intel X520-SR1 10Gb fiber network adapter and
Windows 8 Professional 64 bit.

•

•

•

•

For data visualization, editing and annotation using CATMAID, a server with
the following hardware components was used: two Intel Xeon E5-2690 CPUs,
128 GB of DDR3 memory, six Intel 520 Series 480 GB SSDs combined in a
RAID-6 data array, an Intel RMS25CB080 RAID module, an Intel X520-SR1
10Gb fiber network adapter and the Linux distribution Ubuntu 12.04 LTS.
Also in this case, slower CPUs and storage hardware will generally only have a
minor performance impact. The SSDs constitute the most important hardware
components as they ensure fast tile retrieval. We note that the same worksta-
tion can be used for CATMAID and for the rest of the computational pipeline
Software requirements. For several parts of our computational framework,
a MATLAB installation (R2013b or later; MathWorks) is required, including
the following toolboxes: Curve Fitting, Image Processing, Statistics, Optimi-
zation, Signal Processing and Parallel Computing. We verified compatibility
specifically for MATLAB version R2013b, but our code should, in principle,
be compatible with any version above R2011a, without a need for code
modifications. We also note that the list of MATLAB toolbox requirements
is based on the full functionality provided by our processing pipeline. Only
a subset of these toolboxes is required to run the pipeline using typical
parameter settings. A detailed overview of software and hardware require-
ments for all software packages is provided in Supplementary Table 1.
Custom software packages are provided as Supplementary Software 1–6,
and they can also be downloaded at http://www.janelia.org/lab/keller-lab

EQUIPMENT SETUP
Installation of TGMM software  Install the nVidia CUDA drivers included
in the nVidia CUDA Toolkit available from https://developer.nvidia.com/
cuda-toolkit-archive. If you are using a Linux Ubuntu distribution, simply
execute the following terminal command:

sudo apt-get install nvidia-cuda-toolkit

To run the TGMM software (Supplementary Software 4), an nVidia
graphics card with CUDA compute capability of 2.0 or higher is needed.
Information about CUDA compute capability of all nVidia graphics cards is
available at https://developer.nvidia.com/cuda-gpus.
Installing CATMAID for data visualization and cell-lineage editing 
Download the latest version of the CATMAID branch for cell lineaging at
https://github.com/catmaid/CATMAID/tree/5d_cell_tracking or clone it with
the following Git command:

git clone -b 5Dvisualization --single-branch
https://fernandoamat@bitbucket.org/fernandoamat/
catmaid_5d_visualization_annotation.git

All installation details for Linux can be found in the user guide included in
Supplementary Software 5, but we note that other operating systems can be
used as well. Four main modules need to be set up: Django backend for running
the web application CATMAID; HTTP server for web browsers for interacting
with the backend; PostgreSQL database for storing all tracking information
(but not for image data); and Image storage server for storing all image tiles.

It is possible to use a separate computer for storing image data and
the database containing tracking information, as long as CATMAID has
access to these data. CATMAID only needs to be installed once, and it can

•

•

https://www.janelia.org/lab/keller-lab/software
https://www.janelia.org/lab/keller-lab/software
https://developer.nvidia.com/cuda-gpus
http://www.janelia.org/lab/keller-lab
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-gpus
https://github.com/catmaid/CATMAID/tree/5d_cell_tracking

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1687

subsequently be used through a web browser at any time from any location
in the world with Internet access37. This step of the installation protocol
requires the highest computational proficiency, and it is usually carried
out by a system administrator or other IT personnel. In total, it should
take ~1–3 h to configure all required software components.
Optimizing HTTP server and PostgreSQL database configuration for
optimal performance of the CATMAID web application  It is important to
optimize the performance of the server in order to ensure the fastest possible
interaction with CATMAID when visualizing image data and editing cell
lineages through the web browser. Although there are many possible ways
to optimize the system, we recommend in particular the following strategies
that helped increase the performance of our system significantly:

We recommend using SSDs to store the image tiles. These drives should be
mounted with the options ‘noatime’ and ‘nodiratime’ to avoid unnecessary
read/write operations while serving image tiles to the web browser.
Recommendations for further optimization can be found at https://wiki.
debian.org/SSDOptimization.

If you are using the Linux partition format Ext2/Ext3, the i-node
index descriptor is the main data structure describing files. Each node is

associated with one file and the block of addresses reserved for a file are
stored in its index descriptor. However, the maximum number of i-nodes
is set at the time of disk formatting and cannot be changed thereafter.
Thus, if there are many small files, one can run out of i-nodes without
running out of disk space. This scenario is possible for the image server
because of the large number of tiles needed to partition large-scale
data sets. Thus, we recommend accounting for an average file size of 4–8 kB
when formatting the data partition of the image server. For example,
in our system, the data array with a capacity of 1.7 TB was formatted
using 268,435,456 i-nodes.

If the server has a large amount of RAM, the extent of data caching
by the database and the operating system can be increased. Thereby, when
users request the same image tiles multiple times, the server can retrieve
them from memory instead of having to access the disk. To enhance caching,
the following parameters need to be modified: ‘kernel.shmmax’ and ‘kernel.
shmall’ in the file ‘/etc/sysctl.conf ’ and ‘effective_cache_size’ and ‘shared_
buffers’ in the file ‘/etc/postgresql/X.X/main/postgresql.conf ’. Recommen-
dations for further optimization can be found at http://wiki.postgresql.
org/wiki/Tuning_Your_PostgreSQL_Server.

