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IntroDuctIon
Light-sheet microscopy is an optical sectioning technique1–3 that 
provides high imaging speed and high spatial resolution over long 
periods of time, while minimizing energy load on the biological 
system under observation4–15. Owing to these powerful capabili-
ties, light-sheet microscopy has emerged as a key method for live 
imaging in cell biology and developmental biology16–20, as well 
as in neuroscience21–23. By capturing fast developmental and 
functional processes at the single-cell level across entire, complex 
biological systems, light sheet–based imaging can address funda-
mental biological questions that are not accessible with previous 
methods. In the domain of developmental biology, it has become 
feasible to systematically follow populations of progenitor cells as 
they form tissues, organs and even entire embryos. Such system-
level cell-lineage reconstructions provide important insights into 
the stereotypy of developmental processes, link developmental 
history to cell function in the developmental building plan of an 
animal, aid in dissecting the role of differential gene expression 
in directing cell-fate decisions, and facilitate experimental valida-
tion of mechanistic models of development24–33. In neuroscience, 
light-sheet microscopy has made it possible to perform functional 
imaging of large neuronal populations, entire brains5,34 and even 
the entire CNS35. Such experiments have the potential to illumi-
nate how large neural networks perform complex computations 
and generate behavior at the single-cell level22,36.

However, light-sheet imaging experiments produce vast 
amounts of complex image data; from long-term imaging of 
developing embryos to high-speed functional imaging of the 
brain, each light-sheet recording consists of up to several tens  
of terabytes of multidimensional image data (including three  
spatial dimensions, time and multiple color channels). Thus, data 
management, as well as image processing and data analysis, rather 
than the experiments themselves, can easily become the bottleneck 
on the path to biological discovery. A computational framework 
that addresses these challenges, and does so with high data through-
put and at minimal cost to the investigator, is crucial for routinely 
recording light-sheet data sets and for extracting biologically  
relevant information.

Here we present detailed protocols for operating a computa-
tional pipeline that efficiently handles the spectrum of challenges 
encountered with light-sheet microscopy image data, from high-
throughput lossless data compression to content-based multiview 
image fusion. We furthermore provide protocols and software for 
large-scale cell tracking in developmental image data sets, as well 
as for large-scale image data visualization and annotation.

Development of the protocol
In the protocols presented here, we describe five main compu-
tational modules (Figs. 1 and 2; Supplementary Software 1–6):  
first, our block-based lossless compression file format for  
efficiently storing large amounts of image data and rapidly 
retrieving arbitrary regions of interest; second, MATLAB scripts 
for content-based registration and fusion of time-lapse, multiview 
image data; third, our Tracking with Gaussian Mixture Models 
(TGMM) software for automated large-scale segmentation and 
tracking of fluorescently labeled cell nuclei; fourth, a branch of  
the Collaborative Annotation Toolkit for Massive Amounts of 
Image Data (CATMAID)37,38 for visualizing 5D microscopy 
data sets and editing associated cell tracking results; and fifth,  
MATLAB scripts for importing, analyzing and visualizing  
large-scale cell-lineage reconstructions.

All protocols have been extensively tested on long-term in vivo 
time-lapse recordings of multicellular organisms, such as fruit 
fly, zebrafish and mouse embryos, primarily using data gener-
ated with SiMView light-sheet microscopy8,39. In addition, our 
processing pipeline has been successfully applied to other micro-
scopy modalities, such as confocal fluorescence microscopes and 
commercial light-sheet microscopes39, and other model systems, 
such as Parhyale and Platynereis embryos40, as well as fruit fly 
and zebrafish larvae5. Our framework tackles various large-scale 
image processing challenges, including the analysis of multitera-
byte developmental image data sets for system-level cell tracking 
(with tens of millions of tracked cell locations per embryo)39 
and management of multiterabyte functional image data sets 
produced by whole-brain5 or whole-CNS35 calcium imaging. 
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light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high 
spatiotemporal resolution and over long time scales. such experiments typically generate terabytes of multidimensional image 
data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols 
and software to tackle these steps, focusing on the imaging-based study of animal development. our protocols facilitate  
(i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore cpu architectures, 
reducing image data size 30–500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing 
and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. these software 
modules are open source. they provide high data throughput using a single computer workstation and are readily applicable to a 
wide spectrum of biological model systems.

http://www.nature.com/doifinder/10.1038/nprot.2015.111


©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

1680 | VOL.10 NO.11 | 2015 | nature protocols

Moreover, our modules for image compression, multiview fusion, 
segmentation and cell tracking are also suitable for applications 
that require real-time performance; i.e., our pipeline is capable of 
processing speeds exceeding the data acquisition rate of the light-
sheet microscope, using a single computer workstation equipped  
with a conventional compute unified device architecture (CUDA)-
enabled graphics card.

Comparison with other methods
One of the key challenges in developing computational tools for 
light-sheet microscopy image data is scalability. There is a vast 
amount of literature and software related to the computational 
problems discussed here, such as data compression, visualization, 
registration, segmentation and tracking. However, many of these 
existing approaches either break down or are too time-consuming  
and resource-intensive when applied to multiterabyte image  
data sets. In this section, we compare our computational modules 
with existing methods that have been tested in similar data sets in 
terms of image characteristics and (if applicable) size.

Annotation database
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Content-based multi view
image registration

and fusion

3D drift correction,
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and image filtering
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and cell tracking
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Core modules

Optional modules

Figure 1 | Overview of image processing and data analysis workflow. The 
computational framework described in our protocols addresses typical data 
management, image processing and data analysis challenges encountered in 
light-sheet microscopy experiments. Starting with the raw image data sets, 
which consist of up to several terabytes of 3D images recorded as a function 
of time and comprise up to several color channels and view angles, the 
computational modules described here facilitate rapid data compaction via 
adaptive image background and foreground detection, background masking 
and image compression in our lossless KLB file format optimized for large-
scale image data and multicore CPU architectures; high-throughput content-
based multiview image registration and fusion for SiMView-like multiview 
data sets comprising up to four orthogonal views; 3D drift correction, 
intensity normalization and adaptive background correction; automated 
segmentation and cell tracking using our software framework TGMM; large-
scale image data visualization and editing of cell-lineage reconstructions 
using a branch of CATMAID for 5D light microscopy image data sets; and 
data import/export between TGMM, CATMAID and the commercial rendering 
software Imaris. All of these software modules can be used individually or as 
part of our integrated computational pipeline.
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Step I
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image data)
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multi-view registration
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up to 4×

Processing result
Fused and KLB-compressed 3D image data

Total lossless size reduction: 30–500×

Figure 2 | Lossless image compression and content-based multiview fusion. 
The first set of modules in our computational framework for high-throughput 
image processing is designed for rapid lossless data compaction of single-
view or multiview light-sheet microscopy data sets. Step I: acquisition of  
light-sheet microscopy image data. These raw images are used as input 
data in the next step. Step II: automated detection of image foreground 
and background; i.e., detection of image regions that correspond to parts 
of the specimen (foreground, shown in yellow) or to regions that are either 
outside the specimen or do not contribute fluorescent signal (background, 
shown in blue). Step III: masking of image background (i.e., populating the 
automatically detected background regions, which contain only background 
noise, with zeros) and lossless compression of the image data using the KLB 
file format. Step IV: automated content-based multiview image registration 
and image fusion. Steps II and III are applicable to both single-view and 
multiview image data sets, whereas Step IV is designed for high-throughput 
image fusion of SiMView-like multiview data sets comprising up to four 
orthogonal views. These image processing steps combine the high-quality 
image information of all recorded views into a single, information-rich image 
stack of the entire specimen, and efficiently store the 3D image data in a 
lossless image format. Thereby, the pipeline markedly reduces the size of the 
raw image data (on average by a factor of 180, Fig. 4) without discarding 
or changing parts of the original 3D image data that contain potentially 
useful information. At the same time, the pipeline is real-time capable; that 
is, all processing steps are completed in less time than required for image 
acquisition itself (table 1). Data compaction performance numbers are based 
on the fruit fly, mouse and zebrafish imaging experiments shown in Figure 4.  
Scale bar, 50 µm.
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Image compression. In our comparison of image-compression 
formats, we focus on formats that have found widespread use and 
that offer lossless compression capability, as researchers usually 
want to store an unaltered version of their data. JPEG 2000 is one 
of the most widely used image compression formats. However, 
although the JPEG 2000 standard provides a description of 3D 
compression, few implementations of this capability actually 
exist. Most software packages compress image data plane by plane, 
which is inefficient for retrieving arbitrary regions of interest in 
large multidimensional image volumes. Moreover, it is difficult 
to efficiently parallelize all JPEG 2000 coding and decoding steps, 
which makes it challenging to take full advantage of modern mul-
ticore computing hardware.

HDF5 is another popular container for image files. Aside from 
offering lossless data compression, HDF5 is capable of storing 
data in blocks for fast retrieval of arbitrary regions of interest. 
Unfortunately, the HDF5 interface does not parallelize writing 
operations, which negatively affects speed.

To overcome these limitations, we developed the Keller Lab 
Block (KLB) lossless image-compression format, which combines 
high compression ratios, fast read/write speeds and a flexible 
block architecture that enables efficient access to arbitrary regions 
of interest (Figs. 3 and 4; Supplementary Figs. 1–3). Inspired by 
Parallel BZip2, a common Linux compression module, we parti-
tion images in 5D blocks and compress all blocks in parallel using 
BZip2. Both reading and writing operations are parallelized, and 
they scale linearly with the number of cores in the CPU (Fig. 5). 
In addition, we provide a simple API for interfacing the open-
source C++ code with various platforms, as well as an interface 
file for the SWIG tool, which can be used to autogenerate wrap-
per code for various languages, including Java, C#, Python, Perl  
and R (Supplementary Software 1).

