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During development, different cell types must undergo distinct morphogenetic programs so that tissues
develop the right dimensions in the appropriate place. In early eye morphogenesis, retinal progenitor cells
(RPCs) move first towards the midline, before turning around to migrate out into the evaginating optic
vesicles. Neighbouring forebrain cells, however, converge rapidly and then remain at the midline. These
differential behaviours are regulated by the transcription factor Rx3. Here, we identify a downstream target
Keywords: of Rx3, the Ig-domain protein Nlcam, and characterise its role in regulating cell migration during the initial
Eye development phase of optic vesicle morphogenesis. Through sophisticated live imaging and comprehensive cell tracking
Rx3 experiments in zebrafish, we show that ectopic expression of Nlcam in RPCs, as is observed in Rx3 mutants,

4D imaging causes enhanced convergence of these cells. Expression levels of Nlcam therefore regulate the migratory
Morphogenesis properties of RPCs. Our results provide evidence that the two phases of optic vesicle morphogenesis: slowed
Adhesion convergence and outward-directed migration, are under different genetic control. We propose that Nlcam
forms part of the guidance machinery directing rapid midline migration of forebrain precursors, where it is
normally expressed, and that its ectopic expression upon loss of Rx3 imparts these migratory characteristics

upon RPCs.
© 2010 Elsevier Inc. All rights reserved.
Introduction Brown, 2002; Geiger et al.,2001) and members of the immunoglobulin

Shaping the developing embryo requires the orchestration of
complex morphogenetic events, ranging from cell shape changes and
folding of epithelia, to cell rearrangements and migration. Together,
these determine the shape, size and position of body parts and
organs. These cell movements must be very tightly coordinated in
space and time, and this involves the dynamic transcriptional
regulation of effector genes that control cell shape, polarity, adhesion
and migration.

Cellular adhesion is central to many aspects of morphogenesis. Cell
shape change, rearrangement and migration all depend critically on
linking the cytoskeleton of a cell to its external substrate-either
another cell or the extracellular matrix (ECM)-and this is achieved
primarily by adhesion molecules. There are several major families of
cell adhesion molecules (CAMs), the most prevalent being cadherins
(Halbleib and Nelson, 2006; Tepass et al., 2000), integrins (Bokel and
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(Ig)-domain superfamily (Rougon and Hobert, 2003). Dynamic
modulation of the expression levels and subcellular localisation of
these various factors is crucial to allow morphogenetic processes to
occur.

The vertebrate eye provides an attractive model for the study of
morphogenesis. After specification of the eye field within the neural
plate, the tissue undergoes a series of complex morphogenetic
events, forming the bilateral optic cups (reviewed in (Adler and
Canto-Soler, 2007; Chow and Lang, 2001). The transparent teleost
embryos provide a particularly amenable paradigm for analysis of
these processes, and detailed descriptions of retinal morphogenesis
are available (Li et al., 2000; Schmitt and Dowling, 1994). However,
the underlying cellular mechanisms have only recently begun to be
investigated (Cavodeassi et al., 2005; England et al., 2006; Rembold
et al., 2006b). In teleosts, where the morphogenesis has been most
extensively studied, the eye field originates as a contiguous group of
cells, flanked by telencephalic cells anteriorly and laterally, and
diencephalic precursors to the posterior (Woo and Fraser, 1995).
The initial specification of the eye field, regulated by transcription
factors such as Six3 and Pax6, requires the sorting out of retinal vs.
non-retinal cells—a process directed by Eph-Ephrin mediated cell-
cell adhesion (Cavodeassi et al., 2005; Moore et al., 2004).
Subsequent formation of the optic vesicles is a two-step process,
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beginning while cells of the neural plate are still converging to the
midline. Firstly, RPCs converge more slowly than the surrounding
forebrain cells, creating a wider domain from which the optic
vesicles will emerge. Subsequently, individual outward-directed
migration of RPCs drives the splitting of the eye field and vesicle
evagination. Concomitant to these RPC movements, the forebrain
takes shape: lateral telencephalic cells converge rapidly towards the
midline and diencephalic cells move anteriorly, filling the gap
created by the splitting retinal field (England et al., 2006; Rembold
et al., 2006b).

The Rx transcription factors play central roles in eye development.
In Xenopus, fish and mouse, disruption of Rx gene function leads to
small or absent eyes (Andreazzoli et al., 1999; Kennedy et al., 2004;
Loosli et al., 2003, 2001; Mathers et al., 1997). Teleosts have three Rx
genes, of which Rx3 is expressed earliest in the presumptive eye field.
In both zebrafish and medaka, null mutants for rx3 have no eyes. RPCs
are specified, but fail to undergo morphogenesis and remain trapped
within the forebrain (Loosli et al., 2003; Stigloher et al., 2006; Winkler
et al., 2000). 4D imaging analysis has revealed the cellular basis of
these morphogenetic defects in the medaka eyeless mutant (Rembold
et al,, 2006b): the mutant retinal cells converge fully towards the
midline, and fail to migrate outwards, instead forming an epithelia-
lised neural keel-like structure, similar to the surrounding forebrain
cells. Rx3 thus influences both steps of optic vesicle morphogenesis,
convergence and evagination.

The functions of Rx1 and Rx2 are less clear; in zebrafish, their
expression is dependent upon Rx3 (Loosli et al., 2003), and over-
expression of either can induce retinal cell fate (Chuang and
Raymond, 2001). However, morpholinos directed against either
paralog (or both in combination) does not give an early morphoge-
netic phenotype (Rojas-Munoz et al., 2005). The degree of redundan-
cy between these three paralogous genes, however, remains to be
fully determined. In Xenopus, where there are two Rx paralogs, Rx1
has been shown to be important for RPC proliferation, and also directs
their migration (Kenyon et al., 2001; Zaghloul and Moody, 2007). In
mammals, despite the differences in how morphogenesis occurs (via
an outpocketing of the neural epithelium, rather than by individual
cell migration), the function of Rx in directing retinal fate and
morphogenesis is conserved (Mathers et al., 1997; Medina-Martinez
et al., 2009). This conservation is underscored by the fact that
mutations in human Rx have been associated with anopthalmia
(Voronina et al., 2004).