PROCEDURE
Independent pipeline modules
1|	 The options described here focus on five classes of computational modules. Each of these modules can be executed
independently or as part of a larger pipeline (Figs. 1 and 2):

Option Module Description

1A Lossless image compression
and/or multiview image
fusion

We explain how large amounts of image data are efficiently stored and how arbitrary regions
of interest in large image data are rapidly retrieved using our block-based lossless compres-
sion file format (KLB). We furthermore present MATLAB scripts for content-based registra-
tion and fusion of time-lapse, multiview image data

1B Drift correction and intensity
normalization

We discuss the use of our MATLAB scripts for drift correction and intensity normalization
of time-lapse 3D stacks

1C Segmentation and tracking
with TGMM

We provide protocols for our TGMM software for automated large-scale segmentation and
tracking of fluorescently labeled cell nuclei

1D Data visualization and editing
with CATMAID

We present a branch of CATMAID37,38 that facilitates the visualization of five-dimensional
microscopy data sets and allows editing associated cell tracking results

1E Preparing videos for visualizing
image data and cell lineage
reconstructions

We describe MATLAB scripts for importing, analyzing and visualizing large-scale cell lineage
reconstructions

(A) Lossless compression of light-sheet microscopy data and/or multiview image fusion ● TIMING 5 min for setup,
0.5–12 h of unattended computer time (depending on data set size)
	 (i) �Extract the test data and MATLAB scripts provided in Data set 1 (see ‘Data files’ in the MATERIALS section) to create a

preconfigured test environment for performing background masking and/or lossless image compression using the KLB
image format. The test data set included in this archive is a four-view image data set of a Drosophila embryo, which
was recorded with a SiMView microscope.

	 (ii) Open a MATLAB terminal and go to the folder containing the MATLAB scripts.
	 (iii) �Run the preconfigured MATLAB script clusterPT.m to verify proper software execution, and confirm that KLB output

stacks are written to disk (output folder Image_Data.corrected). Note that clusterPT.m can optionally also be
configured to save output image data in an uncompressed TIFF file format (parameter ‘outputType’).
 CRITICAL STEP To run clusterPT.m on a new data set, use the code provided in Supplementary Software 3 (comprising
the complete MATLAB processing pipeline) and consult the software documentation (README file included with pipeline;
see also parameter explanations provided in source code) to configure clusterPT.m for your data set (See Box 1
for more information).
? TROUBLESHOOTING
 PAUSE POINT At this point, the compressed image data can be manually inspected or imported into external
software (proceed to Step 1A(iv)). If the data set is a multiview data set consisting of up to four views following the
SiMView convention, image registration and fusion can now be performed by continuing with Step 1A(v). Spatial drift
correction, intensity normalization or image filtering can be performed by continuing with Step 1B(i). If multiview

https://wiki.debian.org/SSDOptimization
https://wiki.debian.org/SSDOptimization
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1688 | VOL.10 NO.11 | 2015 | nature protocols

image fusion, as well as drift correction, normalization and/or filtering, is required, please follow the instructions
for multiview image fusion first.

	 (iv) �Inspect the output image data generated by clusterPT.m. Once the images are stored in KLB format, they can be
retrieved using the KLB C++ API provided in Supplementary Software 1. We also provide wrappers for MATLAB
and Java, integration with Fiji64 and an interface file for SWIG to autogenerate bindings for other languages
(Supplementary Software 1 and 2). The KLB API provides efficient access to arbitrary regions of interest in the
image volume by using block partitioning of the image data (Supplementary Note).

	 (v) �Extract the test data and MATLAB scripts provided in Data set 2 (see ‘Data files’ in the MATERIALS section) to
create a preconfigured test environment for multiview image registration and fusion of SiMView-like image data sets
with up to four views. The test data set included in this archive is a four-view image data set of a Drosophila embryo
that was processed with clusterPT.m and stored in the KLB format.

	 (vi) �Execute the software modules for multiview image fusion. Multiview image registration and fusion consists of three
steps (MATLAB scripts clusterMF.m, localAP.m and clusterTF.m) when processing time-lapse data sets. When processing
individual image stacks rather than time-lapse data sets, only the first step (MATLAB script clusterMF.m) is required.
In order to verify proper software execution and to get familiar with the full software functionality, run the
preconfigured MATLAB scripts clusterMF.m, localAP.m and clusterTF.m included with the test data in sequential order.
First, open a MATLAB terminal and go to the folder containing the scripts.
 CRITICAL STEP To run these MATLAB scripts on new data sets, certain parameters will need to be adjusted
(See Box 2 for more information).

	 (vii) �Execute the first script, clusterMF.m. This script generates registered and fused image stacks, which are stored in the
output folder ‘Image_Data.MultiFused’. The solution provided by clusterMF.m is not guaranteed to be smooth in time,
as the data at each time point will be processed independently from the rest of the time-lapse data set.

	(viii) �Execute the second script, localAP.m, to evaluate the registration results generated by clusterMF.m. This script
produces smooth, interpolated parameter sets defining multiview image registration and multichannel/camera
intensity matching transformations for all time points.

	 (ix) �Execute the third script, clusterTF.m. This script uses the information extracted by localAP.m and clusterMF.m in the
previous two steps to perform temporally smooth multiview image fusion for the entire time-lapse data set.
 CRITICAL STEP In the example data set, clusterMF.m is executed for all data points of the time-lapse experiment
for demonstration purposes. When processing a large-scale time-lapse data set consisting of hundreds to thousands
of time points recorded at high temporal resolution, we recommend running clusterMF.m only for a subset of time
points (under typical conditions every tenth time point is sufficient) to save computation time and disk space.
This sparse sampling of the time lapse data set is usually sufficient, as localAP.m will subsequently analyze and
interpolate the results for smooth fusion of the entire time-lapse data set via clusterTF.m. The only exceptions to
this rule are data sets in which temporal sampling is coarse and specimen shape and/or position changes drastically
from one time point to the next. In this latter scenario, execution of clusterMF.m for all time points may improve
image quality. It is important to keep this division of labor in mind, as execution of clusterMF.m is considerably
more time-consuming per time point than execution of clusterTF.m.
? TROUBLESHOOTING
 PAUSE POINT At this point, the fused image data can be manually inspected, used for data analysis or imported
into external software. Spatial drift correction, intensity normalization or image filtering can be performed by
continuing with Step 1B(i).