By using a variety of fluorescence microscopy data sets, we  
compared KLB performance with that of other state-of-the-art 
compression formats (Fig. 3 and Supplementary Figs. 1–3), 
including one of the most efficient multithreaded implementations  
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Figure 3 | Performance comparison of lossless image compression formats. 
Performance of the KLB lossless compression format versus LZW-TIFF 
(green) and JPEG 2000 (blue) lossless compression formats with respect 
to compression ratio (first column), write speed (second column) and read 
speed (third column). The JPEG 2000 benchmark uses the multithreaded 
commercial library PICTools Medical SDK (Accusoft). A performance 
comparison of KLB and uncompressed TIFF formats is included as well 
(orange). LZW-TIFF and uncompressed TIFF benchmarks use the ‘imread’ 
and ‘imwrite’ functions provided by the Image Processing Toolbox in 
MATLAB. All performance data are provided as ratios with KLB performance 
in the numerator; i.e., ratios larger than one (gray lines) indicate superior 
performance of the KLB file format. The comparison was performed using 
a variety of fluorescence microscopy image data sets located on a high-
performance network-attached storage server connected to the image 
processing workstation via 10 Gb s−1 glass fiber. Benchmark data sets include 
SiMView light-sheet microscopy recordings of fruit fly, mouse and zebrafish 
embryonic development (data sets 1–8), confocal microscopy data of a 
zebrafish embryo (data set 9) and SiMView functional image data of brain 
activity in a larval zebrafish (data set 10). Developmental data sets (data 
sets 1–8) were analyzed as raw and masked versions in order to illustrate 
the importance of background masking for maximizing data storage and 
to access efficiency. Please see steps I–III in Figure 2 for a description of 
the concepts underlying background masking. Note that read speeds for uncompressed TIFF files are particularly low, as a large fraction of time is spent on 
accessing the large files. If image data sets are small enough for a local storage solution—i.e., when using the same computer for long-term data storage 
and image processing—the data access time overhead encountered for uncompressed image data can be slightly reduced, e.g., through the use of a high-
performance RAID array. For benchmarks performed with image data sets stored locally on a high-performance RAID array built from solid-state drives (SSDs), 
please see supplementary Figure 1. For information about the block-size dependency of KLB performance, please see supplementary Figure 2.
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44× 522× 31× 131×Figure 4 | Multiview image data compaction for light-sheet microscopy. 
Comparison of image file sizes obtained by taking advantage of our  
pipeline for image data compaction (Fig. 2) to varying degrees. Data set 
sizes are shown for raw, uncompressed image data sets (dark blue, step I 
III in Fig. 2), for KLB-compressed raw data sets (light blue), background-
masked, KLB-compressed data sets (orange, steps I–III in Fig. 2) and for 
multiview fused, background-masked, KLB-compressed data sets (red,  
steps I–IV in Fig. 2). Even when recording only single views of a specimen, 
i.e., if multiview image fusion is not applicable, background masking and 
lossless KLB compression alone already lead to a substantial reduction in 
data size, without loss of information. The four types of image data sets 
included in this comparison represent single time points of time-lapse 
recordings of fruit fly, mouse and zebrafish embryos acquired with  
SiMView light-sheet microscopy. The factors shown above each set of bars 
indicate total data set size reduction from raw, uncompressed multiview 
data format to fused, background-masked, KLB-compressed data format. Note that data set sizes shown in this figure represent image size per time point and 
thus scale linearly to large-scale light-sheet microscopy time-lapse recordings comprising thousands of time points and tens of terabytes of image data. 
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of JPEG 2000 (PICTools Medical SDK, Accusoft). When KLB 
is used for locally stored image data (Supplementary Fig. 1), 
it provides superior compression ratios (3% and 70% better 
than JPEG 2000 or LZW-compressed TIFF, respectively) and 
read/write speeds (3.2-fold and 4.5-fold faster than JPEG 2000 
or LZW-compressed TIFF, respectively, using 16-CPU cores). 
When KLB is used for network-attached image data (the typical 
setting for large-scale image data sets, Fig. 3), improvements in 
speed are even higher (3.3-fold and 7.5-fold faster than JPEG 2000 
or LZW-compressed TIFF, respectively, using 16-CPU cores). 
Compared with uncompressed TIFF format, KLB provides mark-
edly improved read/write speeds (3.1-fold and 16.5-fold faster 
locally or over the network, respectively), which is a direct result 
of the rapid data compaction in KLB and the reduced transfer 
times for compressed image data. Thus, KLB outperforms state-
of-the-art file formats with respect to both compression ratio and 
speed by taking full advantage of modern multicore CPUs, and it 
offers lossless data compaction of large-scale image data sets with 
minimal access latency.

Multiview image fusion. An efficient cross-platform multiview 
image fusion method using embedded fluorescent beads sur-
rounding the sample has been incorporated in Fiji as part of the 
‘Multiview Reconstruction’ plug-ins41. This bead-based method 
allows registration of any number of views distributed in an 
arbitrary geometry, without prior information about the rela-
tive location of each view. As a generalization of its initial design 
for bead-based registration, the method has more recently been 
extended to support image data containing other types of blob-
like features (such as fluorescent cell nuclei) that can be reliably 
detected with a Difference of Gaussians filter.

In contrast, the multiview fusion module provided by our 
processing pipeline (Supplementary Software 3) is complemen-
tary in several ways. Our module does not require and rely on 
specific features to facilitate registration, but rather it uses all 
image information present in the sample itself, irrespective of 
the type of fluorescent label used in the experiment. Fast con-
tent-based registration is achieved by introducing the assump-
tion of a multiview imaging assay with up to four orthogonal 
views (using up to two opposing light sheets and two opposing 
cameras); i.e., our method is not capable of registering arbitrary 
views. This latter constraint represents the main limitation of 
our method. However, as a direct result of this design principle, 
our method does not require the presence of fluorescent blob-
like structures in the sample to facilitate accurate registration 

and image fusion. This approach thus offers the following three 
advantages: (i) our method is applicable to large specimens and 
high-magnification imaging experiments, for which the field of 
view does not cover space outside the volume of the biological 
specimen itself (and hence lacks space for beads); (ii) our method 
provides flexibility for biological sample preparation, as it does 
not require the sample to be embedded in an agarose gel or a 
similar matrix suitable for anchoring beads; and (iii) our method 
can partially compensate for the effect of light refraction along 
the light path through the sample, as our alignment is based on 
image information inside the sample. Our method is furthermore 
designed for high-throughput image processing (Tables 1 and 2),  
and it offers real-time capability for large-scale light-sheet micro-
scopy data sets: by using a single computer workstation, our 
registration and fusion pipeline generally processes image data 
at a rate faster than the data acquisition rate of the light-sheet 
microscope39 (Table 1).

Image segmentation and cell tracking. There are several freely 
available computational methods for nuclei segmentation and cell 
tracking. These methods were specifically developed for cell-line-
age reconstructions using time-lapse light microscopy images of 
fluorescently labeled nuclei. However, most of these approaches 
have been developed for relatively small model organisms, such 
as Caenorhabditis elegans embryos42–44, which undergo stere-
otyped development and comprise several hundred cells by the 
end of embryonic development, or for very early developmental 
stages of more complex multicellular organisms, such as the early 
zebrafish blastula45,46 and the Drosophila blastoderm8,46. These 
methods do not aim to facilitate automated cell lineaging in later 
stages of development, and their underlying design principles 
either produce high error rates in such data sets or do not scale 
to the tens of thousands of cells encountered during advanced 
embryogenesis of vertebrates and higher invertebrates39. An 
accurate method that scales to large data sets is available for cell 
nuclei segmentation47, although this method does not perform 
cell tracking. Only very recently have existing methods48 for joint 
segmentation and tracking been successfully extended to handle 
data recorded in later developmental stages, although scalability 
with increasing cell counts is still an issue. In contrast, compu-
tation time of the TGMM software included in our framework 
(Supplementary Software 4) scales linearly with the number of 
segmented and tracked objects while maintaining state-of-the-art 
accuracy even in late developmental stages: on a single compu-
ter workstation equipped with a Tesla K20 graphics processing 
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(a,b) Write (a) and read (b) speeds as a function of available CPU cores,  
for the uncompressed TIFF file format (dark blue), as well as lossless  
KLB (red), JPEG 2000 (orange) and LZW-TIFF (light blue) file formats.  
The benchmark was performed using data set 6 in Figure 3. Note that  
uncompressed and LZW-compressed TIFF file formats do not benefit  
from multicore CPU architectures. JPEG 2000 can partially leverage  
the processing power of a small number of CPU cores (no performance 
increase observed beyond 4 CPU cores). In contrast, KLB performance  
scales almost linearly with the number of CPU cores, even when using 
multicore processing architectures with as many as 16 CPU cores.  
The JPEG 2000 benchmark uses the multithreaded commercial library PICTools Medical SDK (Accusoft). LZW-TIFF and uncompressed TIFF benchmarks use 
the ‘imread’ and ‘imwrite’ functions provided by the Image Processing Toolbox in MATLAB. Error bars represent s.d. for n = 5 iterations of the benchmark. For 
information about the block-size dependency of KLB performance, please see supplementary Figure 2.
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unit (GPU), processing speed is on average 26,000 cells per min,  
which enables real-time performance in all tested scenarios39.  
The software is designed for easy use without prior domain  
knowledge, and it requires adjustment of only two framework 
parameters when applied across multiple model systems and 
imaging modalities. We note that the most important factor that 
influences tracking accuracy is the temporal sampling of cell 
movements in the time-lapse data, although image quality and 
cell density can affect results as well39.

