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A) The Computer Simulation S. digitalis 
 

1. Overview of the computer simulation 
 

The computer simulation termed S. digitalis has been designed to model the basic life cycle 
of populations of unicellular diploid individuals containing simplified descriptions of their 
genomes. In this section, a general outline of the simulation is given, including descriptions 
of all simulation rules. Since the simulation source code is included as supplementary online 
material, a detailed documentation of all modules (including some optional features not used 
in the present study) will be provided in the following sections (see Sections A2-A12, 
Table 2), allowing users to set up their own in silico experiments using S. digitalis. 

 

The life cycle of the simulation considers diploid individuals that are subjected to alternating 
rounds of vegetative (mitosis) or sexual (meiosis) divisions. Meiotic progenies immediately 
return to a diploid life cycle via mating. Mating type loci (MAT), of which two opposite types 
exist (MATa and MATα), are optional. If active, mating requires that engaged individuals 
have opposite MAT loci. Mating can occur between individuals from the same meiosis 
(inbreeding, automixis, intratetrad mating) or between individuals from different meioses 
(outbreeding, amphimixis). 

  

The framework of the simulation represents each individual by a genome that consists of one 
diploid chromosome. The basic building blocks of these chromosomes are essential genes 
(EGs), non-essential genes (NEGs) and intergenic elements (IEs) (see Section A2). IEs are 
either proficient for meiotic recombination (hotspots) or not (coldspots). Additionally, mating 
type loci (MAT) can be introduced. The position of the MAT loci is then either linked to a 
discrete location in the chromosome, or present externally on another chromosome. If present 
on another chromosome, the MAT is linked to the simulated chromosome via the centromere, 
which can be simulated at a specified position. If MAT loci are enabled, a diploid individual 
contains one MAT locus of each type on each chromosome of the homologous pair at 
identical positions.  

 

The population of individuals is implemented as a two-dimensional matrix. Each pair of 
adjacent columns in this matrix defines the structural composition of one specific genome 
present in one diploid individual in the population (see Figure 3A in Main Text). Each 
element within a column accounts for one gene or one intergenic element. Genes and 
intergenic elements alternate. EGs exhibit identity; a viable individual needs at least one 
functional copy of each essential gene. NEGs do not exhibit identity. 
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An initial set of genomes (the “seeding genome”) is provided at the start of the simulation 
and generated either by the user or by an integrated random genome generator that constructs 
genomes according to specifications (number of elements, specific or random distribution of 
individual elements). In some experiments (see Figure 4D in Main Text), we analyzed the 
performance of digital yeast chromosomes under mutagenic stress. These chromosomes were 
modeled according to genome-wide data on crossing over sites published by Mancera et al. 
(2008)  [1] (see Section A3). The size of the initial population is adjustable; however, at least 
one individual must be present at any time during the simulation. If the number of individuals 
is reduced to zero, the program stops and the population is considered extinct. Genomes are 
removed from the matrix, if one of the following situations arises: the genome lacks a 
functional copy of at least one EG, or a genome has been randomly selected for removal 
(“starvation”) in an overpopulated matrix, i.e. in a matrix with a number of columns that is 
larger than the specified population size cap. 

  

S. digitalis iteratively applies a simulated life cycle to the initial set of genomes (see 
Figure 3B-D in Main Text). The three main modules of this cycle are mitosis, meiosis and 
mating (in this order). Mitosis is initiated by a duplication of the genomes in the population 
matrix, i.e. a copy of each pair of adjacent columns is generated. Subsequently, mutations 
that lead to the functional inactivation of essential genes at a specified rate R are applied. In 
addition, structural rearrangements (optionally either swapping of genomic sites, which may 
either be genes or IEs, or inversions of entire chromosomal fragments within a column) can 
be applied to the population matrix at random (see Section A4). The structural fitness of each 
genome is then evaluated. The fitness is defined as “1”, if at least one functional copy of each 
essential gene within a genome is present; otherwise it is defined as “0”. Zero-fitness 
genomes are removed from the matrix. If the total number n of vital genomes is larger than a 
pre-defined limiting value m (the “population size cap”), n - m genomes are removed from 
the matrix at random. 

 

Meiosis also starts with a duplication of the matrix’s columns, i.e. four haploids are generated 
from each diploid genome, and subsequently mutations in essential genes can be applied. 
Unlike in mitosis, each quadruplet of haploids then undergoes meiotic recombination. In the 
recombination module, fragments are exchanged between the haploids. The locations of these 
fragments are determined by computation of crossover events between the haploids. A 
crossover can only occur at hotspots and only between non-sister chromatids. Three different 
algorithms are implemented for the computation of crossover events in the genome (see 
Section A5). The distribution of crossover events in the genome is modeled by the 
mathematical description of “crossover interference” that quantifies the likelihood of finding 
two crossover events at a certain distance to each other (Figure 3C in Main Text). 
Mathematically, crossover interference is described by an Erlang probability density 
distribution [2,3] (F. W. Stahl, personal communication). The total number of resulting 
crossover events is then statistically defined by this probability density distribution. Each 
crossover event is fully characterized by its location in the genome, the two participating 
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haploids and the parity of the resulting exchange of fragments (the decision of exchanging 
fragments upstream or downstream of the crossover location). The simulation framework also 
allows the user to switch off crossover interference, but this option was not used in the 
present work (see Section A5, paragraphs on “Erlang-based computation of random crossover 
locations” and “Random recombination”). 