Box 1 | Lossless compression and background masking of new image data sets
Verify that your input data follow the input data formatting requirements detailed in the README file and that all formatting
parameters are correctly defined in clusterPT.m. KLB image compression is enabled or disabled via the parameter ‘outputType’.
Background masking is configured via the parameters ‘segmentFlag’ and ‘thresholds’. The compressed image data, as well as associated
foreground information and metadata, are stored in a new output folder, whose name is constructed by concatenating the input
folder name with the extension ‘.corrected’. In addition, maximum-intensity projections of the output image data are stored in an
output folder with the extension ‘.corrected.projections’.
  Background masking is optional but important for maximum lossless data compression and data access speeds in subsequent
steps of the pipeline (Figs. 3 and 4). The parameter ‘thresholds’ is crucial for achieving good foreground and background segmentation,
and it should be carefully adjusted for each set of experiments to obtain optimal results. Note that background masking will overwrite
background regions of the image data with zeros, but it will not alter image foreground (Fig. 2), unless the adaptive threshold level
defined in ‘thresholds’ is set too high.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1689

(B) Spatial drift correction, intensity normalization and image filtering ● TIMING 10 min for setup, 0.5–12 h of
unattended computer time (depending on data set size)
	 (i) �Extract the code provided in Supplementary Software 3 (comprising the complete MATLAB processing

pipeline) in order to start using the software modules for 3D spatial drift correction, intensity normalization
throughout a time-lapse image data set and/or image filtering for adaptive local background correction.
The output from Step 1A(ix) can be used in this section as an example. Proceed to Step 1B(ii) for drift
correction and/or intensity normalization. Proceed to Step 1B(iv) for image filtering for adaptive local
background correction.

	 (ii) �Consult the software documentation (README file included with pipeline; see also parameter explanations provided
in source code) to configure and run localEC.m. localEC.m is a data analysis script that preprocesses the time-lapse
data set for subsequent 3D spatial drift correction and/or intensity normalization with clusterCS.m in Step 1B(iii).
Verify that all formatting parameters are correctly defined. localEC.m provides the parameters ‘intensityFlag’ to
enable/disable intensity normalization and ‘correlationFlag’ to enable/disable 3D drift correction.

	 (iii) �Run clusterCS.m script. Once the corresponding intensity/drift information has been collected by localEC.m (previous
step), compensatory image adjustments can subsequently be applied by clusterCS.m using the parameters ‘correctDrift’
to execute drift correction (using the parameter ‘referenceTime’ as a temporal anchor, that is, as the time point
relative to which adjustments of data at all other time points are performed) and ‘correctIntensity’ to execute
intensity normalization.
 CRITICAL STEP The scripts localEC.m and clusterCS.m use multiple complementary strategies to estimate
short-term specimen fluctuations and long-term specimen drift, respectively. The former is computed via image
correlation (which provides accurate frame-to-frame corrections but can introduce long-term drift), whereas the
latter is estimated based on computation of the geometrical center of the specimen (which captures long-term drift
but is too noisy for frame-to-frame corrections). The combination of both methods provides optimal short-term and
long-term drift correction, and it is enabled by setting the parameter ‘globalMode’ to 1.

	 (iv) �Consult the software documentation (README file included with pipeline; see also parameter explanations provided in
source code) to configure and run clusterFR.m for your data set. clusterFR.m uses Gaussian filtering for adaptive local
background subtraction and generates filtered image stacks and/or maximum-intensity projections of filtered image
stacks. The radius used for anisotropic Gaussian filtering is defined in the parameter ‘rangeArray’.
 CRITICAL STEP Note that clusterFR.m is implemented primarily for image visualization purposes and, owing to the
local nature of the image corrections, it is not recommended in a workflow for quantitative image analysis.
 PAUSE POINT At this point, the drift-corrected, normalized and/or filtered image data can be manually inspected,
used for further data analysis or imported into external software.

Box 2 | Multiview fusion of new image data sets
To run the scripts on a new data set, use the code provided in Supplementary Software 3 (comprising the complete MATLAB
processing pipeline) and consult the software documentation (README file included with the pipeline; see also parameter explanations
provided in source code) to configure each script for your data set. Verify that all formatting parameters are correctly defined.
  A few critical parameters may need to be changed in each script. In particular, formatting parameters defining the location
and properties of the input image data generally need to be updated for each new run. We also note that, if background masking
was disabled in the preceding clusterPT.m processing step, the parameter ‘maskFactor’ is used to define the adaptive threshold
level for background masking in clusterMF.m. Background masking in one of the two modules is required for estimating the
geometrical specimen outline. This information is needed for modeling the illumination and detection path lengths inside the
sample and, thus, for rapid and optimal assessment of relative image quality in the various views as a function of location in
the specimen. clusterMF.m and clusterTF.m furthermore provide the parameter ‘fusionType’ for defining the type of image fusion
applied after image registration (options include adaptive blending, geometrical blending, wavelet fusion and averaging).
Adaptive and geometrical blending are stitching methods, whereas averaging and wavelet fusion use information from the
entire volume in all views. We generally recommend blending for optimal image quality and processing speed in SiMView-type
four-view data sets. Wavelet fusion is computationally much more costly, and it has a tendency of introducing fusion artifacts,
such as ringing, but it maintains the same signal-to-noise ratio throughout the image volume, including the region in which
stitching methods would otherwise introduce a blending seam. Averaging is comparable to stitching with respect to processing
speed, and it can be more robust when specimens are only very sparsely labeled, but image quality is generally inferior to
stitching methods. Information about the microscope setup, specifically the relative orientation of light sheets and cameras,
is provided in the parameters ‘leftFlags’, ‘flipHFlag’, ‘flipVFlag’, ‘frontFlag’, ‘xOffsets’ and ‘yOffsets’. If the data set is not a
time-lapse data set, the scripts localAP.m and clusterTF.m can be skipped.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1690 | VOL.10 NO.11 | 2015 | nature protocols