Data visualization and editing of cell-lineage annotations. 
OMERO49 is a software solution that is exceptional in its data 
organization features. OMERO facilitates organizing, remote 
browsing and analysis of multidimensional microscopy data. It 
excels at providing unified access to images and metadata from 
multiple sources and a plethora of file formats in a multiuser 
environment. As such, it supports specialized applications that 
are beyond its own scope. Newer versions of OMERO store data 
in their original files; this strategy is guaranteed to be lossless,  
but it is reliant on third-party choices of data file layout and  
compression algorithms, which are crucial parameters when  
balancing storage efficiency and interactive visualization.

Multiple software options provide the ability to concur-
rently visualize image data and edit cell-lineage reconstructions.  
goFigure2 is an open-source cross-platform software50 specifically 
designed for this task. Similarly to CATMAID, it uses a database to 
store all segmentation and tracking information, which allows it 
to efficiently handle millions of data points and to import results 
into other modules for downstream analysis. goFigure2 uses the 
VTK library51 for visualization and 3D rendering, which provides 
more visualization options than CATMAID. However, as images 
are not partitioned in small chunks of data (tiles) ahead of time, 
navigating the data along the time axis of a time-lapse imaging 
experiment requires constantly loading image stacks from disk. 
This requirement precludes real-time interaction with large image 
data sets. Imaris (Bitplane) is a commercial scientific software 
for data visualization, segmentation and analysis of 3D and 4D 
microscopy data sets, and it includes a module for cell tracking. 
Like goFigure2, Imaris offers 3D rendering options for advanced 
data visualization and, if a sufficient amount of GPU memory  
is available, consecutive time points are cached for smooth  
transition between time points in a short temporal window. 
However, all data (images, segmentation and tracking annota-
tions) associated with a given project are stored in a single HDF5-
like file, which appears to substantially slow performance when 
using multiterabyte image data sets and millions of tracked data 
points. Moreover, neither goFigure2 nor Imaris allows concurrent 
remote data access by multiple users; this capability is particularly 
valuable for large-scale collaborative projects that involve multi-
ple entities around the globe.

These limitations are addressed in CATMAID37,38, which  
allows rapid, uninterrupted browsing of multiterabyte data sets 
and concurrent large-scale data annotation involving tens of 
millions of data points, even when accessing the data remotely 
through the internet (Fig. 6). Our branch of the CATMAID 
framework (Supplementary Software 5) currently supports light 
microscopy image data sets with up to five dimensions (three 
spatial dimensions, time and color).

Alternative software solutions for visualizing large-scale (i.e., 
larger than locally available memory) 5D data sets on single com-
puter workstations are increasingly becoming available, and they 
include both commercial and open-source software, such as Arivis 
Vision 4D, Amira, Vaa3D (refs. 52,53) and BigDataViewer54. Each 
of these software packages includes different visualization tools, 
although most of them follow similar principles, such as the use 
of multiscale block-based file formats for efficient data access in 
regions of interest at the appropriate level of resolution. Some 
of these software solutions furthermore already include or are 
starting to incorporate editing and annotation tools on top of 
their visualization engines.

Experimental design
All software modules are available from http://www.janelia.org/
lab/keller-lab and as Supplementary Software 1–6, and they have 
been tested on multiple operating systems (including Windows, 
Linux and Mac OS), except for the backend required by the  
web application CATMAID, which has only been tested on a  
Linux platform. However, CATMAID can, in principle, also 
be set up on other operating systems. We provide source code 
and documentation for all modules to enable their adaption to  
specific needs and various types of imaging experiments. 
Although all five modules can be used independently, they are 

table 1 | Computation time requirements of image processing 
pipeline.

computational module
computation  

time (s)

computation  
time per time 

point (s)

clusterpt.m

• sCMOS image correction 
• Background masking
• KLB lossless compression

8.36 per time point 8.36

clusterMF.m

• Multiview registration
• Multiview image fusion

19.49 per ten time 
points

1.95

localap.m

• Parameter interpolation 5.09 per experiment 0.04

clustertF.m

• Multiview image fusion 7.88 per time point 7.88

processstack

• Hierarchical segmentation 2.73 per time point 2.73

tGMM

• Cell tracking
• Detection of cell divisions 
• Filtering of cell lineages

8.29 per time point 8.29

The table shows computation time requirements of each module of the image processing pipeline, 
from image correction, masking and lossless compression of the raw image data with clusterPT.m 
(Step 1A(i)) to cell tracking and reconstruction of cell lineages with TGMM (Step 1C(ii)). All measure-
ments were performed using adaptive blending for image fusion. The benchmarks are based on the 
processing of 120 time points of a typical SiMView four-view light-sheet microscopy experiment  
capturing the development of an entire Drosophila embryo. The four-view image data were recorded in  
30-s intervals; that is, the test data set represents one hour of live imaging. Image processing up 
to final multiview image fusion (clusterPT.m, clusterMF.m, localAP.m, clusterTF.m) took 18.23 s per 
time point and is thus almost twice as fast as the image acquisition process itself. Segmentation, 
cell tracking and reconstruction of cell lineages (ProcessStack, TGMM) took 11.02 s per time point, 
including all read/write operations. Thus, the total computation time per time point (29.25 s) is 
shorter than the time point interval in the image acquisition process.

http://www.janelia.org/lab/keller-lab
http://www.janelia.org/lab/keller-lab
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also capable of communicating results to each other and form 
an integrated processing pipeline. It is furthermore possible to 
integrate the respective functionality of each module in other 
software packages (for example, we offer full ImageJ/Fiji support 
for our block-based image file format). Finally, all modules can be 
run efficiently on a single computer workstation equipped with 
MATLAB (MathWorks) and a CUDA-enabled graphics card, and 
most of our modules are capable of taking full advantage of mod-
ern multicore CPUs and GPUs, as well as cluster environments.

Applications of the protocol
The methods described here can be applied to image data from 
a variety of imaging techniques39, including custom-built light-
sheet microscopes, commercial light-sheet microscopes and con-
focal fluorescence microscopes. In our laboratory, we are routinely 
using this set of computational tools for image data management 
and processing of SiMView5,8 and hs-SiMView35 light-sheet 
microscopy image data sets spanning a range of biological model  
systems, including zebrafish embryos and larvae, Drosophila 
embryos, larvae, pupae and adults, mouse embryos, Platynereis 
embryos and Parhyale embryos. This list can, in principle, be 
extended to any biological specimen suitable for imaging with 

optical sectioning fluorescence microscopy 
in general and light-sheet microscopy in 
particular. Specific examples of previous 
use cases in systems neuroscience include 
data management of large-scale functional 
imaging data of the zebrafish larval brain5 
and the CNS of larval Drosophila35, which 
were acquired using state-of-the-art cal-
cium indicators GCaMP5G (ref. 55) and 
GCaMP6s (ref. 56), respectively. In the 
field of developmental biology, the meth-
ods presented here have previously been 
used for data management, multiview 
fusion, whole-embryo long-term cell 
tracking, as well as data curation and visu-
alization in zebrafish, Drosophila, mouse 
and Platynereis embryos8,39,40,57. For cell 
tracking and cell lineaging applications, 
such as our cell-lineage reconstruction 
of the early Drosophila nervous system,  
our tools are typically most effective for 
image data of organisms ubiquitously 
expressing nuclei-localized fluorescent 
markers. In the following paragraphs, we 
provide information about application 
details specific to individual modules of 
the processing pipeline.

We note that, although our content-
based multiview fusion module does not 
support arbitrary optical geometries, it is 
compatible with some of the most com-
monly encountered light-sheet microscope 
configurations. Aside from the SiMView 
four-view geometry (providing up to four 
camera/light-sheet view combinations 
through the use of two detection arms 
and two light sheets whose optical axes  
are arranged as a cross), it is also possible 

to process data from multiview setups that rely on mechanical 
rotation by 180° to acquire complementary views of the specimen, 
as well as from bidirectional illumination setups that use two 
light sheets along the same illumination axis. Such configurations 
include OpenSPIM setups58,59, as well as commercial light-sheet 
microscopes—e.g., the Lightsheet Z.1 by Carl Zeiss.

Our TGMM software can generally be used to track blob-like 
structures in various types of 2D or 3D time-lapse images, as 
long as object movements between consecutive time points do 
not exceed object size. CATMAID is capable of visualizing arbi-
trary 5D image data, and it allows generating and editing object 
annotations that can be naturally organized in tree-like struc-
tures, thus encompassing essentially any type of segmentation and 
tracking task. CATMAID was initially developed for visualizing 
and annotating large electron microscopy data sets generated in 
the field of connectomics for reconstructing the wiring diagram 
of the brain at nanometer resolution60. This software is thus  
also well suited to microscopy data of neural tissues from light-
based imaging modalities61–63.