To date, few targets of Rx genes have been postulated. Manipula-
tion of Rx levels affects the expression patterns of various transcrip-
tion factors, neurogenic genes and cell cycle regulators (Andreazzoli
et al., 1999, 2003; Kennedy et al., 2004; Loosli et al., 2003, 2001;
Winkler et al., 2000; Zhang et al., 2000). However, it remains unclear
whether any of these factors are direct transcriptional targets of Rx.
Moreover, since none of these factors are morphogenetic effectors,
they cannot account for the morphological defects of Rx mutants.

In the case of Rx3, the downstream targets, either direct or
indirect, should include factors that influence cell migration. Among
these are likely to be adhesion molecules, whose differential
expression in wild-type (wt) and rx3~ embryos may help to
explain the altered behaviour of mutant cells. Here, we identify one
such factor: the Ig-domain CAM Nlcam (Mann et al., 2006), which
shows elevated expression in the eye field of zebrafish rx3/chk
mutants. Ectopic over-expression of Nlcam causes a small-eye
phenotype, mimicking the chk mutant. Through live imaging and
cell tracking experiments, we demonstrate that Nlcam modulates
the migration of RPCs during the initial phase of midline
convergence. Consistent with this, loss of nlcam function leads to
delayed convergence of lateral forebrain cells. Our results provide
the first link between Rx3 and the downstream cellular machinery
responsible for controlling the differential migratory behaviour of
forebrain and eye cells.

Materials and methods
Fish husbandry

Zebrafish stocks were maintained at 26 °C, and embryos raised at
28 °C. WIK/AB was used as a wt line. Rx3: :GFP transgenic fish were
obtained by injecting pBS-IScel OIRx3::GFP (Rembold et al., 2006b)
into wt embryos. Progeny with strong, eye-specific GFP expression
were selected and the line maintained. The chk®>**° line (Loosli et al.,
2003) was used.

Cloning

The nlcam cDNA (coding region plus partial 5’ and 3’ UTRs) was
amplified by RT-PCR from wt cDNA, using the following primers:

Nlcam-F: AATTTACTGACGTACGCAAC
Nlcam-R: ACAGCTTCTGACTCCATTI

The resulting 1.9 kilobase pairs (kb) product was cloned into pCS2
for mRNA synthesis. The nlcam-GFP fusion was generated by PCR-
cloning the nlcam coding region (minus the stop codon) into pEGFP-
N1 (Clontech). The fusion was subcloned into pCS2 for mRNA
synthesis. Rx3: ‘nlcam was generated by replacing GFP in pBS-IScel
Rx3: 'GFP by the 1.9 -kb nlcam cDNA. Partial clones of ncam2, ncam3
and mcam for in situ hybridization probes were amplified from wt
cDNA using the following primers:

Ncam2-F: TTCGGCAGGGTGAGGTGGCTGAAGTGGTCT
Ncam2-R: ATTGATTGGCGTGTTCTTGCTTGTATTCTC
Ncam3-F: CGCCATTATCGTGTGTGATGTCATAAGCTC
Ncam3-R: TGATTAGCTGTGGCCTCTTCTTCAGTCCTC
Mcam-F: TGGCGAGAGGGATTTAATAAGCGATGA
Mcam-R: CCTTTGACATTGTTTGAAAGAAAATGCGAG

The products were Topo-cloned into pCRII-TOPO (Invitrogen).
In situ hybridisation

In addition to the amplified cDNAs, the following clones were used
to synthesise probes: alcam (BC050482); e-cadherin (Al629129);
bcam (CN831659); integrinB31b (BQ075715); integrin34 (BI840449);
integrinB5 (BC124678); emx3 (C0959873)—all obtained from
ImaGenes (www.imagenes-bio.de). The n-cadherin cDNA was given
by JD Jontes (Jontes et al., 2004), and subcloned into pBS SK+. The
ncam cDNA was a gift from D. Grunwald.

Whole mount in situ hybridisations were carried out on the
progeny of chk/ + intercrosses, using Digoxigenin-labelled probes, as
described previously (Loosli et al., 1998). Embryos were sectioned by
embedding in gelatin/albumen, and 25-um vibrotome sections were
cut.

Rx3 binding site predictions

The mouse RAX consensus binding site previously identified
(Berger et al., 2008) was retrieved from the UniPROBE database
(Newburger and Bulyk, 2008). Zebrafish nlcam and corresponding
orthologous genes were retrieved from the EnsEMBL v50 database
(Flicek et al., 2008): ENSDARG00000058538 (zebrafish),
ENSTRUG00000006355 (fugu), ENSGACG00000010444 (stickleback)
and ENSORLG00000005387 (medaka). Occurrences of the RAX
position weight matrix were screened in the 20 -kb upstream and
intronic sequences of nlcam and its orthologues using the POSSUM
software (threshold 7) [http://zlab.bu.edu/~mfrith/possum/]. The
upstream and intronic RAX binding sites were predicted at the
following respective positions from the gene transcription start
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site: — 12483 — — 12467 and 36487 — 36503 (zebrafish), — 14076 —
— 14060 and 9289-9305 (fugu), — 18570 — — 18554 and 3271 — 3287
(stickleback), —2829 — — 2813 and 9344 — 9360 (medaka).

Electrophoretic mobility shift assay (EMSA)

For both predicted Rx3 binding sites, double stranded oligonucleo-
tides were designed to contain the site and flanking regions, plus an
additional 5’-GGG overhang for labelling: 5'gggCTGTGCACTTAGCTT-
TAATTAGGGGAAAAAAACTTG (upstream), 5'gggAAACTTCTACAGCAT-
TAATTAATGCATGTTTTGAGA (intron). Corresponding double stranded
oligonucleotides containing a mutated homeobox core binding site
were also designed (AATT — CCGG): 5'gggCTGTGCACTTAGCTTTCCG-
GAGGGGAAAAAAACTTG (Aupstream), 5'gggAAACTTCTACAG-
CATTCCGGAATGCATGTTTTGAGA (Aintron).