(C) Automated segmentation and tracking with TGMM ● TIMING 5 min for setup, 0.5–5 h of unattended computer
time (depending on data set size)
 CRITICAL STEP The protocol described here describes how to run ‘TGMM’ for the test data set included in Supplementary
Software 4 to verify that it executes correctly on your workstation. Users of Windows 7 64-bit machines can directly use
the precompiled binaries located in the folder ‘bin’. Users of other operating systems, such as Linux, first need to compile
the code according to the instructions provided in the README file. In order to run the software on a new data set, use the
configuration file ‘TGMM_configFile.txt’ provided with the test data set as a template and modify parameters as needed
(See Box 3 for details).
	 (i) �Run the program ‘ProcessStack’ to generate a hierarchical segmentation for each time point. The software

documentation explains how to parallelize the execution of this program on all time points using simple scripts
in Unix and Windows.
 CRITICAL STEP Note that running the hierarchical segmentation algorithm in parallel for multiple time
points might use all available computing resources. Thus, while the segmentation algorithm is running,
the performance of other applications on this computer may be affected. The TGMM software package also
includes the program ‘ProcessStack_woGPU’, which offers the same functionality as ‘ProcessStack’ but does
not require an nVidia GPU. This executable is useful for distributing the hierarchical segmentation task in
cluster environments.
 CRITICAL STEP Step 1C(i) only needs to be repeated if the parameter ‘backgroundThreshold’ or any of the
advanced parameters in the hierarchical segmentation category are changed in the file ‘TGMM_configFile.txt’.
Otherwise, the existing binary files can be reused to run the tracking module multiple times with different
parameter settings.
 PAUSE POINT Segmentation results are stored in binary files with the suffix ‘hierarchicalSegmentation’
(one per processed time point) in the same folder as the original image. These binary files contain all possible
segmentations for different values of ‘persistanceSegmentationTau’. Proceed to Step 1C(ii) to continue with
automated cell tracking.

	 (ii) �Run the program ‘TGMM’ to segment and track cells for all time points. This algorithm uses the binary files generated
in the previous step to define super-voxels.
? TROUBLESHOOTING
 PAUSE POINT At this point, cell lineaging results are stored as XML files (one per processed time point). Proceed to
Step 1D(i) to continue with data visualization and editing of the automatically generated tracking results, or proceed
to Step 1E(i) to continue with the analysis of cell tracks.

(D) Visualizing and editing lineaging results using CATMAID ● TIMING 0.5–4 h (depending on data set size)
 CRITICAL STEP The protocol described here explains how to use the CATMAID browser interface for visualizing and editing
cell tracks. Before executing this protocol, make sure to install and configure the CATMAID backend service according to the
instructions in Equipment Setup.

Box 3 | TGMM parameter optimization
The threshold for persistence-based agglomeration of watershed regions (‘persistenceSegmentationTau’) and the intensity threshold
for defining the background level of the image data (‘backgroundThreshold’) are the two most important adjustable parameters of the
TGMM software. Both relate to image properties and are straightforward to determine by visual inspection of the image data at a late
time point of the time-lapse recording. We found that inspecting late time points is generally most useful, in particular if intensity
levels become lower and cell densities become higher as time progresses. Measurements in this latter scenario provide a lower bound
constraint for both parameters.
  To determine the background threshold, inspect a region of the image volume located outside of the specimen (for example, by using
the open-source software ImageJ65) and measure the mean intensity level in this background region. It is preferable to be conservative
in this assessment—i.e., to set the background threshold to a relatively low level. This setting minimizes the number of missed cell
nuclei and reduces false negative detections, which can otherwise affect coherence between time points. To determine the threshold
for persistence-based agglomeration of watershed regions, plot the intensity profile along a line connecting the centroids of two of
the dimmest nuclei in the image stack (for example, by using ImageJ65). The profile should exhibit two peaks (nuclei centroids) and a
valley in between (nuclei boundaries). The threshold should be set to a value smaller than the difference between the intensity values
of the peaks and the valley. This setting ensures that the corresponding nuclei are not merged to a single super-voxel (undersegmenta-
tion). In our experience, a value between 5 and 20 of the parameter ‘persistenceSegmentationTau’ tends to be sufficient to compensate
for watershed oversegmentation of noisy regions, without risking merging of dim cell nuclei. We furthermore note that one can usually
obtain close-to-optimal results for a fairly wide range of parameter values39, although care should be taken to set these parameters
appropriately.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1691

	 (i) �Run the MATLAB script ‘generateTilesFromFolder’ provided in Supplementary Software 6 to transform all image
stacks from Step 1A(ix) into sets of tiles that can be read and requested by the browser through its connection
to CATMAID. The README file accompanying the script, as well as the user guide, provides instructions for setting
each parameter.
 CRITICAL STEP The script needs to be executed on a computer with write access to the image server in order to
save the newly generated image tiles.
? TROUBLESHOOTING

	 (ii) �Log on to the CATMAID administrator website and select the option ‘Add’ in the Stack menu. A form requesting details
about the image data generated in Step 1D(i) will appear in the browser. Completing this form creates a new entry
in the CATMAID database with information about location and attributes of the image tiles. The documentation
at http://catmaid.org/importing_data.html provides more details on how to perform this step.
 CRITICAL STEP The parameter ‘Tile source type’ needs to be set to 5 to inform CATMAID that the images contain
temporal information.
 CRITICAL STEP The parameters ‘Num zoom levels’ and ‘Tile size’ need to match the settings specified in the
previous step.
 PAUSE POINT Partitioning image data into tiles only needs to be done once for each data set. Tiles are stored
in the image server accessible by CATMAID and reused every time a new set of cell tracks is uploaded, thus avoiding
image data duplication.

	 (iii) �Log on to the CATMAID administrator website and select the option ‘TGMM importer’ in the Custom Views menu.
	 (iv) �Specify where the XML files are located (field ‘Xml basename’) and which image data set should be associated with

the XML files (‘Dataset id’ from Step 1D(ii)). The field ‘Project name’ allows assigning a unique name to this
cell-lineage reconstruction.
 CRITICAL STEP The XML output files from Step 1C(ii) need to be copied to a location at which CATMAID can
read from.
? TROUBLESHOOTING
 PAUSE POINT Tracking information is stored in the CATMAID database, and it can be edited, analyzed or
visualized at any time.