Finally, our KLB compression algorithm can be applied to any 
type of image data (consisting of signed or unsigned integers with 
a depth of 8, 16, 32 or 64 bits, as well as 32-bit or 64-bit floating 

table 2 | Memory requirements of image processing pipeline.

computational module
Module  

configurationa
estimated memory  

consumptionb

clusterpt.m

• sCMOS image correction rotationFlag = 0 1.2 × (2n + 2) × S

• Background masking 
• KLB lossless compression

rotationFlag ≠ 0 Up to 1.2 × (2n + 4) × S

clusterMF.m

• Multiview registration Wavelet fusion, 4 views 13.2 × S

• Multiview image fusion Wavelet fusion, 2 views Up to 10.8 × S

Other fusion, 4 views 9.6 × S

Other fusion, 2 views Up to 8.4 × S

clustertF.m

• Multiview image fusion Wavelet fusion, 4 views 9.6 × S

Wavelet fusion, 2 views 7.2 × S

Other fusion, 4 views 6.0 × S

Other fusion, 2 views 3.6 × S

clustercs.m

• 3D drift correction 
• Intensity normalization

All settings 5.5 × S

clusterFr.m

• Local background correction All settings 3.6 × S
The table shows conservative estimates of memory consumption of various core modules of the image processing pipeline.  
The estimate considers all major computations and an additional buffer of 20% to account for minor computations.
aThe configuration setting ‘other fusion’ refers to the use of adaptive blending, geometrical blending or averaging in the modules  
clusterMF.m or clusterTF.m (parameter ‘fusionType’). bThe formulas for estimated memory consumption include two parameters, one 
specific to clusterPT.m (parameter ‘n’) and one that applies to all modules (parameter ‘S’). Parameter ‘n’ is the maximum number  
of image channels that are combined to build segmentation masks in clusterPT.m; i.e., it is equal to the number of columns of  
the matrix ‘references’ if this matrix is not empty, or equal to 1 if the matrix ‘references’ is empty. Parameter S is the size of a  
single-view, single-channel image stack at a single time point, assuming that image data are stored in uint16 format (i.e., S is equal  
to the number of voxels in the image stack times two bytes).
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point data with up to five dimensions), 
irrespective of its source. In principle, any 
type of microscopy data benefit from the 
file size reduction and high read and write 
speeds achieved by KLB. The block-based 
design of KLB is furthermore particularly 
helpful when working with large image 
volumes, such as image data of entire 
developing embryos39, as well as large 
neural tissues or entire brains treated with 
chemical clearing methods61–63, as the 
KLB format provides rapid access to local 
image regions with minimal overhead.

Level of expertise needed to implement 
the protocol
Until recently, access to light-sheet micro-
scopes was largely restricted to research 
laboratories with the expertise required for 
building custom microscopes. However, with the market launch 
of various commercial light-sheet microscopes, such as the Carl 
Zeiss Lightsheet Z.1, this imaging technique is now available to 
essentially all researchers. As discussed above, our software mod-
ules can be applied to data sets produced with both custom and 
commercial microscopes.

As our laboratory consists of researchers with very diverse 
backgrounds, from mathematics and optical physics to biol-
ogy, we took care to build our computational tools such that 
they can be used effectively without the need for a strong com-
putational background. For example, image data in our KLB 
compression file format can be written and read through Fiji 
or MATLAB interfaces in exactly the same way that a TIFF file 
would be written or read. Our content-based MATLAB scripts 
for multiview image fusion are designed such that all configu-
ration parameters are located in a simple MATLAB script that 
launches and manages each processing job automatically. Thus, 
the user essentially just needs to be familiar with the MATLAB 
interface itself and some basic commands for editing end run-
ning MATLAB scripts. When using computer clusters, a higher 
level of expertise is required in order to modify the respective 
support infrastructure provided by our software for submitting 
jobs in a given cluster environment.

Our segmentation and tracking software TGMM follows a simi-
lar design: the executable reads a configuration file that contains 
the parameters set by the user. Moreover, we provide executables 
that allow running our software out-of-the-box on Windows 
operating systems. Linux and Mac OS X users need to compile 
the code once to generate binaries, and thus some familiarity with 
CMake and C++ compilers is required for initial installation. All 
of these steps are documented in detail in our protocol and in the 
manuals included in our software packages.

The step that requires the most computational expertise is the 
setup of the CATMAID software: in addition to the installation 
of the application itself, the use of CATMAID requires setting up 
an HTTP server and a PostgreSQL database. We provide detailed 
documentation of these steps, but we also note that they are usu-
ally carried out by IT personnel or the system administrator of the 
academic institution. Once this initial setup is complete, users can 
simply interact with the program through a web browser, which 
does not require any particular expertise.

Limitations
The segmentation and tracking modules of our processing pipe-
line were designed for cell tracking in images of nuclei-localized 
fluorescent markers. Shapes of cell nuclei in such images can 

Help Tracing tool

XY view

YZ view XZ view

Annotation database

a

b

Figure 6 | Image annotation and editing of cell-
lineage data using CATMAID. (a) Screenshot of 
internet browser showing CATMAID GUI during 
the manual curation of TGMM cell-lineage data 
in a fruit fly embryo. Image data are displayed 
superimposed with cell-lineage data points in 
a tri-view arrangement (XY, YZ and XZ slices of 
the specimen). Both image data and cell-lineage 
annotations are stored remotely on a server to 
avoid data duplication; that is, the same image 
data set can be used for multiple cell lineaging 
projects. The annotation database containing the 
full cell-lineage reconstruction is shown in the 
bottom right corner. (b) Enlarged view of a part 
of the CATMAID toolbar, which provides utilities 
for browsing the image data, as well as accessing 
and editing data annotations.
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typically be well approximated as ellipsoid-like geometries39, 
and this assumption is reflected in the TGMM software by mod-
eling the intensity profile of each nucleus as a 3D Gaussian. 
Thus, the TGMM software will typically not perform as well in 
images of objects with relatively irregular shapes, such as images 
of membrane markers. The other main requirement of the cell 
tracking protocol is that input image data should be well sam-
pled along the time axis. As a rule of thumb, if an object moves 
between two consecutive time points by a distance larger than its 
diameter, the propagation of the associated 3D Gaussian shape 
parameters will probably not be successful. Finally, with regard 
to hardware limitations, execution of the TGMM framework 
requires a computer equipped with a CUDA-enabled nVidia 
graphics card.

As mentioned in earlier sections, there are a few additional limi-
tations with respect to the other parts of our computational pipe-
line. First, our content-based multiview image fusion module does 
not support arbitrary optical geometries (please see ‘Applications 
of the protocol’ for details). Second, although the KLB lossless 
compression file format accepts a range of numerical data types 
(unsigned/signed integers, as well as floating point), best compres-
sion rates are typically obtained only for integer data types. With 
regard to hardware limitations, a computer with multicore CPU is 
required to take full advantage of the read and write speed improve-
ments enabled by the block-based design of our file format. Finally, 
data visualization in CATMAID is limited to orthogonal cuts along 
the three axes of the underlying Cartesian coordinate system; i.e., 
the GUI does not render oblique slices of the image data.

MaterIals
EQUIPMENT
Data files

Data set 1, comprising example data for image masking and KLB image  
compression. This archive is available for download from our laboratory website  
(https://www.janelia.org/lab/keller-lab/software), and it contains a preconfigured  
version of the first module (clusterPT.m) of our MATLAB-based image 
processing pipeline for light-sheet microscopy data sets, all related auxiliary 
functions, a README file with software documentation and the folder Image_
Data with example data. The example data consist of a SiMView four-view 
recording (four image stacks with 125 images each) of a Drosophila embryo  
at an early developmental time point. The data set serve the purpose of illus-
trating image background masking and KLB lossless image compression with 
the MATLAB script clusterPT.m and follow the naming convention outlined 
in the README file. Note that clusterPT.m functionality also includes a dead 
pixel detector for removing respective image artifacts in scientific-grade  
complementary metal-oxide semiconductor (sCMOS) camera image data; 
however, dead pixels have already been corrected in this example data set.
Data set 2, comprising example data for multiview image registration and 
fusion. This archive is available for download from our laboratory website 
(https://www.janelia.org/lab/keller-lab/software), and it contains preconfig-
ured versions of the multiview image registration and fusion modules  
(clusterMF.m, localAP.m, clusterTF.m) of our MATLAB-based image 
processing pipeline for light-sheet microscopy data sets, all related auxiliary 
functions, a README file with software documentation and the folder 
Image_Data with example data. The KLB-compressed example data consist 
of 11 time points of a SiMView four-view recording of an early Drosophila 
embryo processed with clusterPT.m. The data set serves the purpose of  
illustrating multiview image fusion of time-lapse light-sheet microscopy 
data with the MATLAB scripts clusterMF.m, localAP.m and clusterTF.m.

Computer equipment
Hardware requirements. For most benchmarks, the computational pipeline 
was deployed on a computer workstation equipped with two Intel Xeon  
E5-2687W CPUs, 192 GB DDR3 memory, an nVidia Tesla Kepler K20 GPU, 
six Seagate Savvio 10K.5 ST9900805SS hard disks combined in a RAID-6 
data array, an Intel RMS25CB080 RAID module, an Intel X520-SR1 10Gb 
fiber network adapter and Windows 7 Professional 64 bit. For optimal 
processing speed, a good GPU and sufficient memory are of primary im-
portance. The Tesla graphics card can be replaced with a lower-cost GeForce 
GTX Titan graphics card with little performance impact. Minimum require-
ments are an nVidia GPU with CUDA compute capability of 2.0 or higher. 
Information on CUDA compute capabilities of various GPUs is available 
at https://developer.nvidia.com/cuda-gpus. For a particularly cost-efficient 
build, slower CPUs and hard disks will generally suffice, as these compo-
nents will only have a minor impact on processing speed.
The performance benchmarks of the data compaction and multiview 
image fusion modules shown in Table 1 were performed on a computer 
workstation equipped with two Intel Xeon E5-2667V2 CPUs, 256 GB DDR3 
memory, an nVidia Quadro K2000D GPU, six Samsung 840 EVO 1 TB 
solid-state drives (SSDs) combined in a RAID-6 data array, an LSI 2208 
RAID module, an Intel X520-SR1 10Gb fiber network adapter and  
Windows 8 Professional 64 bit.