Complementary oligonucleotides were annealed and end-labelled
with Klenow DNA polymerase and [a-32P]dCTP. Corresponding cold
oligonucleotides were synthesised using non-labelled dCTP for
competition assays. Zebrafish Rx3 was in vitro translated using the
TnT Sp6/T7 coupled reticulocyte lysate system (Promega). 1fmole
labelled oligonucleotide was incubated with 5 pl Rx3 translation
reaction for 30 min at room temperature in the following binding
buffer: KCI 100 mM, MgCI2 10 mM, Hepes (pH 8) 10 mM, DTT 1 mM,
Glycerol 5%, EDTA 1 mM and poly(dl:dC) 1 pg, in 20 pl total volume.
Competition was performed with 100, 500 or 1000 fold molar excess
of cold competitor. The DNA-protein complex was resolved on a
native 6% polyacrylamide gel (in 0.5x TBE) at 160 V at 4 °C for 2 h. The
gel was dried and visualised by autoradiography.

Injection and transplantation

Injections were carried out essentially as described [Rembold].
Approximately 10% total cell volume-corresponding to ~ 1-1.5 nl-was
injected into each embryo at the one-cell stage.

The following mRNAs for injection were synthesised using the
mMessage mMachine kit (Ambion): nlcam (10-20 ng/l), eBFP2-Nuc
(80 ng/ul) (Addgene) (Ai et al., 2007), H2BmRFP (80 ng/ul) (Campbell
etal,, 2002). mRNAs were injected at the concentrations shown. pBS-
IScel Rx3: :GFP and Rx3: ‘nlcam were injected at 5 ng/pl either alone
or in combination.

nlcam morpholinos were obtained from Genetools. The morpho-
lino sequences are as follows:

nlcam-ATG-MO: GCAGTCTGCGATAGTTCTGCACTCC.
nlcam-e3i3-MO: AATGATTCTTACTGTAAATGACCAG.

The nlcam-ATG-MO has recently been published (Diekmann and
Stuermer, 2009).

Morpholinos were diluted in dH,O and injected at 0.3 mM
(ATG-MO) or 0.2 mM (e3i3-MO). wt and MO-injected embryos were
stage-matched by counting somites.

For transplantation, embryos were dechorionated with Pronase
(1 mg/ml in E3 medium) and kept in Balanced Salt Solution. At
blastula stages, about 20-50 cells from each donor were transplanted
together into the animal pole of stage-matched Rx3: :GFP transgenic
host embryos.

Imaging

For calculation of optic vesicle area (Fig. 3G), Image] software was
used to outline the optic vesicles from images of dorsal views of
embryos. The number of pixels within the outlined area was then
calculated. Data are shown in arbitrary units, and represents the
average area for wt embryos set to 100.

For confocal microscopy, embryos were mounted in 0.8% low
melting point agarose in E3 medium, in glass bottomed Petri dishes

(MatTek). Images were obtained on a Leica SP5 confocal with a 20x
objective, simultaneously scanning with 405 nm, 488 nm and 561 nm
laser lines. z-stacks were recorded every ~2 min for 8 h, with a voxel
size of 1x1x2 um. In total, five datasets were recorded. Two were
incomplete, as the eye field moved partially out of the field of view
during recording. Datasets 1-3 were primarily used for analysis,
although the results were confirmed in the incomplete datasets.
Although effort was taken to ensure that all datasets covered the
same developmental period, there is slight variability (20-30 min) in
timing.

Image processing and data analysis

Initially, noise reduction and dye separation algorithms were
applied to the confocal stacks, in the Leica LAS AF software. The data
were then processed using our digital embryo processing pipeline
(Keller et al., 2008), developed in Matlab (The Mathworks). The
enhanced segmentation modules allow for automated processing of
confocal time-lapse data sets on a single computer workstation. We
further extended the data analysis algorithms, as described below.

The segmentation processing pipeline

First, the x-y- and x-z-projections of the raw image stacks were
spatially correlated (subroutine correlateTL) to obtain the time-
dependent three-dimensional drift vectors and tilt angles. The raw
confocal time-lapse datasets were then converted into an image
database (subroutine createlD). Pre-processed information on the
experiment was collected and the image stacks were convolved with a
three-dimensional Gaussian kernel (0= 2 pixels) in order to reduce
the noise and to increase the segmentation efficiency. Segmentation
of the data was performed with the subroutine clusterNuclei as
previously described (Keller et al., 2008), using a parallelised multi-
core processing scheme on a single workstation.

The segmentation data were analyzed by the spatial- and temporal-
domain filters of the processing pipeline (subroutines clusterFilter and
clusterCorrelate). Segmented objects were tested for morphological
connectivity, geometrical isotropy of the object surface and consistent
spatiotemporal correlation patterns, as previously described (Keller
et al., 2008). A final processing module (clusterSaturate) facilitated the
recovery of false negatives from the initial segmentation database.

The data analysis pipeline

First, migratory tracks within the eye field were determined with
the subroutine clusterTrace. The eye field masks at four time points
(typically time points 50, 100, 150 and 200 in each time-lapse;
obtained from the Rx3-eGFP marker) were used as nucleus seeding
data sets. Nuclei within the volume defined by each mask were
followed forwards and backwards in time by correlating the spatial
centre-of-mass coordinates and subsequent tracking of the nuclear
identities matching best. Gaps of at maximum one time point were
allowed, before the corresponding track was flagged as being
discontinued/unknown. In wt/nlcam™ experiments, the migratory
track of each nucleus had to fulfill the geometrical constraints of at
least three checkpoints provided by the Rx3 eye field masks in order
to be categorized as belonging to an eye field cell. In wt/nlcam-MO
experiments, cells within the eye field masks were discarded;
converging lateral forebrain cells were then manually selected by
virtue of their initial position.