	 (v) �Open a browser and enter the URL of the web application CATMAID containing your data.
	 (vi) �Select the project that you would like to work on.

? TROUBLESHOOTING
	 (vii) �Use the sliders on the toolbar to navigate the image data in five dimensions. In order to visualize and manipulate

the cell tracking information, select the ‘Tracing tool’ in the toolbar. Note that a click on the ‘?’ icon will display
all possible actions in each view. CATMAID offers many different types of editing and visualization operations
for the cell tracking data (add/delete edge or point, display lineage, show orthogonal planes, etc.). A comprehensive
documentation of all functionality can be found at http://catmaid.org/ and in the user guide included in
Supplementary Software 5.
 CRITICAL STEP We recommend periodic backups of the CATMAID database (at least once a week) in order to
minimize the risk of data loss. As the database only contains points in object space (i.e., no image data), the size
of these backups is typically fairly small.
 PAUSE POINT This step can be interrupted at any time. Every time an operation is performed by the user, the
change is immediately stored in the CATMAID database and an entry is added to the log table. Thus, work on a
specific project can be resumed at any time.

(E) Importing tracking information into MATLAB and preparing videos for visualizing image data and cell-lineage
reconstructions ● TIMING 5 min
 CRITICAL STEP Segmentation and tracking results can be imported into MATLAB at different stages of the pipeline.
If you would like to analyze the output from Step 1D(vii), then proceed to Step 1E(ii). If you would like to analyze the
output from Step 1C(ii), then proceed to Step 1E(iii).
	 (i) �Extract the contents of the archive provided in Supplementary Software 6 or download the MATLAB scripts for

interacting with the PostgreSQL database accessed by CATMAID for storing lineage information using the following
Git command:

git clone https://fernandoamat@bitbucket.org/fernandoamat/catmaid-matlab-code.git

	 (ii) �Use the MATLAB script ‘scriptRetrieveNodeWithTag’ to import all data points of a specific project from the CATMAID
database into MATLAB. The README file accompanying the script provides documentation on how to set each of the

http://catmaid.org/importing_data.html
http://catmaid.org/

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1692 | VOL.10 NO.11 | 2015 | nature protocols

required parameters. The script returns an N × 10 MATLAB array, where N is the number of data points in the database
for the requested project. The ten columns contain the following information:

Column Contents

1 Unique ID used to identify the cell nucleus data entry in the database (a large integer number)

2 Cell type (represented by an integer). The value is set to 0 if no cell type has been assigned to this object

3 x location of the nucleus centroid in world coordinates. Use the resolution information provided in variable
‘stackRes’ to convert from world coordinates to pixels

4 Same as 3 but for y location

5 Same as 3 but for z location

6 Estimated radius of the nucleus. The value is set to 0 if a radius estimate is not available

7 ID of the corresponding cell at the previous time point. The value is set to –1 if there is no linkage to the previous
time point. Otherwise, the value is set to the unique ID of the parent of the cell identified in column 1. Following
the path of these parent/daughter assignments allows reconstructing the complete cell lineage information

8 Experiment time point at which the cell nucleus has been detected

9 Confidence level for the tracking result. A value of 3 indicates high confidence that the object was correctly
tracked. A value of 0 indicates low confidence

10 Skeleton ID. All data points belonging to the same cell lineage have the same unique skeleton ID

	 (iii) �Import tracking information from TGMM into MATLAB. The output from Step 1C(v) is stored in XML files that
can be imported into the same type of MATLAB array, as described in the previous step. This import functionality
is provided by the script ‘parseMixtureGaussiansXml2trackingMatrixCATMAIDformat’. We note, however, that
this MATLAB array format does not cover all of the information present in the XML files. For example,
super-voxel segmentation information is lost. To import all available information into MATLAB, execute the
script ‘readXMLmixtureGaussians’ for each time point. This script returns a structure mimicking the attributes of
the XML file for each database object. More information about the various attributes can be found in the
documentation accompanying the script.
 CRITICAL STEP The XML files were generated using C++ code, in which indices start at 0. In contrast,
MATLAB convention has indices start at 1. Thus, for code written in MATLAB, all indices need to be offset by +1.
For example, if the parent ID is 3, the index 4 needs to be used in MATLAB in order to retrieve the correct
cell-lineage information from the MATLAB structure.

	 (iv) �Prepare videos for visualizing image data and cell-lineage reconstructions. Once the data have been imported into
MATLAB as an N × 10 array (as described in Step 1E(iii)), the cell-lineage information can be visualized in a variety
of ways. For data visualization using the commercial software package Imaris, we provide export scripts that enable

Lateral view

Ventral view

t18

t50

t94

t236

3:04

3:20

3:42

4:53

Dorsal view Ventral view

a bFigure 7 | Application example in Drosophila
development. (a) Maximum-intensity projections
of image data at four time points of a SiMView
time-lapse data set of Drosophila embryonic
development8,39 (left, dorsal view; right, ventral
view). The complete data set comprises 2,881
time points (each consisting of a four-view
recording of the embryo with 4 × 154 images)
recorded in 30-s intervals, and it was processed
with the pipeline presented in Figures 1 and 2.
The total data set size is 4.35 TB (1,774,696
images). The age of the nuclei-labeled
(His2Av-mRFP1) embryo is shown in hours
and minutes after egg laying in the bottom
right corner of the dorsal view panels.
(b) Visualization of a cell-lineage reconstruction
of early nervous system development in the Drosophila ventral nerve cord. The cell-lineage reconstruction was performed with TGMM and CATMAID,
using the data set visualized in a. The data were rendered with Imaris, using microscopy image data at time point (t) 50 (see second row in a). Green
spheres represent the positions of progenitor cell nuclei at time point 50. Lines represent complete cell tracks using a color code to indicate time (from
purple to yellow: 2.9–5.4 h after egg laying). Scale bars, 50 µm.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1693

the data transfer of cell tracks to Imaris. This approach enables joint rendering of microscopy data and cell-lineage
information (Fig. 7). The ImarisXT interface and the scripts provided in Supplementary Software 6 are required to
establish communication between MATLAB and Imaris.