•

•

•

•

For data visualization, editing and annotation using CATMAID, a server with 
the following hardware components was used: two Intel Xeon E5-2690 CPUs, 
128 GB of DDR3 memory, six Intel 520 Series 480 GB SSDs combined in a 
RAID-6 data array, an Intel RMS25CB080 RAID module, an Intel X520-SR1 
10Gb fiber network adapter and the Linux distribution Ubuntu 12.04 LTS. 
Also in this case, slower CPUs and storage hardware will generally only have a 
minor performance impact. The SSDs constitute the most important hardware 
components as they ensure fast tile retrieval. We note that the same worksta-
tion can be used for CATMAID and for the rest of the computational pipeline
Software requirements. For several parts of our computational framework, 
a MATLAB installation (R2013b or later; MathWorks) is required, including 
the following toolboxes: Curve Fitting, Image Processing, Statistics, Optimi-
zation, Signal Processing and Parallel Computing. We verified compatibility 
specifically for MATLAB version R2013b, but our code should, in principle, 
be compatible with any version above R2011a, without a need for code 
modifications. We also note that the list of MATLAB toolbox requirements 
is based on the full functionality provided by our processing pipeline. Only 
a subset of these toolboxes is required to run the pipeline using typical 
parameter settings. A detailed overview of software and hardware require-
ments for all software packages is provided in Supplementary Table 1. 
Custom software packages are provided as Supplementary Software 1–6, 
and they can also be downloaded at http://www.janelia.org/lab/keller-lab

EQUIPMENT SETUP
Installation of TGMM software Install the nVidia CUDA drivers included  
in the nVidia CUDA Toolkit available from https://developer.nvidia.com/
cuda-toolkit-archive. If you are using a Linux Ubuntu distribution, simply 
execute the following terminal command:

sudo apt-get install nvidia-cuda-toolkit

To run the TGMM software (Supplementary Software 4), an nVidia 
graphics card with CUDA compute capability of 2.0 or higher is needed. 
Information about CUDA compute capability of all nVidia graphics cards is 
available at https://developer.nvidia.com/cuda-gpus.
Installing CATMAID for data visualization and cell-lineage editing 
Download the latest version of the CATMAID branch for cell lineaging at 
https://github.com/catmaid/CATMAID/tree/5d_cell_tracking or clone it with 
the following Git command:

git clone -b 5Dvisualization --single-branch  
https://fernandoamat@bitbucket.org/fernandoamat/
catmaid_5d_visualization_annotation.git

All installation details for Linux can be found in the user guide included in 
Supplementary Software 5, but we note that other operating systems can be 
used as well. Four main modules need to be set up: Django backend for running 
the web application CATMAID; HTTP server for web browsers for interacting 
with the backend; PostgreSQL database for storing all tracking information 
(but not for image data); and Image storage server for storing all image tiles.

It is possible to use a separate computer for storing image data and  
the database containing tracking information, as long as CATMAID has 
access to these data. CATMAID only needs to be installed once, and it can 

•

•

https://www.janelia.org/lab/keller-lab/software
https://www.janelia.org/lab/keller-lab/software
https://developer.nvidia.com/cuda-gpus
http://www.janelia.org/lab/keller-lab
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-gpus
https://github.com/catmaid/CATMAID/tree/5d_cell_tracking
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subsequently be used through a web browser at any time from any location 
in the world with Internet access37. This step of the installation protocol 
requires the highest computational proficiency, and it is usually carried  
out by a system administrator or other IT personnel. In total, it should  
take ~1–3 h to configure all required software components.
Optimizing HTTP server and PostgreSQL database configuration for 
optimal performance of the CATMAID web application It is important to 
optimize the performance of the server in order to ensure the fastest possible 
interaction with CATMAID when visualizing image data and editing cell 
lineages through the web browser. Although there are many possible ways 
to optimize the system, we recommend in particular the following strategies 
that helped increase the performance of our system significantly:

We recommend using SSDs to store the image tiles. These drives should be 
mounted with the options ‘noatime’ and ‘nodiratime’ to avoid unnecessary 
read/write operations while serving image tiles to the web browser.  
Recommendations for further optimization can be found at https://wiki.
debian.org/SSDOptimization.

If you are using the Linux partition format Ext2/Ext3, the i-node  
index descriptor is the main data structure describing files. Each node is  

associated with one file and the block of addresses reserved for a file are 
stored in its index descriptor. However, the maximum number of i-nodes  
is set at the time of disk formatting and cannot be changed thereafter.  
Thus, if there are many small files, one can run out of i-nodes without  
running out of disk space. This scenario is possible for the image server 
because of the large number of tiles needed to partition large-scale  
data sets. Thus, we recommend accounting for an average file size of 4–8 kB  
when formatting the data partition of the image server. For example,  
in our system, the data array with a capacity of 1.7 TB was formatted  
using 268,435,456 i-nodes.

If the server has a large amount of RAM, the extent of data caching  
by the database and the operating system can be increased. Thereby, when 
users request the same image tiles multiple times, the server can retrieve 
them from memory instead of having to access the disk. To enhance caching, 
the following parameters need to be modified: ‘kernel.shmmax’ and ‘kernel.
shmall’ in the file ‘/etc/sysctl.conf ’ and ‘effective_cache_size’ and ‘shared_
buffers’ in the file ‘/etc/postgresql/X.X/main/postgresql.conf ’. Recommen-
dations for further optimization can be found at http://wiki.postgresql.
org/wiki/Tuning_Your_PostgreSQL_Server.

proceDure
Independent pipeline modules
1| The options described here focus on five classes of computational modules. Each of these modules can be executed  
independently or as part of a larger pipeline (Figs. 1 and 2):

option Module Description

1A Lossless image compression  
and/or multiview image  
fusion

We explain how large amounts of image data are efficiently stored and how arbitrary regions 
of interest in large image data are rapidly retrieved using our block-based lossless compres-
sion file format (KLB). We furthermore present MATLAB scripts for content-based registra-
tion and fusion of time-lapse, multiview image data

1B Drift correction and intensity 
normalization

We discuss the use of our MATLAB scripts for drift correction and intensity normalization  
of time-lapse 3D stacks

1C Segmentation and tracking  
with TGMM

We provide protocols for our TGMM software for automated large-scale segmentation and 
tracking of fluorescently labeled cell nuclei

1D Data visualization and editing 
with CATMAID

We present a branch of CATMAID37,38 that facilitates the visualization of five-dimensional  
microscopy data sets and allows editing associated cell tracking results

1E Preparing videos for visualizing 
image data and cell lineage 
reconstructions

We describe MATLAB scripts for importing, analyzing and visualizing large-scale cell lineage 
reconstructions

(a) lossless compression of light-sheet microscopy data and/or multiview image fusion ● tIMInG 5 min for setup, 
0.5–12 h of unattended computer time (depending on data set size)
 (i)  Extract the test data and MATLAB scripts provided in Data set 1 (see ‘Data files’ in the MATERIALS section) to create a 

preconfigured test environment for performing background masking and/or lossless image compression using the KLB 
image format. The test data set included in this archive is a four-view image data set of a Drosophila embryo, which 
was recorded with a SiMView microscope.

 (ii) Open a MATLAB terminal and go to the folder containing the MATLAB scripts.
 (iii)  Run the preconfigured MATLAB script clusterPT.m to verify proper software execution, and confirm that KLB output 

stacks are written to disk (output folder Image_Data.corrected). Note that clusterPT.m can optionally also be  
configured to save output image data in an uncompressed TIFF file format (parameter ‘outputType’). 
 crItIcal step To run clusterPT.m on a new data set, use the code provided in supplementary software 3 (comprising  
the complete MATLAB processing pipeline) and consult the software documentation (README file included with pipeline;  
see also parameter explanations provided in source code) to configure clusterPT.m for your data set (See box 1  
for more information). 
? troublesHootInG 
 pause poInt At this point, the compressed image data can be manually inspected or imported into external 
software (proceed to Step 1A(iv)). If the data set is a multiview data set consisting of up to four views following the 
SiMView convention, image registration and fusion can now be performed by continuing with Step 1A(v). Spatial drift 
correction, intensity normalization or image filtering can be performed by continuing with Step 1B(i). If multiview  

https://wiki.debian.org/SSDOptimization
https://wiki.debian.org/SSDOptimization
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
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image fusion, as well as drift correction, normalization and/or filtering, is required, please follow the instructions  
for multiview image fusion first.

 (iv)  Inspect the output image data generated by clusterPT.m. Once the images are stored in KLB format, they can be  
retrieved using the KLB C++ API provided in supplementary software 1. We also provide wrappers for MATLAB  
and Java, integration with Fiji64 and an interface file for SWIG to autogenerate bindings for other languages  
(supplementary software 1 and 2). The KLB API provides efficient access to arbitrary regions of interest in the  
image volume by using block partitioning of the image data (supplementary note).