Subsequently, the migratory tracks of wt cells, nicam™ cells and
nlcam-MO cells were analyzed independently (subroutine analyze-
Table). The speeds, absolute positions and mean square distances
(MSD) were determined for each nucleus as a function of time and
separately for each spatial dimension. Time-dependent movement
speeds were calculated as slopes of the second-order-polynomial
fitting of nucleus positions, using a 20-min sliding window. The MSD
at time point t was calculated as the squared distance between
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nucleus positions at time point t and at the start of the recording.
Statistical analysis and comparisons were performed for the entire wt,
nlcam™ and nlcam-MO cell populations as well as for medial and
lateral subgroups (in wt/nlcam™ experiments). These were defined
by measuring the distance from the midline to the most lateral cell,
and by dividing the resulting field into two equal-sized groups
symmetrically on either side of the midline.

Migration vectors and three-dimensional nucleus distributions
were rendered with the custom routines clusterCombination and
clusterCones as a function of time, using POV-Ray (Persistence of
Vision Team) as a back-end rendering engine.

All algorithms have been supplied in the Supplementary File
“Software Modules.”

Results
nlcam is upregulated in rx3/chk mutant embryos

To identify potential CAMs acting downstream of Rx3 in optic
vesicle morphogenesis, we searched for genes whose expression was
altered in zebrafish chk mutants at the 6-somite stage (6SS): when wt
and mutant embryos can first be distinguished. Of the 12 genes tested,
which included cadherins, integrins and Ig-family CAMs (Table S1 in
Supplementary Material and Fig. 1E-L), only nlcam showed an
obvious misregulation (Figs. 1A, B). In wt embryos, nlcam is strongly
expressed in a population of dorso-medial cells in the anterior neural
tube (Fig. 1A, inset), in addition to weak expression throughout this
region. However, in chk mutants, the nlcam expression domain was
expanded ventrally and laterally into the presumptive eye field, which

fails to evaginate (Fig. 1B, inset). This misregulation of nlcam was also
apparent earlier in development (Figs. 1C, D). In wt bud stage
embryos, nlcam is expressed at low levels throughout the anterior
neural plate, including the eye field (marked by stippled line), but is
elevated in a broad stripe at the midline and in the most anterior and
lateral cells of the neural plate. These lateral cells are the precursors of
the dorsal telencephalon, which migrate medially, ending up in the
domain of nlcam expression by 6SS (England et al., 2006; Wilson and
Houart, 2004). In crosses between chk carriers, approximately one
quarter of embryos, presumably mutants, showed an expanded nlcam
domain at the bud stage, with strong expression in the eye field.
Double nlcam, rx3 in situs on chk/ + intercrosses demonstrated that
those embryos with expanded nlcam expression were those with no
rx3 staining (i.e. chk mutants) (n=>5/22; data not shown).

nlcam is a member of the Alcam subgroup of the Ig-domain
superfamily (Swart, 2002). Higher vertebrate genomes encode only a
single Alcam molecule (also known as Neurolin, CD166, DM-GRASP
and BEN); a teleost-specific duplication event generated the paralogs
neurolin and nlcam (Mann et al., 2006). These molecules participate in
homophilic and heterophilic cell-cell adhesion, and have been
implicated in a range of developmental processes. Members of the
Alcam family are thus attractive candidates for regulating cellular
behaviour during morphogenesis.

Rx3 binds predicted motifs in the regulatory regions of nlcam
Given the change in nlcam expression upon loss of Rx3, we sought

to determine whether nlcam might be a direct target of Rx3. To date,
there are no confirmed direct targets of this transcription factor and

lcam C

Fig. 1. nlcam is specifically upregulated in the Rx3/chk mutant. Whole mount in situ expression patterns of CAMs in wild type (A, C, E, G, |, K) and chk mutant (B, D, F, H, ], L) embryos
at the 6S (A, B, E-L) or Bud (C, D) stage. Dorsal views, anterior to the left. (A, B) nlcam, 6SS. Insets show cross sections through the anterior neural plate (dorsal is up), showing
upregulation of nlcam in the chk presumptive eye field. (C, D) nlcam, Bud stage. nlcam is upregulated in chk at this stage, shortly after the onset of Rx3 expression (domain marked by
white stippled line). No other CAMs tested show changes in expression pattern. E, F: ncam. G, H: alcam. 1, J: N-cadherin. K, L: E-cadherin. Sections for ncam and N-cadherin, which are
expressed in the eye field, are also shown. For alcam and E-cadherin, where there is no or very little expression in the eye, the Rx3 expression domain is marked by the white stippled

line.
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the details of its DNA binding specificity are unknown. However, a
mouse Rx (RAX) binding site has recently been identified (Berger
et al., 2008). We therefore used this consensus motif to search for
potential instances within the upstream and intronic regions of the
nlcam locus. We identified two potential binding sites for Rx3 in the
zebrafish locus, one located approximately 12 kb upstream of the
transcription start site, and the other in intron 12 (Fig. 2, upper
panels). Predicted sites were also found in other species, suggesting
that they could be functional Rx3 binding sites. In order to test for Rx3
binding, we performed electrophoretic mobility shift assays (EMSA)
using radioactively-labelled oligonucleotides corresponding to the
predicted Rx3 binding site (Fig. 2, lower panels). For both the
upstream and intronic motifs, we detected Rx3 binding to the wt
oligonucleotides. Addition of increasing concentrations of unlabelled
oligonucleotide efficiently competed for Rx3 binding. Additionally, we
mutated the central AATT motif to CCGG. These mutant oligonucleo-
tides were not able to bind Rx3, confirming the specificity of the
interaction. From these results, we infer that Rx3 can recognise motifs

in the regulatory region of nlcam, and therefore that nicam may be a
direct target for Rx3. We note that, given the similarity between DNA
binding domains Rx3 and its paralogs Rx1 and Rx2, it is also likely that
these factors might be able to bind the nlcam Rx motif.