	 (v) �Open a single Imaris session (if there is more than one active Imaris session, the MATLAB script will not know which
session the data need to be exported to).

	 (vi) �In Imaris, open the time-lapse microscopy image data used for cell tracking, and click on the Surpass Scene folder so
that it is highlighted.

	 (vii) Without closing Imaris, switch to a MATLAB terminal and import the cell tracking data, as described in Step 1E(iii).
	(viii) �Execute the MATLAB script ‘parseCATMAIDdbToImarisMultiSpots’. Once the script execution has finished, a new Imaris

spot object will appear in the Imaris window for each imported cell lineage.
? TROUBLESHOOTING

	 (ix) Save the Imaris project to store the imported cell lineage information.

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 3.

Table 3 | Troubleshooting table.

Step Problem Possible reason(s) Solution

1A(iii) MATLAB script clusterPT.m
stops with an error displayed
in MATLAB command window

Input data are not correctly
formatted for clusterPT.m

Make sure that your image data set has been
formatted according to the specifications provided
in the README file (see section ‘Part I’) and
that background images and XML files are present
as well

1A(ix) The MATLAB scripts clusterMF.m,
localAP.m or clusterTF.m stop
with an error displayed in the
MATLAB command window

Data paths or image channel/camera
configuration are set incorrectly

Check the parameters defining the data loca-
tions (‘inputString’, ‘outputString’, ‘sourceString’,
‘inputID’, ‘outputID’, ‘lookUpTable’) and image
channel/camera configuration (‘specimen’, ‘cameras’,
‘channels’, ‘sChannels’, ‘tChannels’) in clusterMF.m,
localAP.m and clusterTF.m

Image fusion of a time-lapse
multiview data set produces
images that are not smooth
in time

Smoothing window size in localAP.m
is too small.
Time points are sampled too infre-
quently in clusterMF.m

Increase the smoothing window size in
localAP.m (second value in vector smoothing)
and rerun clusterTF.m. The effects of changing
the smoothing window size or the averaging
ranges defined in localAP.m are shown in the
MATLAB plots displayed for each transformation
parameter (blue lines indicate input data
collected by clusterMF.m, red dashed lines indicate
smooth output data provided to clusterTF.m).
If adjusting smoothing and averaging parameters
in localAP.m does not resolve the issue, try
increasing the sampling frequency of the
time-lapse experiment in clusterMF.m and rerun
localAP.m and clusterTF.m

1C(ii) TGMM software stops with
a run-time error displayed in
the terminal window

nVidia CUDA drivers are not
up-to-date.
Image path is incorrect

Consult the section ‘Troubleshooting common
run-time errors’ in the README file included in
Supplementary Software 4. This section provides
solutions to the most commonly encountered TGMM
run-time errors

1D(i) The MATLAB script for image
tiling stops with an error
displayed in the MATLAB
command window

The user does not have write
permission to the image server
associated with CATMAID

Make sure to enable write permissions (for the
output path provided in the MATLAB script) for
the user executing the tiling script

(continued)

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1694 | VOL.10 NO.11 | 2015 | nature protocols

Table 3 | Troubleshooting table (continued).

Step Problem Possible reason(s) Solution

1D(iv) CATMAID TGMM importer
displays error message ‘504
Gateway Timeout Error’

The amount of time needed for
importing a large number of cell
tracks can exceed the default timeout
setting of the browser

If the number of tracked objects is relatively large,
it is usually not possible to upload all data to the
CATMAID database before encountering a browser
timeout. However, even if a timeout message is
being displayed, the data are still being uploaded.
The file ‘progressReportFile.txt’, located in the same
folder as the XML output files, monitors the status
of the data transfer. You can consult this log file to
determine when all data points have been uploaded
to the database

1D(vi) The CATMAID home page
does not show your project

The user is not logged in or does
not have permission to access
the project

Make sure that you are logged in as a user
(this information is provided in the top right
corner of the browser window) and that you have
permission to access the project

1E(viii) The MATLAB script for
exporting tracks to Imaris
stops with an error message

The path to Imaris XT Java library is
set incorrectly in the MATLAB script

Open the MATLAB file ‘openImarisConnection.m’
and verify that line 5 contains the correct path
to the Imaris XT Java library

● TIMING
Step 1A, lossless image compression and/or multiview image fusion: 5 min for setup, and 0.5–12 h of unattended
computer time (depending on data set size)
Step 1B, drift correction and intensity normalization: 10 min for setup, and 0.5–12 h of unattended computer time
(depending on data set size)
Step 1C, segmentation and tracking with TGMM: 5 min for setup, and 0.5–5 h of unattended computer time (depending
on data set size)
Step 1D, data visualization and editing with CATMAID: 0.5–4 h (depending on data set size)
Step 1E, preparing videos for visualizing image data and cell-lineage reconstructions: 5 min

ANTICIPATED RESULTS
By following the steps in this protocol carefully, the user should expect to be able to convert microscopy data sets of
animal development with up to several terabytes of image data per experiment into curated cell-lineage reconstructions
(Fig. 7). A single computer workstation is sufficient for the routine use of the presented computational framework at all
stages of the protocol. The raw microscopy image data are efficiently stored in the KLB lossless image compression format.
If multiview image data recorded with a SiMView-like microscope is used as a starting point, our pipeline enables rapid
content-based multiview registration and fusion. Together, these steps reduce typical multiterabyte light-sheet microscopy
data sets to a few tens of gigabytes of compressed image data, thus efficiently eliminating data storage bottlenecks without
data loss. After these initial data management steps, our image processing and data analysis protocol leads to a CATMAID
database that contains comprehensive cell-lineage information for the reconstructed data set, including a log of all edits
performed by each user. The MATLAB scripts included in this protocol can be used to visualize final results and to generate
publication-quality videos. They also facilitate data import into a MATLAB array, which gives access to a wide spectrum of
further analyses, such as computation of cell-lineage statistics or investigation of morphodynamic features, including cell
cycle lengths, cell velocities and temporal changes in gene expression levels in each tracked cell lineage.