 (v)  Extract the test data and MATLAB scripts provided in Data set 2 (see ‘Data files’ in the MATERIALS section) to  
create a preconfigured test environment for multiview image registration and fusion of SiMView-like image data sets 
with up to four views. The test data set included in this archive is a four-view image data set of a Drosophila embryo 
that was processed with clusterPT.m and stored in the KLB format.

 (vi)  Execute the software modules for multiview image fusion. Multiview image registration and fusion consists of three 
steps (MATLAB scripts clusterMF.m, localAP.m and clusterTF.m) when processing time-lapse data sets. When processing 
individual image stacks rather than time-lapse data sets, only the first step (MATLAB script clusterMF.m) is required.  
In order to verify proper software execution and to get familiar with the full software functionality, run the  
preconfigured MATLAB scripts clusterMF.m, localAP.m and clusterTF.m included with the test data in sequential order. 
First, open a MATLAB terminal and go to the folder containing the scripts. 
 crItIcal step To run these MATLAB scripts on new data sets, certain parameters will need to be adjusted  
(See box 2 for more information).

 (vii)  Execute the first script, clusterMF.m. This script generates registered and fused image stacks, which are stored in the 
output folder ‘Image_Data.MultiFused’. The solution provided by clusterMF.m is not guaranteed to be smooth in time, 
as the data at each time point will be processed independently from the rest of the time-lapse data set.

 (viii)  Execute the second script, localAP.m, to evaluate the registration results generated by clusterMF.m. This script  
produces smooth, interpolated parameter sets defining multiview image registration and multichannel/camera  
intensity matching transformations for all time points.

 (ix)  Execute the third script, clusterTF.m. This script uses the information extracted by localAP.m and clusterMF.m in the 
previous two steps to perform temporally smooth multiview image fusion for the entire time-lapse data set. 
 crItIcal step In the example data set, clusterMF.m is executed for all data points of the time-lapse experiment  
for demonstration purposes. When processing a large-scale time-lapse data set consisting of hundreds to thousands  
of time points recorded at high temporal resolution, we recommend running clusterMF.m only for a subset of time 
points (under typical conditions every tenth time point is sufficient) to save computation time and disk space.  
This sparse sampling of the time lapse data set is usually sufficient, as localAP.m will subsequently analyze and  
interpolate the results for smooth fusion of the entire time-lapse data set via clusterTF.m. The only exceptions to  
this rule are data sets in which temporal sampling is coarse and specimen shape and/or position changes drastically 
from one time point to the next. In this latter scenario, execution of clusterMF.m for all time points may improve  
image quality. It is important to keep this division of labor in mind, as execution of clusterMF.m is considerably  
more time-consuming per time point than execution of clusterTF.m. 
? troublesHootInG 
 pause poInt At this point, the fused image data can be manually inspected, used for data analysis or imported 
into external software. Spatial drift correction, intensity normalization or image filtering can be performed by  
continuing with Step 1B(i).

Box 1 | Lossless compression and background masking of new image data sets
Verify that your input data follow the input data formatting requirements detailed in the README file and that all formatting  
parameters are correctly defined in clusterPT.m. KLB image compression is enabled or disabled via the parameter ‘outputType’.  
Background masking is configured via the parameters ‘segmentFlag’ and ‘thresholds’. The compressed image data, as well as associated 
foreground information and metadata, are stored in a new output folder, whose name is constructed by concatenating the input  
folder name with the extension ‘.corrected’. In addition, maximum-intensity projections of the output image data are stored in an  
output folder with the extension ‘.corrected.projections’.
 Background masking is optional but important for maximum lossless data compression and data access speeds in subsequent  
steps of the pipeline (Figs. 3 and 4). The parameter ‘thresholds’ is crucial for achieving good foreground and background segmentation,  
and it should be carefully adjusted for each set of experiments to obtain optimal results. Note that background masking will overwrite 
background regions of the image data with zeros, but it will not alter image foreground (Fig. 2), unless the adaptive threshold level 
defined in ‘thresholds’ is set too high.
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(b) spatial drift correction, intensity normalization and image filtering ● tIMInG 10 min for setup, 0.5–12 h of  
unattended computer time (depending on data set size)
 (i)  Extract the code provided in supplementary software 3 (comprising the complete MATLAB processing  

pipeline) in order to start using the software modules for 3D spatial drift correction, intensity normalization  
throughout a time-lapse image data set and/or image filtering for adaptive local background correction.  
The output from Step 1A(ix) can be used in this section as an example. Proceed to Step 1B(ii) for drift  
correction and/or intensity normalization. Proceed to Step 1B(iv) for image filtering for adaptive local  
background correction.

 (ii)  Consult the software documentation (README file included with pipeline; see also parameter explanations provided  
in source code) to configure and run localEC.m. localEC.m is a data analysis script that preprocesses the time-lapse 
data set for subsequent 3D spatial drift correction and/or intensity normalization with clusterCS.m in Step 1B(iii). 
Verify that all formatting parameters are correctly defined. localEC.m provides the parameters ‘intensityFlag’ to  
enable/disable intensity normalization and ‘correlationFlag’ to enable/disable 3D drift correction.

 (iii)  Run clusterCS.m script. Once the corresponding intensity/drift information has been collected by localEC.m (previous 
step), compensatory image adjustments can subsequently be applied by clusterCS.m using the parameters ‘correctDrift’ 
to execute drift correction (using the parameter ‘referenceTime’ as a temporal anchor, that is, as the time point  
relative to which adjustments of data at all other time points are performed) and ‘correctIntensity’ to execute  
intensity normalization. 
 crItIcal step The scripts localEC.m and clusterCS.m use multiple complementary strategies to estimate  
short-term specimen fluctuations and long-term specimen drift, respectively. The former is computed via image  
correlation (which provides accurate frame-to-frame corrections but can introduce long-term drift), whereas the  
latter is estimated based on computation of the geometrical center of the specimen (which captures long-term drift 
but is too noisy for frame-to-frame corrections). The combination of both methods provides optimal short-term and 
long-term drift correction, and it is enabled by setting the parameter ‘globalMode’ to 1.

 (iv)  Consult the software documentation (README file included with pipeline; see also parameter explanations provided in 
source code) to configure and run clusterFR.m for your data set. clusterFR.m uses Gaussian filtering for adaptive local 
background subtraction and generates filtered image stacks and/or maximum-intensity projections of filtered image 
stacks. The radius used for anisotropic Gaussian filtering is defined in the parameter ‘rangeArray’. 
 crItIcal step Note that clusterFR.m is implemented primarily for image visualization purposes and, owing to the 
local nature of the image corrections, it is not recommended in a workflow for quantitative image analysis. 
 pause poInt At this point, the drift-corrected, normalized and/or filtered image data can be manually inspected, 
used for further data analysis or imported into external software.

Box 2 | Multiview fusion of new image data sets
To run the scripts on a new data set, use the code provided in supplementary software 3 (comprising the complete MATLAB  
processing pipeline) and consult the software documentation (README file included with the pipeline; see also parameter explanations 
provided in source code) to configure each script for your data set. Verify that all formatting parameters are correctly defined.
 A few critical parameters may need to be changed in each script. In particular, formatting parameters defining the location  
and properties of the input image data generally need to be updated for each new run. We also note that, if background masking 
was disabled in the preceding clusterPT.m processing step, the parameter ‘maskFactor’ is used to define the adaptive threshold 
level for background masking in clusterMF.m. Background masking in one of the two modules is required for estimating the  
geometrical specimen outline. This information is needed for modeling the illumination and detection path lengths inside the  
sample and, thus, for rapid and optimal assessment of relative image quality in the various views as a function of location in  
the specimen. clusterMF.m and clusterTF.m furthermore provide the parameter ‘fusionType’ for defining the type of image fusion 
applied after image registration (options include adaptive blending, geometrical blending, wavelet fusion and averaging).  
Adaptive and geometrical blending are stitching methods, whereas averaging and wavelet fusion use information from the  
entire volume in all views. We generally recommend blending for optimal image quality and processing speed in SiMView-type  
four-view data sets. Wavelet fusion is computationally much more costly, and it has a tendency of introducing fusion artifacts, 
such as ringing, but it maintains the same signal-to-noise ratio throughout the image volume, including the region in which 
stitching methods would otherwise introduce a blending seam. Averaging is comparable to stitching with respect to processing 
speed, and it can be more robust when specimens are only very sparsely labeled, but image quality is generally inferior to  
stitching methods. Information about the microscope setup, specifically the relative orientation of light sheets and cameras,  
is provided in the parameters ‘leftFlags’, ‘flipHFlag’, ‘flipVFlag’, ‘frontFlag’, ‘xOffsets’ and ‘yOffsets’. If the data set is not a  
time-lapse data set, the scripts localAP.m and clusterTF.m can be skipped.
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(c) automated segmentation and tracking with tGMM ● tIMInG 5 min for setup, 0.5–5 h of unattended computer 
time (depending on data set size)
 crItIcal step The protocol described here describes how to run ‘TGMM’ for the test data set included in supplementary 
software 4 to verify that it executes correctly on your workstation. Users of Windows 7 64-bit machines can directly use 
the precompiled binaries located in the folder ‘bin’. Users of other operating systems, such as Linux, first need to compile 
the code according to the instructions provided in the README file. In order to run the software on a new data set, use the 
configuration file ‘TGMM_configFile.txt’ provided with the test data set as a template and modify parameters as needed  
(See box 3 for details).
 (i)  Run the program ‘ProcessStack’ to generate a hierarchical segmentation for each time point. The software  

documentation explains how to parallelize the execution of this program on all time points using simple scripts  
in Unix and Windows. 
 crItIcal step Note that running the hierarchical segmentation algorithm in parallel for multiple time  
points might use all available computing resources. Thus, while the segmentation algorithm is running,  
the performance of other applications on this computer may be affected. The TGMM software package also  
includes the program ‘ProcessStack_woGPU’, which offers the same functionality as ‘ProcessStack’ but does  
not require an nVidia GPU. This executable is useful for distributing the hierarchical segmentation task in  
cluster environments. 
 crItIcal step Step 1C(i) only needs to be repeated if the parameter ‘backgroundThreshold’ or any of the  
advanced parameters in the hierarchical segmentation category are changed in the file ‘TGMM_configFile.txt’.  
Otherwise, the existing binary files can be reused to run the tracking module multiple times with different  
parameter settings. 
 pause poInt Segmentation results are stored in binary files with the suffix ‘hierarchicalSegmentation’  
(one per processed time point) in the same folder as the original image. These binary files contain all possible  
segmentations for different values of ‘persistanceSegmentationTau’. Proceed to Step 1C(ii) to continue with  
automated cell tracking.