nlcam overexpression causes a small eye phenotype

The upregulation of nicam in chk mutants suggested that its
repression in the eye field is critical for retinal morphogenesis. To test
whether ectopic nlcam expression disrupts optic vesicle evagination,
we ubiquitously overexpressed it by mRNA injection. Embryos
injected with 10-20 ng/pl nlcam mRNA displayed a range of
phenotypes: the majority survived gastrulation, but often displayed
a shortened axis, neural tube and somite defects (Figs. 3A-D and
Supplementary figure 5A). However, the most prevalent phenotype,
seen in approximately 75% of embryos, was a reduction in eye size,
either unilaterally (Fig. 3B) or bilaterally (Fig. 3C). Cyclopic embryos
were occasionally seen (data not shown), and in the most extreme

A B
Conserved Rx3 binding sites in Conserved Rx3 binding sites in
nlcam upstream regions nlcam intronic regions

Mouse_Rx IccﬁIAAHAAQ Sa  ||Mouse_Rx chﬁIMﬂAAQ S
Zebrafish agctttaattaggggaa Zebrafish agcattaattaatgcat
Fugu acacttaattagttact Fugu atccttaattggacggc
Stickleback actcctaattagcacgg Stickleback aggcctaattaacaact
Medaka tgggttaattagtgacc Medaka tgettEEEBEgactgtc
mut_Zebrafish agctttccggaggggaa mut_Zebrafish agcattccggaatgcat
Zebrafish_Rx3 - |+ |+ |+ |+ ]|+ ||Zebrafish_Rx3 -+ |+ |+ + ]|+
Upstream bindingsite + | + | + | + | + [ = ||Intronic bindingsite  + | + | + | + | + | -
Unlabelled competitor = | = | + [+ [+H+ - ||Unlabelled Competitor - | = | + |+ |+ -
Mutated binding site = [ = [ = [ = [ = [ *

Mutated bindingsite - | - | - | = | = | +

Fig. 2. Electrophoretic mobility shift assays on Rx3 predicted binding sites. Upper panels: in the sequence alignment between the mouse RAX binding site and predicted Rx binding
sites the upstream (A) and intronic (B) regions in 4 fish species, conserved nucleotide positions are highlighted in blue. Mutations made within the homeobox core binding site are
highlighted in red. Lower panels: Rx3 predicted binding sites in zebrafish nicam were tested by EMSA. Rx3 specifically binds to the oligonucleotides containing the RAX motif, but not
to mutated versions. This binding can be competed away by increasing levels of unlabelled oligonucleotide.
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Fig. 3. Overexpression of nlcam leads to a reduction in eye size. (A-E) 14SS embryos, injected at the one cell stage with H2BmRFP RNA (A), nlcam RNA (B-D) or nlcam-GFP RNA (E).
nlcam overexpression leads to a reduction in eye size in a dose-dependent manner. nlcam-GFP RNA injection (E) causes a similar range of phenotypes. (F) GFP-tagged Nlcam is
localised to the plasma membrane of RPCs. (G, H) 14SS embryos, injected at the one cell stage with Rx3::GFP (G) or a mixture of Rx3::GFP and Rx3: ‘nlcam (H) plasmids. Cells
expressing the transgenes are marked by GFP. Overexpression of nlcam exclusively in RPCs causes small eyes, while the rest of the embryo is unaffected. (I) Quantification of eye size
at 14SS after DNA injection. The area of the optic vesicle, shown in arbitrary units + standard deviation (set to 100 for the control embryos), is significantly smaller when nlcam is

overexpressed. n=number of optic vesicles measured.

cases, at higher doses of nlcam RNA (Fig. 3D), the eyes were almost
absent altogether. Under these conditions, however, the frequency of
gastrulation defects was increased. Therefore, in all subsequent
experiments, we used the lower 10 ng/pl dose.

To assess the functionality of the nlcam cDNA, we injected RNA
encoding a C-terminally GFP-tagged nlcam into embryos. This led to a
similar spectrum of phenotypes (Fig. 3E). By confocal microscopy, we
confirmed that Nlcam-GFP was exclusively localised to the plasma
membrane in the evaginated optic vesicle (Fig. 3F). This demonstrated
that this construct and, by analogy the untagged version, was
appropriately localised within the cell and presumably functional.

Thus, ubiquitous nlcam overexpression results in a small eye
phenotype, similar to hypomorphic, temperature-sensitive medaka
rx3 mutants (Loosli et al., 2001). To further address this, we used
the RPC-specific Rx3 promoter (Rembold et al., 2006b) to overexpress
nlcam in a targeted manner (Rx3::nlcam). Coinjection of this
construct with Rx3: ‘GFP generated FO embryos with mosaic expres-
sion of nlcam in RPCs marked by GFP (Rembold et al., 2006a). We note
that some ectopic expression of GFP was observed in non-RPCs; this
can be attributed to the leaky nature of transient transgenesis.

Injected embryos displayed reduced eye size relative to Rx3::GFP
injected controls (Fig. 3G-I), but were otherwise normal. We
therefore concluded that ectopic expression of nlcam in the eye field
impaired optic vesicle formation. However, it is notable that GFP-
positive cells were dispersed throughout the forebrain and optic
vesicle, indicating that migration is not entirely abolished upon
overexpression of nlcam.

