
Life sciences require the third dimension
Philipp J Keller, Francesco Pampaloni and Ernst HK Stelzer
Novel technologies are required for three-dimensional cell

biology and biophysics. By three-dimensional we refer to

experimental conditions that essentially try to avoid hard and

flat surfaces and favour unconstrained sample dynamics. We

believe that light-sheet-based microscopes are particularly

well suited to studies of sensitive three-dimensional biological

systems. The application of such instruments can be illustrated

with examples from the biophysics of microtubule dynamics

and three-dimensional cell cultures. Our experience leads us to

suggest that three-dimensional approaches reveal new

aspects of a system and enable experiments to be performed in

a more physiological and hence clinically more relevant

context.
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Introduction
Advances in the life sciences are strongly related to the

ability to observe dynamic processes in live systems and

to mimic relevant in vivo conditions.

For instance, cells usually grow and differentiate in soft,

jelly-like, three-dimensional environments provided by,

for example, the extracellular matrix (ECM). Conse-

quently, the relevance of any experiment that reduces

the number of dimensions or constrains the temporal

resolution should be carefully evaluated. In particular,

the introduction of hard surfaces (e.g. cover slips) adds

elements that are usually not present in living systems. In

the resulting flat and essentially two-dimensional situa-

tion, the dramatic change in the surface-over-volume ratio

and the hard surface itself induce the cell to adapt by

changing its metabolic function and in general its protein

expression. An alternative interpretation is that such a

system selects for cells that can adapt to such an environ-

ment. This most likely pushes any biological system’s
www.sciencedirect.com
response into a realm that is at least less physiologically

relevant.

On a different level, in biophysical studies microtubules

are often observed close to a hard surface, which could

account for why their behaviour in this setting differs

from what is observed in a more physiological situation.

For instance, the microtubule growth rates and cata-

strophe frequencies are force-dependent [1,2] and in S.
pombe microtubule bundles seem to bend [3] rather than

depolymerise spontaneously when they touch the yeast’s

cell surface.

Although the scientific community is now starting to

realize the importance of ‘‘introducing the third dimen-

sion’’ in biology [4��], the main drive does not stem from

basic research in cell biology but rather from the clinicians

[5], in other words from those who would like to take

advantage of the results of modern molecular biology [6].

In the following we shortly outline current approaches to

three-dimensional imaging with an emphasis on light-

sheet-based technology. The applicability is illustrated

with an example frommicrotubule biophysics and a novel

approach to cell biology.

Modern three-dimensional microscopy
Quantitative analysis of live three-dimensional structures

requires fast optical sectioning. Confocal fluorescence

microscopy works well in relatively thin samples; in large

objects, however, the signal is scattered and rejected by

the pinhole. An excellent resolution is retained by phy-

sically sectioning the sample [7], but this destroys the

sample irretrievably and is not applicable to live prepara-

tions. Most methods that have been developed to

enhance the resolution — e.g. 4Pi-confocal [8], I5M [9]

and STED microscopy [10] — require an excellent con-

trol over the phase of the wavefront of the light and hence

cannot address challenges encountered in multicellular

objects. Nevertheless, some of the recent developments,

for example with I5M by Gustafsson [11��], indicate an

impressive potential for improvement in resolution.

Other imaging techniques for large samples, such as

optical projection tomography (OPT) [12] and micro

magnetic resonance imaging (mMRI) [13], cannot take

advantage of fluorescent proteins and hence lack speci-

ficity. Two-photonmicroscopy, whichmany [14] regard as

the best technique for use with sensitive biological mate-

rial, suffers from a moderate resolution [15]. It is currently

not clear how much damage two-photon microscopy

actually creates with its relatively high average intensities

(several mW).
Current Opinion in Cell Biology 2006, 18:117–124



118 Cell structure and dynamics
Our suggestion for an optically sectioning instrument is

based on light-sheet technology and is termed single

plane illumination microscopy (SPIM) [16��]. It operates
on four principles: illumination with a light sheet, obser-

vation along at least one direction perpendicular to the
Figure 1

Two- and three-dimensional sample preparation for the study of dynamic m
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The illuminating light sheet enters from the side, while the fluorescence ligh
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illumination plane, rotation of the sample about an axis

parallel to gravity, and a stationary chamber with the

immersion medium (Figure 1c,d). It owes much to the

‘Ultramikroskop’, an orthogonal, darkfield illuminator

invented by Siedentopf and Zsigmondy in 1903 [17] to
icrotubules. (a) Comparison of sample preparation for conventional

the chamber geometry using coverslips and slides for conventional

nt of the sample r and the distance between coverslip and slide s.