 (ii)  Run the program ‘TGMM’ to segment and track cells for all time points. This algorithm uses the binary files generated  
in the previous step to define super-voxels. 
? troublesHootInG 
 pause poInt At this point, cell lineaging results are stored as XML files (one per processed time point). Proceed to 
Step 1D(i) to continue with data visualization and editing of the automatically generated tracking results, or proceed 
to Step 1E(i) to continue with the analysis of cell tracks.

(D) Visualizing and editing lineaging results using catMaID ● tIMInG 0.5–4 h (depending on data set size)
 crItIcal step The protocol described here explains how to use the CATMAID browser interface for visualizing and editing 
cell tracks. Before executing this protocol, make sure to install and configure the CATMAID backend service according to the 
instructions in Equipment Setup.

Box 3 | TGMM parameter optimization 
The threshold for persistence-based agglomeration of watershed regions (‘persistenceSegmentationTau’) and the intensity threshold 
for defining the background level of the image data (‘backgroundThreshold’) are the two most important adjustable parameters of the 
TGMM software. Both relate to image properties and are straightforward to determine by visual inspection of the image data at a late 
time point of the time-lapse recording. We found that inspecting late time points is generally most useful, in particular if intensity 
levels become lower and cell densities become higher as time progresses. Measurements in this latter scenario provide a lower bound 
constraint for both parameters.
 To determine the background threshold, inspect a region of the image volume located outside of the specimen (for example, by using 
the open-source software ImageJ65) and measure the mean intensity level in this background region. It is preferable to be conservative 
in this assessment—i.e., to set the background threshold to a relatively low level. This setting minimizes the number of missed cell 
nuclei and reduces false negative detections, which can otherwise affect coherence between time points. To determine the threshold 
for persistence-based agglomeration of watershed regions, plot the intensity profile along a line connecting the centroids of two of 
the dimmest nuclei in the image stack (for example, by using ImageJ65). The profile should exhibit two peaks (nuclei centroids) and a 
valley in between (nuclei boundaries). The threshold should be set to a value smaller than the difference between the intensity values 
of the peaks and the valley. This setting ensures that the corresponding nuclei are not merged to a single super-voxel (undersegmenta-
tion). In our experience, a value between 5 and 20 of the parameter ‘persistenceSegmentationTau’ tends to be sufficient to compensate 
for watershed oversegmentation of noisy regions, without risking merging of dim cell nuclei. We furthermore note that one can usually 
obtain close-to-optimal results for a fairly wide range of parameter values39, although care should be taken to set these parameters 
appropriately.
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 (i)  Run the MATLAB script ‘generateTilesFromFolder’ provided in supplementary software 6 to transform all image  
stacks from Step 1A(ix) into sets of tiles that can be read and requested by the browser through its connection  
to CATMAID. The README file accompanying the script, as well as the user guide, provides instructions for setting  
each parameter. 
 crItIcal step The script needs to be executed on a computer with write access to the image server in order to 
save the newly generated image tiles. 
? troublesHootInG

 (ii)  Log on to the CATMAID administrator website and select the option ‘Add’ in the Stack menu. A form requesting details 
about the image data generated in Step 1D(i) will appear in the browser. Completing this form creates a new entry  
in the CATMAID database with information about location and attributes of the image tiles. The documentation  
at http://catmaid.org/importing_data.html provides more details on how to perform this step. 
 crItIcal step The parameter ‘Tile source type’ needs to be set to 5 to inform CATMAID that the images contain 
temporal information. 
 crItIcal step The parameters ‘Num zoom levels’ and ‘Tile size’ need to match the settings specified in the  
previous step. 
 pause poInt Partitioning image data into tiles only needs to be done once for each data set. Tiles are stored  
in the image server accessible by CATMAID and reused every time a new set of cell tracks is uploaded, thus avoiding 
image data duplication.

 (iii)  Log on to the CATMAID administrator website and select the option ‘TGMM importer’ in the Custom Views menu.
 (iv)  Specify where the XML files are located (field ‘Xml basename’) and which image data set should be associated with  

the XML files (‘Dataset id’ from Step 1D(ii)). The field ‘Project name’ allows assigning a unique name to this  
cell-lineage reconstruction. 
 crItIcal step The XML output files from Step 1C(ii) need to be copied to a location at which CATMAID can  
read from. 
? troublesHootInG 
 pause poInt Tracking information is stored in the CATMAID database, and it can be edited, analyzed or  
visualized at any time.

 (v)  Open a browser and enter the URL of the web application CATMAID containing your data.
 (vi)  Select the project that you would like to work on. 

? troublesHootInG
 (vii)  Use the sliders on the toolbar to navigate the image data in five dimensions. In order to visualize and manipulate  

the cell tracking information, select the ‘Tracing tool’ in the toolbar. Note that a click on the ‘?’ icon will display  
all possible actions in each view. CATMAID offers many different types of editing and visualization operations  
for the cell tracking data (add/delete edge or point, display lineage, show orthogonal planes, etc.). A comprehensive 
documentation of all functionality can be found at http://catmaid.org/ and in the user guide included in  
supplementary software 5. 
 crItIcal step We recommend periodic backups of the CATMAID database (at least once a week) in order to  
minimize the risk of data loss. As the database only contains points in object space (i.e., no image data), the size  
of these backups is typically fairly small. 
 pause poInt This step can be interrupted at any time. Every time an operation is performed by the user, the 
change is immediately stored in the CATMAID database and an entry is added to the log table. Thus, work on a  
specific project can be resumed at any time.

(e) Importing tracking information into Matlab and preparing videos for visualizing image data and cell-lineage 
reconstructions ● tIMInG 5 min
 crItIcal step Segmentation and tracking results can be imported into MATLAB at different stages of the pipeline.  
If you would like to analyze the output from Step 1D(vii), then proceed to Step 1E(ii). If you would like to analyze the  
output from Step 1C(ii), then proceed to Step 1E(iii).
 (i)  Extract the contents of the archive provided in supplementary software 6 or download the MATLAB scripts for  

interacting with the PostgreSQL database accessed by CATMAID for storing lineage information using the following  
Git command:

git clone https://fernandoamat@bitbucket.org/fernandoamat/catmaid-matlab-code.git

 (ii)  Use the MATLAB script ‘scriptRetrieveNodeWithTag’ to import all data points of a specific project from the CATMAID 
database into MATLAB. The README file accompanying the script provides documentation on how to set each of the 

http://catmaid.org/importing_data.html
http://catmaid.org/
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required parameters. The script returns an N × 10 MATLAB array, where N is the number of data points in the database 
for the requested project. The ten columns contain the following information:

column contents

1 Unique ID used to identify the cell nucleus data entry in the database (a large integer number)

2 Cell type (represented by an integer). The value is set to 0 if no cell type has been assigned to this object

3 x location of the nucleus centroid in world coordinates. Use the resolution information provided in variable 
‘stackRes’ to convert from world coordinates to pixels

4 Same as 3 but for y location

5 Same as 3 but for z location

6 Estimated radius of the nucleus. The value is set to 0 if a radius estimate is not available

7 ID of the corresponding cell at the previous time point. The value is set to –1 if there is no linkage to the previous 
time point. Otherwise, the value is set to the unique ID of the parent of the cell identified in column 1. Following 
the path of these parent/daughter assignments allows reconstructing the complete cell lineage information

8 Experiment time point at which the cell nucleus has been detected

9 Confidence level for the tracking result. A value of 3 indicates high confidence that the object was correctly 
tracked. A value of 0 indicates low confidence

10 Skeleton ID. All data points belonging to the same cell lineage have the same unique skeleton ID

 (iii)  Import tracking information from TGMM into MATLAB. The output from Step 1C(v) is stored in XML files that  
can be imported into the same type of MATLAB array, as described in the previous step. This import functionality  
is provided by the script ‘parseMixtureGaussiansXml2trackingMatrixCATMAIDformat’. We note, however, that  
this MATLAB array format does not cover all of the information present in the XML files. For example,  
super-voxel segmentation information is lost. To import all available information into MATLAB, execute the  
script ‘readXMLmixtureGaussians’ for each time point. This script returns a structure mimicking the attributes of  
the XML file for each database object. More information about the various attributes can be found in the  
documentation accompanying the script. 
 crItIcal step The XML files were generated using C++ code, in which indices start at 0. In contrast,  
MATLAB convention has indices start at 1. Thus, for code written in MATLAB, all indices need to be offset by +1.  
For example, if the parent ID is 3, the index 4 needs to be used in MATLAB in order to retrieve the correct  
cell-lineage information from the MATLAB structure.