When using KLB lossless compression in combination with background masking, a 10–200-fold reduction in data size can
be expected for typical fluorescence microscopy recordings (Figs. 3 and 4; and 30- to 500-fold with additional multiview
image fusion). Aside from reducing storage capacity needs, KLB image compression also helps improve data transfer
rates and access speed. The TGMM software is capable of segmenting and tracking ~26,000 cells per minute on a single
workstation39, with an average linkage accuracy ranging from 99% for zebrafish embryos to 90% for mouse embryos.

In our experience, novice users can usually familiarize themselves with the overall pipeline within a few days (see ‘Level
of expertise needed to implement the protocol’ in the INTRODUCTION for specific details), as most of the scripts used in
this protocol simply require adjusting a few parameters. If completely error-free cell-lineage reconstructions are required,

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.10 NO.11 | 2015 | 1695

the most time-intensive part of the protocol is the manual curation of cell -lineage results produced by the TGMM software.
This task is facilitated by the web application CATMAID, which enables typical data curation rates of ~1,400 data points
per hour and thus offers the possibility of system-level cell lineaging. For example, a fully curated cell-lineage reconstruction
of the early Drosophila nervous system, tracking 92% of S1 neuroblasts from their blastoderm origins up to their second
cell division (over 116,000 data points spanning more than 300 time points), was performed within 3 weeks39.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

Acknowledgments We thank A. Cardona and the participants of the Janelia
CATMAID hackathon for help with modifying the open-source code of CATMAID;
K. Khairy for his contributions to exploring approaches to multiview image
fusion and SiMView data management; and K. Branson and A. Cardona for helpful
comments on the manuscript. This work was supported by the Howard Hughes
Medical Institute.

AUTHOR CONTRIBUTIONS F.A. and B.H. developed the KLB file format and
related software infrastructure. P.J.K. developed the multiview registration and
fusion software, with contributions from F.A. F.A. developed the TGMM framework
and related software infrastructure. Y.W., W.C.L. and K.M. performed light-sheet
microscopy experiments and contributed image data sets. F.A. and P.J.K. wrote
the manuscript, with input from all authors.

COMPETING FINANCIAL INTERESTS The authors declare no competing financial
interests.

Reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1.	 Voie, A.H., Burns, D.H. & Spelman, F.A. Orthogonal-plane fluorescence
optical sectioning: three-dimensional imaging of macroscopic biological
specimens. J. Microsc. 170, 229–236 (1993).

2.	 Fuchs, E., Jaffe, J., Long, R. & Azam, F. Thin laser light sheet microscope
for microbial oceanography. Opt. Express 10, 145–154 (2002).

3.	 Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H.K.
Optical sectioning deep inside live embryos by selective plane illumination
microscopy. Science 305, 1007–1009 (2004).

4.	 Keller, P.J., Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H. Reconstruction of
zebrafish early embryonic development by scanned light sheet microscopy.
Science 322, 1065–1069 (2008).

5.	 Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain
functional imaging at cellular resolution using light-sheet microscopy.
Nat. Methods 10, 413–420 (2013).

6.	 Wu, Y. et al. Spatially isotropic four-dimensional imaging with dual-view
plane illumination microscopy. Nat. Biotechnol. 31, 1032–1038 (2013).

7.	 Krzic, U., Gunther, S., Saunders, T.E., Streichan, S.J. & Hufnagel, L.
Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods
9, 730–733 (2012).

8.	 Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Quantitative high-speed
imaging of entire developing embryos with simultaneous multiview light-
sheet microscopy. Nat. Methods 9, 755–763 (2012).

9.	 Schmid, B. et al. High-speed panoramic light-sheet microscopy reveals
global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013).

10.	 Holekamp, T.F., Turaga, D. & Holy, T.E. Fast three-dimensional fluorescence
imaging of activity in neural populations by objective-coupled planar
illumination microscopy. Neuron 57, 661–672 (2008).

11.	 Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M. & Fraser, S.E. Deep
and fast live imaging with two-photon scanned light-sheet microscopy.
Nat. Methods 8, 757–760 (2011).

12.	 Gao, L. et al. Noninvasive imaging beyond the diffraction limit
of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385
(2012).

13.	 Chen, B.C. et al. Lattice light-sheet microscopy: imaging molecules to
embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

14.	 Keller, P.J. et al. Fast, high-contrast imaging of animal development with
scanned light sheet-based structured-illumination microscopy. Nat.
Methods 7, 637–642 (2010).

15.	 Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative
fluorescence imaging of protein diffusion and interaction in living cells.
Nat. Biotechnol. 29, 835–839 (2011).

16.	 Keller, P.J. Imaging morphogenesis: technological advances and biological
insights. Science 340, 1234168 (2013).

17.	 Pantazis, P. & Supatto, W. Advances in whole-embryo imaging:
a quantitative transition is underway. Nat. Rev. Mol. Cell Biol. 15,
327–339 (2014).

18.	 Stelzer, E.H. Light-sheet fluorescence microscopy for quantitative biology.
Nat. Methods 12, 23–26 (2014).

19.	 Huisken, J. Slicing embryos gently with laser light sheets. Bioessays 34,
406–411 (2012).

20.	 Pampaloni, F., Reynaud, E.G. & Stelzer, E.H. The third dimension bridges
the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8,
839–845 (2007).

21.	 Keller, P.J., Ahrens, M.B. & Freeman, J. Light-sheet imaging for systems
neuroscience. Nat. Methods 12, 27–29 (2014).

22.	 Keller, P.J. & Ahrens, M.B. Visualizing whole-brain activity and
development at the single-cell level using light-sheet microscopy. Neuron
85, 462–483 (2015).

23.	 Lemon, W.C. & Keller, P.J. Live imaging of nervous system development and
function using light-sheet microscopy. Mol. Reprod. Dev. 82, 605–618 (2015).