ubule dynamics in a SPIM. As an example for in vitro studies, the location

lastic polymer cylinder is h and the inner diameter of this cylinder is d.

assumptions, surface-over-volume ratios of 2/s = 0.1 mm�1 for the

pen plastic cylinder result. Thus, in a SPIM experiment the surface-over-

sample preparation. (b) Top-view (left) and side-view (right) drawings

o the water-filled chamber. The plastic polymer cylinder with the

g from Xenopus laevis egg extract are polymerized inside the cylinder.

rved. A drop of mineral oil protects the extract from contact with air.

t is detected perpendicular to the illumination plane. For an optimal

y appropriately choosing the position of the recorded aster.
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visualize nm-sized gold particles. The concept has been

used in ophthalmic instruments [18] and in a macroscope

used by Voie to observe the cochlea [19]. Fuchs described

such a device [20] to observe microbes while Huber [21]

reconstructed mm-sized samples using scattered light.

The orthogonal arrangement of point illumination and

point detection was also used in confocal theta fluores-

cence microscopy [22] with lenses of high numerical

aperture.

In SPIM a three-dimensional data set is recorded by

scanning the sample through the stationary light sheet

while recording the fluorescence light with a camera. The

sample can be as small as a few micrometers (e.g. micro-

tubule asters or yeast cells), in the 100s of micrometers

range (e.g. Madin-Darby canine kidney [MDCK] cysts or

endothelial spheroids) or even as large as several milli-

metres (e.g. zebrafish or medaka embryos). The proper-

ties of the detection lens depend on the necessary

working distance and on the material required for the

embedding procedure (agar, liquid, gas). Since the sam-

ple is attached to a stage it can be rotated as well as

translated, meaning that three-dimensional image stacks

can be recorded along different directions [23]. These

independently recorded data sets can be combined into a

single three-dimensional data set with a spatial resolution

that is dominated by the lateral resolution of the detection

system. However, from a practical point of view, the most

important advantage of SPIM is that only those parts in

the sample that are observed are in fact illuminated. Out-

of-focus light is not generated. With single-photon exci-

tation and laser powers in the mW range, a SPIM ensures

dramatically reduced photobleaching, is less phototoxic

and is particularly well suited to the observation of live

and dynamic processes.

Case study: microtubule asters
In our studies of microtubule asters, we transfer the two-

dimensional experiments of microtubule dynamic

instability [24] performed between two closely spaced

glass flats (Figure 1a) to a three-dimensional environment

(Figure 1b) and use the SPIM for imaging (Figure 1c,d).

Experiments are performed in vitro using Xenopus laevis
egg extracts, providing us with a physiological yet bio-

chemically easily modifiable system. Three-dimensional

sample preparation ensures a minimal area of artificial

surfaces and unconstrained development of the asters in

three dimensions (Figure 1b). Apart from addressing the

fundamental questions of microtubule dynamics, this

approach allows us to phrase questions that specifically

focus on three-dimensional aspects of microtubule struc-

tural dynamics.

Among these issues are the centrosome’s three-dimen-

sional movement and rotation during aster polymerization

and spindle formation. Analysis of the structural homo-

geneity of the aster allows us to relate the angular micro-
www.sciencedirect.com
tubule distributions to the centrosome’s internal

structure. Structural configurations (e.g. for the centro-

somes’ centrioles) are well-known from electron micro-

scopy [25,26]. This raises the question of whether these

configurations have effects on the spatial dependency of

microtubule nucleation that are observable in live sys-

tems. Surfaces obviously impair microtubule growth [1,2]

and significantly influence aster structure. Hence, it is

crucial to either avoid or precisely characterize the asters’

surface contact in these studies. In our SPIM data sets,

the evaluation of three-dimensional microtubule length

distributions over time effectively takes all of the asters’

microtubules into account. This provides a very good

statistical basis to test and improve theoretical models

of dynamic instability [27–29]. Finally, the elastic proper-

ties of the microtubules can be determined from the

thermal fluctuations of the filaments’ three-dimensional

position and geometry.

Unluckily, neither at EMBL nor as far as we know in

other laboratories have fast three-dimensional aster

dynamics been successfully investigated with confocal

fluorescence microscopes, mainly because of fluoro-

phore photo bleaching. With single-view SPIM, how-

ever, we achieve a time resolution of three seconds for

the entire three-dimensional volume of a typical inter-

phasic aster without a significant effect of photo bleach-

ing even after 15 minutes of continuous observation.