 

Having determined the structural composition of all haploids on the basis of the calculated 
crossover events, new diploid genomes are defined by the mating module. Three mating 
concepts have been implemented: inbreeding, outbreeding and mating type switching (see 
Section A6). In inbreeding (“intratetrad mating” [4], amphimixis), non-sister or sister 
chromatids from the same parent individual are combined to form diploid genomes. 
Depending on the presence of a mating type locus, four (+MAT) or six (-MAT) different 
pairings of haploids are possible for each set of four haploids (see Figure 3D in Main Text). 
In outbreeding, haploids from different parent individuals, i.e. columns from different tetrad-
subgroups in the population matrix, are combined. In mating type switching, haploids are 
selected at random, duplicated and combined with their own copy. The simulation framework 
allows defining an inbreeding fraction i (the probability of inbreeding used for determining 
the mating events) as well as (optionally) a mating type switching probability s. In scenarios 
involving outbreeding (i < 1), the outbreeding mating partners are chosen at random from the 
entire population matrix, but in agreement with the rules of inbreeding and outbreeding (see 
Section A6). Only haploids of opposite mating types can be combined, if a mating type locus 
is present. If mating results in a lethal structural constellation (see above) the corresponding 
pair of columns is removed from the matrix. At the end of each mitotic and meiotic cycle, the 
population size cap is evaluated and if necessary, random removals of genomes are 
performed in order to limit the number of genomes to the pre-defined maximum value 
(“starvation”). 

 

The simulated life cycle of the population matrix is iterated until the pre-defined number of 
cycles has been reached or the population becomes extinct (e.g. due to a high mutation rate R 
that does not sustain growth). 

 

S. digitalis is able to perform a wide range of experiments. The major applications shown in 
this study are mutational robustness benchmarks (see Section A7), evolution/maintenance of 
essential gene clustering (see Section A8), evolution of complex genome architectures under 
variable inbreeding/outbreeding conditions (see Section A9) and survival competition 
scenarios (see Section A10). In mutational robustness benchmarks, the maximum mutation 
rate Rmax a given genome architecture is able to endure is being determined. In 
evolution/maintenance of essential gene clustering experiments, the formation and disruption 
of essential gene clusters is monitored and analyzed (see Section A11), with a focus on the 
determination of the boundary conditions (properties of meiosis/recombination, breeding 
strategy and mating type, mutation and EG and hotspot distributions) that provide higher 
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fitness (competitive advantage) or mutational robustness (maximum value of R a population 
can withstand) or that allows for the evolution of particular non-random distributions of 
chromosomal elements. Survival competition experiments simulate the coexistence of two 
populations with different properties (different architectures or different 
mating/recombination behaviors) in an environment that sustains a (predefined) maximum 
total population (sum of the two individual subpopulations). Survival competition 
experiments allow to determine the population that is best designed for survival in a given 
environment (i.e. in a specific parameter space). 

 

Most of the modules and parameters of the simulation can be modified by the user. 
Therefore, we provide an overview table that lists all properties as well as brief instructions 
on how to operate the program (see Section A12 and Table 2). 

 

2. The simplified concept of genomic structure in the simulation framework 
 

Each of the genomic elements in the population matrix is characterized by an integer 
identifier according to the following code: Recombination deficient intergenic elements 
(recombination coldspots) are represented by the value “0”. Recombination proficient 
intergenic elements (recombination hotspots) are indicated by the value “1”. Intergenic 
elements are always flanked by two genes. Since genes and intergenic elements alternate in 
each column, each genome with a total length of 2k+1 structural components consists of k+1 
genes and k intergenic elements. Genes are categorized as non-essential and essential genes. 
Since a deleterious mutation in a non-essential gene has no further effect within the 
simulation framework, both functional and non-functional non-essential genes are indicated 
by the same value (“2”) in the matrix. Essential genes, however, have a unique identity and 
are therefore represented by a unique identifier. Depending on their mutagenic state the 
identifier starts with a leading “1” (functional essential gene) or a leading “2” (mutated 
essential gene), followed by three digits that define the gene’s identity. 