24.	 Megason, S.G. & Fraser, S.E. Imaging in systems biology. Cell 130,
784–795 (2007).

25.	 Khairy, K. & Keller, P.J. Reconstructing embryonic development. Genesis
49, 488–513 (2011).

26.	 McMahon, A., Supatto, W., Fraser, S.E. & Stathopoulos, A. Dynamic
analyses of Drosophila gastrulation provide insights into collective cell
migration. Science 322, 1546–1550 (2008).

27.	 Fernandez, R. et al. Imaging plant growth in 4D: robust tissue
reconstruction and lineaging at cell resolution. Nat. Methods 7, 547–553
(2010).

28.	 Bosveld, F. et al. Mechanical control of morphogenesis by Fat/Dachsous/
Four-jointed planar cell polarity pathway. Science 336, 724–727 (2012).

29.	 Murray, J.I. et al. Automated analysis of embryonic gene expression with
cellular resolution in C. elegans. Nat. Methods 5, 703–709 (2008).

30.	 Liu, X. et al. Analysis of cell fate from single-cell gene expression profiles
in C. elegans. Cell 139, 623–633 (2009).

31.	 Trichas, G. et al. Multi-cellular rosettes in the mouse visceral endoderm
facilitate the ordered migration of anterior visceral endoderm cells.
PLoS Biol. 10, e1001256 (2012).

32.	 Xiong, F. et al. Specified neural progenitors sort to form sharp domains
after noisy Shh signaling. Cell 153, 550–561 (2013).

33.	 Du, Z., Santella, A., He, F., Tiongson, M. & Bao, Z. De novo inference of
systems-level mechanistic models of development from live-imaging-based
phenotype analysis. Cell 156, 359–372 (2014).

34.	 Panier, T. et al. Fast functional imaging of multiple brain regions in
intact zebrafish larvae using selective plane illumination microscopy.
Front. Neural Circuits 7, 65 (2013).

35.	 Lemon, W. et al. Whole central nervous system functional imaging in
larval Drosophila. Nat. Commun. 6, 7924 (2015).

36.	 Alivisatos, A.P. et al. The brain activity map project and the challenge of
functional connectomics. Neuron 74, 970–974 (2012).

37.	 Saalfeld, S., Cardona, A., Hartenstein, V. & Tomančák, P CATMAID:
collaborative annotation toolkit for massive amounts of image data.
Bioinformatics 25, 1984–1986 (2009).

38.	 Cardona, A. Collaborative annotation toolkit for massive amounts of image
data (CATMAID) GitHub repository https://github.com/acardona/CATMAID
(2015).

39.	 Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-
scale fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

40.	 Lauri, A. et al. Development of the annelid axochord: insights into
notochord evolution. Science 345, 1365–1368 (2014).

41.	 Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software for
bead-based registration of selective plane illumination microscopy data.
Nat. Methods 7, 418–419 (2010).

42.	 Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans.
Proc. Natl. Acad. Sci. USA 103, 2707–2712 (2006).

http://www.nature.com/doifinder/10.1038/nprot.2015.111
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html
https://github.com/acardona/CATMAID

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1696 | VOL.10 NO.11 | 2015 | nature protocols

43.	 Murray, J.I., Bao, Z., Boyle, T.J. & Waterston, R.H. The lineaging of
fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and
AceTree. Nat. Protoc. 1, 1468–1476 (2006).

44.	 Giurumescu, C.A. et al. Quantitative semi-automated analysis of
morphogenesis with single-cell resolution in complex embryos.
Development 139, 4271–4279 (2012).

45.	 Olivier, N. et al. Cell lineage reconstruction of early zebrafish
embryos using label-free nonlinear microscopy. Science 329,
967–971 (2010).

46.	 Kausler, B.X. et al. A discrete chain graph model for 3D+t cell tracking
with high misdetection robustness. ECCV 7574, 144–157 (2012).

47.	 Stegmaier, J. et al. Fast segmentation of stained nuclei in terabyte-scale,
time resolved 3D microscopy image stacks. PLoS ONE 9, e90036 (2014).

48.	 Schiegg, M. et al. Graphical model for joint segmentation and tracking of
multiple dividing cells. Bioinformatics 31, 948–956 (2014).

49.	 Allan, C. et al. OMERO: flexible, model-driven data management for
experimental biology. Nat. Methods 9, 245–253 (2012).

50.	 Megason, S.G. In toto imaging of embryogenesis with confocal time-lapse
microscopy. Methods Mol. Biol. 546, 317–332 (2009).

51.	 Schroeder, W., Martin, K. & Lorensen, B. The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics. 4th edn. (Kitware, 2006).

52.	 Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables
real-time 3D visualization and quantitative analysis of large-scale
biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).

53.	 Bria, A., Iannello, G. & Peng, H. An open-source VAA3D plugin for
real-time 3D visualization of terabyte-sized volumetric images. ISBI,
520–523 (2015).

54.	 Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer:
visualization and processing for large image data sets. Nat. Methods 12,
481–483 (2015).

55.	 Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural
activity imaging. J. Neurosci. 32, 13819–13840 (2012).

56.	 Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal
activity. Nature 499, 295–300 (2013).

57.	 Kanodia, J.S. et al. A computational statistics approach for estimating the
spatial range of morphogen gradients. Development 138, 4867–4874 (2011).

58.	 Pitrone, P.G. et al. OpenSPIM: an open-access light-sheet microscopy
platform. Nat. Methods 10, 598–599 (2013).

59.	 Gualda, E.J. et al. OpenSpinMicroscopy: an open-source integrated
microscopy platform. Nat. Methods 10, 599–600 (2013).

60.	 Bock, D.D. et al. Network anatomy and in vivo physiology of visual
cortical neurons. Nature 471, 177–182 (2011).

61.	 Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for
rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9,
1682–1697 (2014).

62.	 Susaki, E.A. et al. Whole-brain imaging with single-cell resolution using
chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

63.	 Dodt, H.U. et al. Ultramicroscopy: three-dimensional visualization of
neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336
(2007).

64.	 Schindelin, J. et al. Fiji: an open-source platform for biological-image
analysis. Nat. Methods 9, 676–682 (2012).

65.	 Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH image to ImageJ:
25 years of image analysis. Nat. Methods 9, 671–675 (2012).