nlcam™ cells show abnormal migratory behaviour

Given the clear reduction in eye size upon nlcam overexpression,
we followed wt versus nlcam-overexpressing (henceforth referred to
as nlcam™) cells throughout the process of optic vesicle morphogen-
esis. To do this, we performed “double transplant” experiments
(outlined in Fig. 4A). We transplanted cells from two sets of donors,
one injected with a mixture of nicam and H2B-mRFP RNA and the
other with eBFP2-Nuc RNA, into the animal pole of Rx3::GFP hosts.
This generated embryos with two populations of transplanted cells:
wt cells marked by nuclear eBFP2, and nlcam™ cells marked by
nuclear mRFP. In addition, the eye field was labelled with GFP. Optic
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Fig. 4. Analysis of the effects of NIcam on cell migration during OV morphogenesis. (A) Outline of the experimental procedure. Embryos are injected at the one cell stage with either a
mixture of H2BmRFP and nlcam RNAs or with eBFP2-Nuc RNA (1). Cells from both donors are transplanted into Rx3: :GFP hosts (2). After the onset of GFP expression, embryos are imaged
by confocal microscopy (3). (B) Outline of the processing pipeline. Red boxes show the input; grey boxes detail the processing steps; and blue boxes show the final output. (C) Clustering
analysis of transplanted cells indicates that nicam overexpression does not promote homophilic clustering. (D-G) Selected frames from Dataset 1, showing key points during optic
vesicle morphogenesis. Between 0 and 64 min (D, E), RPCs are converging towards the midline. Subsequently, RPCs begin to evaginate (F). Approximately 5 h after the onset of imaging
(G), the process is essentially complete. The eye field is marked in green; wt cells are blue; nlcam™ cells are red. Scale bar is 100 um. (H-K) Rendered reconstruction of cells within the eye
field at the same time points. Trails show the position of the nucleus over the previous 10 time points (~20 min). Green dashed line indicates midline. White dashed lines in H indicate
medial (M) and lateral (L) groupings used for analysis. (L-O) Vectorial visualisation of migration. For simplification, the data is collapsed in the DV axis. Arrows show migration direction
and displacement of cells over the following 10 time points. Cyan: lateral wt cells. Blue: medial wt cells. Red: lateral nicam™ cells. Orange: medial nlcam™ cells.

vesicle development was then followed by confocal microscopy from were fully evaginated, and the transition to optic cups beginning. In
soon after the onset of GFP expression (1-2SS, during the convergence total, five datasets were recorded and analysed; Dataset 1 is shown in
stage) for approximately 8 h (14-16SS), by which time the vesicles Movie 1 in Supplementary Material and selected frames in Fig. 4D-G.
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Nuclei were tracked using an enhanced version of our digital
embryo processing pipeline (Keller et al., 2008) outlined in Fig. 4B
(see Materials and methods for details). This tracked RPCs throughout
the time course of optic vesicle evagination, allowing the movements
of wt and nlcam™ cells to be analysed in detail (Movies S2 and S3 in
Supplementary Material, and Figs. 4H-K). Several statistical para-
meters were extracted from the dataset, including centre-of-mass
position, speed and mean square distance (MSD, see Materials and
methods for details), all as a function of time. These were also
obtained for each of the three axes-medio-lateral (ML), antero-
posterior (AP) and dorso-ventral (DV)-independently.

With this digital reconstruction of cell position over time, we first
investigated whether nlcam™ cells were clustered, as might be expected
if Nlcam were mediating homophilic cell adhesion. To this end, we
calculated a “clustering score” for both wt and nlcam™ cells, at the onset
of recording. We define this as the number of nuclei lying within a
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particular radius from each cell, and normalised to take into account the
total number of transplanted cells. From this, we then obtained the
“clustering ratio”: the ratio of the clustering scores of wt and nlcam™
cells, which is a direct measure of the relative degree of clustering of wt
and nlcam™ populations. A ratio greater than 1 would indicate that
nlcam™ cells cluster together more than their wt counterparts.
However, at all radii tested, the average clustering ratio over seven
datasets is approximately 1 (Fig. 4C). This clearly demonstrates that
nlcam™ do not cluster, arguing strongly against the idea that Nlcam is
participating in homophilic cell adhesion in this context.

Next, we analysed the dynamics of wt and nlcam™ cell migration.
In the wild-type situation, similar to what has been observed in
medaka (Rembold et al., 2006b), laterally located cells migrate more
rapidly and further towards the midline that medially located cells.
Subsequently, these initially laterally located cells then migrate
outwards more rapidly as well (compare graphs for wt cells in Fig. 5
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Fig. 5. Statistical analysis of migratory dynamics of lateral retinal cells. Graphs show selected statistics for the lateral groups of cells from datasets 1-3. (A, C, E) Position of cells
relative to the midline. (B, D, F) MSD along the ML axis. Blue: wt cells. Red: nlcam™ cells. Paler shading indicates standard error. Overlapping boxes show the approximate periods of

convergence (brown) and evagination (grey).
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and Supplementary Figure 2). Given the complicated movements
occurring here, statistical analysis of RPC migration would be
obscured by considering all cells together (Fig. S1 in Supplementary
Material). To improve the resolution of our analysis, the tracked cells
were divided into two groups according to their initial medio-lateral
position (Fig. 4H). We then determined the statistics for each group
(“medial” and “lateral”) separately. The behaviour of wt cells closely
resembled the situation in medaka (Rembold et al., 2006a),
demonstrating that the mechanism of optic vesicle evagination is
conserved among teleosts.

The grouped statistics revealed striking differences in behaviour of
lateral wt and nlcam™ cells in the ML axis (Fig. 5). In all datasets,
laterally located nlcam™ cells converged further towards the midline
(Figs. 5A, C, E) than did equivalent wt cells. They then migrated
outwards at a similar rate to the wt population, and thus remained
more medially positioned as the vesicles evaginated. This resulted in a
final distribution where the lateral-most domains of the optic vesicles
were primarily populated by wt cells, whereas nlcam™ cells tended to
occupy more medial positions (Fig. 4G). These positional biases are
reinforced by differences in the dynamics of migration revealed by the
ML MSD plots (Figs. 5B, D, F). Wt cells accumulated most of their MSD
during the outward-directed phase of migration, whereas nlcam™ cells
accumulated much more during convergence, and reached at least 50%
of their final MSD within the first hour of recording (Supplementary
Table 2).In contrast to the consistent differences in behaviour between
the lateral populations, the medial groups did not show an obvious
differential phenotype (Fig. S2 in Supplementary Material).