 (iv)  Prepare videos for visualizing image data and cell-lineage reconstructions. Once the data have been imported into 
MATLAB as an N × 10 array (as described in Step 1E(iii)), the cell-lineage information can be visualized in a variety 
of ways. For data visualization using the commercial software package Imaris, we provide export scripts that enable 

Lateral view

Ventral view

t18

t50

t94

t236

3:04

3:20

3:42

4:53

Dorsal view Ventral view

a bFigure 7 | Application example in Drosophila 
development. (a) Maximum-intensity projections 
of image data at four time points of a SiMView 
time-lapse data set of Drosophila embryonic 
development8,39 (left, dorsal view; right, ventral 
view). The complete data set comprises 2,881 
time points (each consisting of a four-view 
recording of the embryo with 4 × 154 images) 
recorded in 30-s intervals, and it was processed 
with the pipeline presented in Figures 1 and 2.  
The total data set size is 4.35 TB (1,774,696 
images). The age of the nuclei-labeled  
(His2Av-mRFP1) embryo is shown in hours  
and minutes after egg laying in the bottom  
right corner of the dorsal view panels.  
(b) Visualization of a cell-lineage reconstruction 
of early nervous system development in the Drosophila ventral nerve cord. The cell-lineage reconstruction was performed with TGMM and CATMAID,  
using the data set visualized in a. The data were rendered with Imaris, using microscopy image data at time point (t) 50 (see second row in a). Green 
spheres represent the positions of progenitor cell nuclei at time point 50. Lines represent complete cell tracks using a color code to indicate time (from 
purple to yellow: 2.9–5.4 h after egg laying). Scale bars, 50 µm.
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the data transfer of cell tracks to Imaris. This approach enables joint rendering of microscopy data and cell-lineage 
information (Fig. 7). The ImarisXT interface and the scripts provided in supplementary software 6 are required to 
establish communication between MATLAB and Imaris.

 (v)  Open a single Imaris session (if there is more than one active Imaris session, the MATLAB script will not know which 
session the data need to be exported to).

 (vi)  In Imaris, open the time-lapse microscopy image data used for cell tracking, and click on the Surpass Scene folder so 
that it is highlighted.

 (vii) Without closing Imaris, switch to a MATLAB terminal and import the cell tracking data, as described in Step 1E(iii).
 (viii)  Execute the MATLAB script ‘parseCATMAIDdbToImarisMultiSpots’. Once the script execution has finished, a new Imaris 

spot object will appear in the Imaris window for each imported cell lineage. 
? troublesHootInG

 (ix) Save the Imaris project to store the imported cell lineage information.

? troublesHootInG
Troubleshooting advice can be found in table 3.

table 3 | Troubleshooting table.

step problem possible reason(s) solution

1A(iii) MATLAB script clusterPT.m 
stops with an error displayed 
in MATLAB command window

Input data are not correctly  
formatted for clusterPT.m

Make sure that your image data set has been  
formatted according to the specifications provided  
in the README file (see section ‘Part I’) and  
that background images and XML files are present  
as well

1A(ix) The MATLAB scripts clusterMF.m,  
localAP.m or clusterTF.m stop 
with an error displayed in the 
MATLAB command window

Data paths or image channel/camera 
configuration are set incorrectly

Check the parameters defining the data loca-
tions (‘inputString’, ‘outputString’, ‘sourceString’, 
‘inputID’, ‘outputID’, ‘lookUpTable’) and image 
channel/camera configuration (‘specimen’, ‘cameras’, 
‘channels’, ‘sChannels’, ‘tChannels’) in clusterMF.m, 
localAP.m and clusterTF.m

Image fusion of a time-lapse 
multiview data set produces 
images that are not smooth 
in time

Smoothing window size in localAP.m 
is too small. 
Time points are sampled too infre-
quently in clusterMF.m

Increase the smoothing window size in  
localAP.m (second value in vector smoothing)  
and rerun clusterTF.m. The effects of changing  
the smoothing window size or the averaging  
ranges defined in localAP.m are shown in the  
MATLAB plots displayed for each transformation  
parameter (blue lines indicate input data  
collected by clusterMF.m, red dashed lines indicate 
smooth output data provided to clusterTF.m).  
If adjusting smoothing and averaging parameters  
in localAP.m does not resolve the issue, try  
increasing the sampling frequency of the  
time-lapse experiment in clusterMF.m and rerun  
localAP.m and clusterTF.m

1C(ii) TGMM software stops with  
a run-time error displayed in 
the terminal window

nVidia CUDA drivers are not  
up-to-date. 
Image path is incorrect

Consult the section ‘Troubleshooting common 
run-time errors’ in the README file included in 
supplementary software 4. This section provides 
solutions to the most commonly encountered TGMM 
run-time errors

1D(i) The MATLAB script for image 
tiling stops with an error  
displayed in the MATLAB  
command window

The user does not have write  
permission to the image server  
associated with CATMAID

Make sure to enable write permissions (for the  
output path provided in the MATLAB script) for  
the user executing the tiling script

(continued)
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table 3 | Troubleshooting table (continued).

step problem possible reason(s) solution

1D(iv) CATMAID TGMM importer 
displays error message ‘504 
Gateway Timeout Error’

The amount of time needed for 
importing a large number of cell 
tracks can exceed the default timeout 
setting of the browser

If the number of tracked objects is relatively large, 
it is usually not possible to upload all data to the 
CATMAID database before encountering a browser 
timeout. However, even if a timeout message is 
being displayed, the data are still being uploaded. 
The file ‘progressReportFile.txt’, located in the same 
folder as the XML output files, monitors the status 
of the data transfer. You can consult this log file to 
determine when all data points have been uploaded 
to the database

1D(vi) The CATMAID home page  
does not show your project

The user is not logged in or does  
not have permission to access  
the project

Make sure that you are logged in as a user  
(this information is provided in the top right  
corner of the browser window) and that you have 
permission to access the project

1E(viii) The MATLAB script for  
exporting tracks to Imaris 
stops with an error message

The path to Imaris XT Java library is 
set incorrectly in the MATLAB script

Open the MATLAB file ‘openImarisConnection.m’  
and verify that line 5 contains the correct path  
to the Imaris XT Java library

● tIMInG
Step 1A, lossless image compression and/or multiview image fusion: 5 min for setup, and 0.5–12 h of unattended  
computer time (depending on data set size)
Step 1B, drift correction and intensity normalization: 10 min for setup, and 0.5–12 h of unattended computer time  
(depending on data set size)
Step 1C, segmentation and tracking with TGMM: 5 min for setup, and 0.5–5 h of unattended computer time (depending  
on data set size)
Step 1D, data visualization and editing with CATMAID: 0.5–4 h (depending on data set size)
Step 1E, preparing videos for visualizing image data and cell-lineage reconstructions: 5 min

antIcIpateD results
By following the steps in this protocol carefully, the user should expect to be able to convert microscopy data sets of  
animal development with up to several terabytes of image data per experiment into curated cell-lineage reconstructions  
(Fig. 7). A single computer workstation is sufficient for the routine use of the presented computational framework at all 
stages of the protocol. The raw microscopy image data are efficiently stored in the KLB lossless image compression format. 
If multiview image data recorded with a SiMView-like microscope is used as a starting point, our pipeline enables rapid 
content-based multiview registration and fusion. Together, these steps reduce typical multiterabyte light-sheet microscopy 
data sets to a few tens of gigabytes of compressed image data, thus efficiently eliminating data storage bottlenecks without 
data loss. After these initial data management steps, our image processing and data analysis protocol leads to a CATMAID 
database that contains comprehensive cell-lineage information for the reconstructed data set, including a log of all edits 
performed by each user. The MATLAB scripts included in this protocol can be used to visualize final results and to generate 
publication-quality videos. They also facilitate data import into a MATLAB array, which gives access to a wide spectrum of 
further analyses, such as computation of cell-lineage statistics or investigation of morphodynamic features, including cell 
cycle lengths, cell velocities and temporal changes in gene expression levels in each tracked cell lineage.

When using KLB lossless compression in combination with background masking, a 10–200-fold reduction in data size can 
be expected for typical fluorescence microscopy recordings (Figs. 3 and 4; and 30- to 500-fold with additional multiview  
image fusion). Aside from reducing storage capacity needs, KLB image compression also helps improve data transfer  
rates and access speed. The TGMM software is capable of segmenting and tracking ~26,000 cells per minute on a single  
workstation39, with an average linkage accuracy ranging from 99% for zebrafish embryos to 90% for mouse embryos.

In our experience, novice users can usually familiarize themselves with the overall pipeline within a few days (see ‘Level  
of expertise needed to implement the protocol’ in the INTRODUCTION for specific details), as most of the scripts used in  
this protocol simply require adjusting a few parameters. If completely error-free cell-lineage reconstructions are required,  
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the most time-intensive part of the protocol is the manual curation of cell -lineage results produced by the TGMM software.  
This task is facilitated by the web application CATMAID, which enables typical data curation rates of ~1,400 data points  
per hour and thus offers the possibility of system-level cell lineaging. For example, a fully curated cell-lineage reconstruction 
of the early Drosophila nervous system, tracking 92% of S1 neuroblasts from their blastoderm origins up to their second  
cell division (over 116,000 data points spanning more than 300 time points), was performed within 3 weeks39.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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