Multi-view SPIM (mvSPIM) records the entire three-

dimensional volume of a stabilized microtubule aster

with an isotropic resolution. The aster data sets are

recorded along several directions and fused by image

processing. The resulting isotropy (Figure 2a,b,c) is a

crucial feature in the quantitative investigation of three-

dimensional structures.

The three-dimensional imaging and sample preparation

in SPIM provide several advantages for the investigation

of cytoskeletal filament dynamics. The imaging yields

three-dimensional structural information instead of two-

dimensional projections of fluorescent structures. Uncon-

strained filament growth along all dimensions eliminates

uncharacterized interactions of the sample with artificial

surfaces. Additionally, the strongly reduced surface-over-

volume ratio in SPIM sample preparation (Figure 1a,b)

minimizes possible surface effects, for example the

unspecific adsorption of proteins. While the surface area

is minimized in SPIM experiments, the visibility of these

surfaces in the three dimensional data sets still allows us

to clearly assess whether phenomena of microtubule

dynamics are associated with proximity to or contact with

a surface.

SPIM technology for three-dimensional
cell culture
So far relatively few data are available on how cells

interact and communicate with each other in the
Current Opinion in Cell Biology 2006, 18:117–124
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Figure 2

SPIM images of fixed and unfixed microtubule asters. (a) Maximum intensity projections of a taxol-stabilized aster polymerized in agarose/BRB80.

The fused and deconvolved SPIM data set contains 309 planes at 300 nm spacing and is based on seven recorded angles (�458, �308, �158, 08,
158, 308, 458). In order to illustrate the isotropy of deconvolved multi-view SPIM images, projections are shown along different angles (208, 608
and 1308). The images were recorded using a CCD chip with a size of 1344 � 1024 pixels and a dynamic range of 10 bits. Due to a very high

concentration of taxol, tubulin-taxol crystals are visible in the central region of the aster. The tubulin was labelled with Alexa-488. (b) SPIM

images showing an aster in a high-speed interphasic Xenopus laevis egg extract. Left: single frame of the data set. Right: maximum intensity

projection of the data set, which contains 68 planes at 300 nm spacing. Microtubules that are oriented in parallel to the plane of observation

appear dimmer than perpendicular microtubules. This effect is avoided in multi-view SPIM imaging. The tubulin was labelled with TAMRA.

Carl Zeiss W 100�/1.0.
three-dimensional context of a tissue. Cell fate in

living organisms — for example polarization, growth,

migration or apoptosis [5,30,31,32�,33,34] — is deter-

mined by three-dimensional and temporal information

exchange between neighboring cells as well as by

cues from the microenvironment (e.g. ECM proteins

or growth factors). Ultimately, the whole physiology

of healthy or pathologic organisms depends on informa-

tion flow and processing that is based on both biochem-

ical and mechanical cues [35�,36]. We believe that

the life sciences are currently undergoing a paradigm

shift towards the investigation of cells maintained

in an environment closely mimicking the mechanical,
Current Opinion in Cell Biology 2006, 18:117–124
chemical and cytological properties of real tissues [4��].
An improved understanding of how cells react to

physiological stimulations and constraints is leading to

substantial scientific and technological advancements

in cancer research [37�,38], immunology [39,40�]
and tissue engineering [41,42]. Indeed, in three-

dimensional cell cultures, the boundaries between

in vivo and in vitro experiments tend to disappear,

which has important implications, particularly for drug

discovery [30].

We are currently developing a basic ‘SPIM-compatible’

technology to investigate three-dimensional cell cultures.
www.sciencedirect.com
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Figure 3

Sample preparation and mounting procedures for the observation of three-dimensional cell cultures with SPIM. (a) Low-melting-point agarose

is used to form a container that can be filled with different three-dimensional cell culturing materials. 1. Molding of the hollow agarose

cylindrical chamber: liquid low-melting-point 1% agarose is poured into a template and allowed to gel by cooling to room temperature. 2.