To visualise the differences in behaviour more clearly, we generated
movies in which the displacement of each cell over 20 min is shown by
an arrow: longer arrows thus indicate greater movement (Movie 4 in
Supplementary Material, and Figs. 4L-0). During the initial phase of
recording, the lateral nlcam™ cells (red arrows) displaced much further
than the wt cells (cyan arrows) (Fig. 4L). At later time points, no
obvious differences could be observed between wt and nlcam™ cells,

‘A B

c y n

with both populations migrating outwards into the growing optic
vesicles (Figs. 4M-0).

We next considered whether biased distribution of the nlcam™
versus wt cells in the other axes might contribute to the differences in
behaviour. There was no consistent bias in the AP axis (Fig. S3A, C, E in
Supplementary Material). However, in all three datasets, lateral nicam™
cells were more dorsally located than wt cells at the onset of recording
(see anterior and lateral views of Movie 3 and Fig. S3B, D, F in
Supplementary Material, and Supplementary Table 2), suggesting that
Nlcam may affect the DV position of RPCs. To test for possible DV effects
on RPC migration, we split the lateral wt population into dorsal and
ventral groups and compared these. Similar to medaka (Rembold et al.,
2006a), dorsal wt cells converged further towards the midline than
ventral cells (Fig. S4A, C, E in Supplementary Material). However, the
migratory dynamics of the dorso-lateral wt cells was very different from
that of the lateral nlcam™ population (Fig. S4B, D, F; Supplementary
Table 2). We therefore concluded that, while DV position does affect RPC
migration, it is the overexpression of nlcam that is primarily responsible
for the enhanced midline convergence of these cells.

The phenotype of nlcam™ cells was reminiscent of the rapid
midline-directed migration of lateral telencephalic cells. To further
investigate this similarity, we tracked selected wt forebrain cells by
manually picking cells that originated lateral to the eye field and
remained at the midline after convergence (yellow cells in Movie 2
in Supplementary Material). The initial rate of MSD accumulation of
these cells was very similar to that of the lateral nicam™ group
(Supplementary Table 2). Subsequently, however, these two popula-
tions diverged as the nlcam™ RPCs underwent evagination while the
telencephalic cells continued to migrate medially.

Defective forebrain cell convergence upon nlcam knock-down

Given that nlcam is normally expressed in lateral forebrain
precursors, we wondered whether the phenotype we observed
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Fig. 6. nlcam loss of function causes delayed convergence. (A-D) At 4SS, a deep cleft at the midline in nlcam ATG-MO injected (0.3 mM) embryos (B) indicates that forebrain cells
have not yet converged to the midline, as they have in control embryos (A). This is confirmed by in situ hybridisation against emx3 (A’, B’). This phenotype is transient, as
demonstrated by the recovered forebrain morphology by 8SS (C, D). (E-G) Graphs show selected statistics for forebrain cell convergence from a single dataset. (E) Position of cells
relative to the midline. (F) MSD along the ML axis. (G) Speed along the ML axis. Blue = wt cells; red = nlcam-MO.
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upon ectopic nlcam overexpression in RPCs might reflect an endog-
enous function in promoting convergence in these forebrain cells. To
test this, we designed a morpholino to block translation of nicam
(nlcam ATG-MO) and injected this into embryos. The efficacy of nlcam
ATG-MO was confirmed using an RNA in which the target sequence
was placed upstream of GFP. Coinjection of this RNA and nlcam ATG-
MO at 0.3 mM led to an almost complete abrogation of GFP expression
(Supplementary Figure 5C, D). Analysis of morphant embryos revealed
a transient phenotype: at 4SS, a deep cleft was visible at the anterior
midline of nicam ATG-MO injected embryos, but not control embryos
(Figs. 6A, B). However, by 8SS, this phenotype had almost completely
recovered (Figs. 6C, D) in the majority of embryos. This delayed
convergence of forebrain precursors was also validated by in situ
hybridisation against the early forebrain marker emx3. In wt embryos
at 4SS, emx3 was detected as a broad domain at the midline (Fig. 6A’).
In somite-matched nlcam ATG-MO injected embryos, however, the
two emx3 stripes had not completely converged, leaving a gap at the
midline (Fig. 6B’). As expected, cells ventral and medial to the emx3
stripes express the eye field marker Rx3 (data not shown). Similar
results were obtained with a second morpholino, directed against the
exon3-intron3 splice junction, confirming the specificity of the
phenotype (Supplementary Figure 5F).

To further confirm this delayed convergence phenotype, we again
performed double transplant and live imaging experiments. In this
case, donor embryos were either injected with a mixture of H2B-
mRFP RNA and nlcam ATG-MO or with eBFP2-Nuc RNA. Cells from
both donors were transplanted into Rx3: :GFP hosts, and imaged as
before. Following segmentation, cells lying lateral to the Rx3::GFP
positive eye field were tracked. Statistical analysis of these move-
ments confirmed the observed defect in forebrain convergence:
nlcam ATG-MO cells moved more slowly towards the midline
(Figs. 6E, G), and did not accumulate as much MSD (Fig. 6F) during
the initial phase of convergence. In combination, these results
indicated that loss of nlcam function led to a slowed convergence of
lateral forebrain cells, although the later recovery of the phenotype

suggests that they are able to reach their final position, albeit with
slower kinetics.

Discussion

Understanding how Rx3 controls eye morphogenesis requires the
identification of downstream factors that regulate cellular morpho-
genetic behaviours. Here, we have identified one such player: the
Ig-domain CAM Nlcam. Uncovering the highly specific effect of Nlcam
on RPCs during convergence was only possible by combining advanced
experimental embryology and 4D microscopy at high spatio-temporal
resolution with a powerful automated image processing and data
analysis pipeline that facilitates the tracking of hundreds of cells
throughout optic vesicle morphogenesis. Comprehensive reconstruc-
tions of the tracks obtained simultaneously in multiple embryos
revealed stereotyped, differential migratory behaviours of wt and
nlcam™ cells.