Resulting agarose cylinder after removal from the template. The wall thickness is below 1 mm. 3. The cells–gel mix (matrigel or collagen type I)

is poured into the agarose chamber. 4. The mix is allowed to gel at 37 8C and 5% CO2 for 30 minutes inside the agarose chamber. (b) The

polymerized 3D gel inside the agarose chamber is inserted into and firmly supported by a polypropylene holder, which can be maintained

in a conventional Petri dish. (c) The cells, the culturing material and the holder are prepared for mounting in the SPIM’s stage. (d) The whole

unit once inserted into the SPIM can be moved along the detection system’s optical axis to generate three-dimensional image stacks as

well as rotated to generate stacks of images along different directions. Long-working distance objective lenses, e.g. the water dipping

Carl Zeiss 40�/0.8 with a working distance of 3.61 mm, work very well. Brightfield illumination is particularly useful to locate the cells

inside the gel.
One approach is illustrated in Figure 3. Several types of

matrices are commercially available for three-dimen-

sional cell cultures. They are extracted either from

living systems (e.g. Matrigel) or from synthetic systems

(e.g. Puramatrix). Matrigel reproduces the mechanical

and biochemical characteristics of natural ECM and

consequently exerts an environmental pressure on the

cells that is close to a physiological situation. For many

years it has been known that MDCK cells cultured in a

collagen gel or Matrigel for 7–10 days form hollow cysts,

consisting of a monolayer of 50–100 polarized cells
www.sciencedirect.com
[43,44]. MDCK cells also undergo a branching tubulo-

genesis when exposed to hepatocyte growth factor

(HGF) [43,45]. MDCK cells thus represent an interest-

ing model system for investigating the morphogenesis

of epithelia [44]. In order to test both our instruments

and our understanding of the underlying biology of cyst

and tubules formation, we cultured MDCK inside

Matrigel or collagen type I matrices. We observed the

structures with SPIM using the agarose chamber

approach illustrated in Figure 3. Some of our results

are shown in Figure 4.
Current Opinion in Cell Biology 2006, 18:117–124



122 Cell structure and dynamics

Figure 4

Madin-Darby Canine Kidney (MDCK) cells form hollow clusters when grown in Matrigel. (a) Cysts were obtained by culturing MDCK cells in Matrigel

for 7–10 days. The agarose chamber containing the cells as shown in Figure 3 was put into a conventional Petri dish. After several days in culture, the

sample was mounted within the SPIM-holder and imaged. The average diameter of mature cysts is 50–60 mm. The image was recorded in brightfield

illumination. Carl Zeiss W 10�/0.3. (b) Single MDCK cyst imaged with the SPIM in brightfield at a higher magnification. A small cluster of cells

(delimited by the dotted white circle) is visible inside the hollow cavity of the cyst. Carl Zeiss W 40�/0.8. (c) Single slices through a cyst at 10 mm spacing.

Each section has a thickness of 10 mm. (d) Maximum projection of 29 slices with 1 mm spacing rotated to different angles. The three-dimensional

spatial arrangement of the small cell clusters inside the lumen can be readily visualized. Labeling: Syto61 (absorbance 628 nm, emission 645 nm).
Conclusions
As Karl H Popper noted more than 40 years ago [46], the

sciences, in particular the natural sciences, evolve by

breaking a dogma and developing a new one. Alexis

Carrel broke the rules of physiology by growing myocar-

dia and sarcoma cells in tissue cultures, applying techni-

ques formerly devised by others [47,48]. His ideas

induced a revolution in his time but entered the main-

stream and helped to address fundamental cellular phe-

nomena. Nowadays, with technical advances in tissue

engineering, chemistry and microscopy, the obstacles

hindering us from growing and observing cells in their

natural tissue environment are becoming smaller. Never-

theless, it is still a challenge to take advantage of fifty

fruitful years of cell biology research and move into the

third dimension.
Current Opinion in Cell Biology 2006, 18:117–124
SPIM has the potential to contribute substantially to the

emerging field of three-dimensional cell biology. It pro-

vides a suitable imaging technology for investigating large

and complex cellular systems at high resolution with

extremely low photobleaching and hence extremely

low phototoxicity. The applicability of SPIM ranges from

cells grown in ECM-like matrices to organs and whole

organisms [16��]. Light-sheet-based technologies enable

researchers to visualize growth, migration and morpholo-

gic changes in the context of a physiological environment.

Not surprisingly, the same techniques can also be applied

at the molecular level, since a cell’s cytoskeleton and in

particular its microtubule asters are three-dimensional

structures. Nevertheless, most conventional approaches

to cell biology and biophysics employ two-dimensional
www.sciencedirect.com
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methods and essentially two-dimensional imaging tech-

niques [49]. However, the focus of biological studies up to

now has mainly been on comparative analyses of protein

function [50�]. With the possibility of reducing spatial and

temporal constraints, new experiments can be designed

that yield insights into three-dimensional structural

dynamics in an explicitly quantitative manner.
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