Our results are summarised in Fig. 7. Under wt conditions, the
action of Rx3 ensures that nlcam levels are kept low in the eye field,
while it is strongly expressed in the laterally located telencephalic
precursors. Although we have not showed definitively that Rx3
directly represses nlcam expression, our binding assays show that Rx3
can bind to nlcam regulatory sequences (at least in vitro), and we
therefore suggest that, in vivo the regulation of nicam by Rx3 may be a
direct repression. Under our experimental conditions, upon ectopic
nlcam expression, lateral RPCs took on some of the migratory
characteristics of their telencephalic neighbours: they showed highly
directed migration towards the midline, and converged further than
their wt retinal counterparts. Although they were able to evaginate
(demonstrating that there was no change in cell fate), the net result of
the aberrant inwards migration was that nlcam™ cells occupied more
medial positions in the optic vesicles.

These results have two important implications. Firstly, they
provide part of the explanation as to how Rx3 controls retinal
morphogenesis. To allow slowed midline convergence of RPCs, Rx3
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Wild-type
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14SS
CONVERGENCE EVAGINATION
RPCs Rx3 —| Nilcam ——3 Slowed midline convergence
Egﬁ:bram Nicam ——3 Rapid midline convergence

Fig. 7. Summary of effects of Nlcam on cell behaviour. Upper panel: left side indicates the migration of wt (blue) and nlcam™ (red) transplanted cells during optic vesicle
morphogenesis. Arrow length indicates the degree of migration. The differential behaviours result in a final distribution where nicam™ cells occupy more medial positions in the
evaginated vesicles. Right side represents the endogenous expression pattern of nicam (maroon), and the normal movements of forebrain and retinal (green) cells. Telencephalic
cells, expressing high levels of nlcam, migrate rapidly inwards and then epithelialise to form the neural keel. RPCs, with low nilcam levels, converge less and then migrate outwards
into the optic vesicles. Lower panel: summary of the effects of Rx3 on Nlcam expression and hence on midline convergence of RPCs and forebrain cells.
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must downregulate nlcam expression within the eye field. Otherwise,
the ectopic Nlcam will cause lateral retinal cells converge too far,
resulting in reduced optic vesicle size. Secondly, our analysis suggests
that one important difference, in morphogenetic terms, between the
eye field and the lateral telencephalic domain is the expression level
of nlcam. This proposal is borne out by our loss-of-function analysis.
When Nlcam expression was inhibited by morpholino injection,
forebrain cells exhibit slowed convergence to the midline. We
therefore propose that Nlcam is a driving force for the rapid medial-
directed migration of forebrain precursors.

Alcam family members act through both homophilic and hetero-
philic interactions, raising the question as to how Nlcam might
mediate differences in migratory dynamics. Our analysis indicated
that nlcam does not promote clustering of transplanted cells,
demonstrating that Nlcam does not mediate homophilic cell interac-
tions during neural plate convergence. Beyond homophilic adhesion,
there is considerable evidence for a broader function for the Alcam
family, both during development and in cancer progression. Alcam
has been implicated in axonal pathfinding: in both fish and chick,
guidance defects in retinal ganglion cells and motor axons have been
observed upon Alcam inhibition (Avci et al., 2004; Ott et al., 1998,
2001). A recent study has shown that Alcam is required for retinal
ganglion cell survival, and for survival of other neurons in the retina,
and also implicated Nlcam in retinal ganglion cell axon guidance
(Diekmann and Stuermer, 2009). Alcam function is also required for
non-radial cell migration in the chick diencephalon (Heffron and
Golden, 2000). Furthermore, the apparently counter-intuitive obser-
vation that Alcam expression correlates with metastatic potential of
melanomas and other cancers (Swart et al., 2005) suggests more
complex roles for Alcam. This has been borne out by evidence
implicating Alcam in ECM remodelling (Lunter et al., 2005) and in
intercellular signalling (Ibafiez et al., 2006). Through detailed
statistical analysis of cell migration during anterior neural plate
morphogenesis, we provide an in vivo system in which Nlcam
function can be dissected.

Our results suggest a model whereby Nlcam, acting via hetero-
philic interactions, forms part of the guidance system for morpho-
genesis of the anterior neural plate. Midline guidance signals have
been postulated to account for the migratory behaviour of retinal and
forebrain cells (Rembold et al., 2006b). According to this model,
telencephalic cells respond strongly to the signals directing midline
migration, thus converging rapidly. RPCs, however, respond only
weakly, creating a wide eye domain. Subsequent outward directed
migration of RPCs might be controlled either by repellent cues from
the midline, or by attractive ones from lateral cells. Forebrain
precursors would not respond to this set of cues, and instead remain
at the midline and epithelialise. We propose that Nlcam may be part of
the mechanism responsible for sensing the initial guidance cue: high
nlcam levels allow forebrain precursors to sense the attractant more
acutely than RPCs. Loss of nlcam in forebrain cells would therefore
result in an attenuated response, and slowed midline convergence.
Conversely, when nlcam is ectopically expressed in lateral RPCs, they
would respond more strongly to the proposed attractant, resulting in
their rapid inward migration. Although this model is speculative, it
provides a framework for future study. One clear conclusion that can
be drawn from our analysis is that the processes of convergence and
evagination are genetically separable: Nlcam affects only the former,
while other factors downstream of Rx3 must control the subsequent
outward-directed migration.

Our sophisticated in vivo analysis of the morphogenetic move-
ments in the entire anterior neural plate region has revealed a critical
role for Nlcam in modulating the convergence behaviour of
differentially specified cell types. Presumably, multiple such effectors
must be required to implement the full morphogenetic activity
transcriptionally controlled by Rx3. Here, we have identified the first
of these molecules; the future challenge is to identify further effectors

and to uncover their particular role in the morphogenesis of the
vertebrate eye.
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