 

The structural composition of S. cerevisiae chromosome IX shall serve as an example. The 
digital version of this chromosome consists of 413 elements (ngenes = 207 genes and nIEs = 206 
intergenic elements). nEGs = 35 of the 207 genes are essential genes and represented by the 
identifier “10XX” with “XX” ranging from “01” to “35”. The remaining 172 genes are non-
essential genes. nhotspots = 58 of the 206 intergenic elements are recombination hotspots. One 
chromosome IX is represented by the following sequence of identifiers (reformatted into a 
row): 

 

[2 0 2 0 2 0 2 0 2 0 1035 0 1034 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 0 2 1 2 1 2 1 2 1 
2 1 2 1 2 0 1033 0 2 0 2 0 1032 0 2 0 2 0 1031 0 1030 0 1029 1 2 1 2 1 1028 1 2 1 2 0 1027 1 
2 1 2 1 2 1 2 0 2 0 1026 0 2 0 2 0 1025 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 1024 1 2 1 2 0 



 7 

2 0 2 0 2 0 1023 0 2 0 2 0 1022 0 2 0 1021 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 
1020 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1019 0 2 0 2 0 1018 0 2 0 2 0 1017 0 2 0 2 0 2 0 2 0 2 0 2 0 
2 0 2 0 2 0 2 0 2 0 2 0 2 1 1016 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 1015 0 2 1 1014 1 2 1 
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1013 0 2 0 2 0 2 0 1012 0 
1011 0 2 0 1010 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 0 1009 0 1008 0 2 0 
2 0 2 0 2 0 2 0 2 1 2 0 1007 0 1006 0 2 0 2 0 1005 0 1004 0 1003 0 2 0 2 0 1002 0 2 0 2 0 2 0 
2 0 2 0 2 0 2 0 1001 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2] 

 

Since the investigation of the impact of essential gene clustering in regions of low meiotic 
recombination is a major focus of this work, a module for the automated generation of 
clustered genome structures (which then function as seeding genomes) was implemented. 
Using this module, the user may provide the parameters ngenes, nEGs and nhotspots as well as a 
fourth parameter, the number of essential gene clusters ncluster (with ncluster ≤ nEGs). ncluster 
defines the total number of recombination hotspot-free genome fragments that are separated 
by at least one recombination hotspot. The essential genes are evenly distributed amongst 
these fragments, while the recombination hotspots are evenly distributed amongst the 
interfragment regions. If ncluster = nEGs, any two essential genes in the seeding genome are 
separated from each other by at least one recombination hotspot. This situation is referred to 
as a “maximally unclustered genome”. If ncluster = 1, all essential genes are located in one 
single large essential gene cluster that contains only recombination coldspots as intergenic 
elements. This situation is referred to as a “maximally clustered genome”. Additionally, there 
are modules for the generation of randomly structured genomes (based on the layout 
parameters ngenes, nEGs and nhotspots) and for the initialization of seeding genomes from a user-
provided database. 

 

Finally, since the seeding genome does not have to contain all essential genes in two 
functional copies, all modules can be combined with a seeding mutation module that 
randomly mutates essential genes (indicated by the identifier “2XXX”) according to a user-
defined ratio prior to the start of the simulation. 

 

3. Digitalization of yeast chromosome architectures 
 

Genome-wide information about the position of genes, recombination hotspots and 
centromeres as well as the categorization of the genes (essential/non-essential character) were 
obtained from www.yeastgenome.org (for the positions of essential genes), from Gerton et 
al., (2000) [5] (for the positions of recombination hotspots) and from Mancera et al. (2008) 
[1] (for the positions of  the break points of crossovers). We used the following algorithm to 
convert the Mancera et al. data into digital chromosomes in the S. digitalis framework: 

 

 

http://www.yeastgenome.org/�
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1. For each chromosome, an array of the length (2ngenes - 1) was generated as a structural 
template. The numbers “2” or “1XXX” were assigned to the odd-indexed slots from 1 
to (2ngenes - 1), depending on whether Mancera et al. defined the corresponding gene 
as being essential or not. As explained in Section A2, “2” represents non-essential 
genes, while a four-digit code (leading “1” followed by a unique identification 
number) represents the essential genes. 

2. The numbers “0” (coldspot) or “1” (hotspot) were assigned to the even-indexed slots 
from 2 to (2ngenes - 2), depending on whether Mancera et al. found at least one 
recombination event between the genes flanking the respective intergenic slot. It 
should be noted that by assigning the hotspot-character to each intergenic fragment 
with at least one detected recombination event, we are likely to underestimate the 
level of essential gene clustering in the real chromosome. Despite this conservative 
approach we find a significantly better performance of the digital yeast chromosomes 
if compared to random architectures in a survival competition assay. 

3. The index of the gene or intergenic element closest to the measured centromere 
position was defined as the centromere position in the respective digital chromosome. 

 

An analogous algorithm was applied to the data from Gerton et al. (2000) [5], which we 
initially used for digitalization of chromosome IX (at this time point of the work the data by 
Mancera et al. (2008) [1] was not yet available). 

 

4. Mutations and genomic rearrangements in mitosis 
 

Deleterious mutations and structural arrangements occur at random at the end of mitosis. 
Alternatively, mutations may also be activated after the duplication step in meiosis, or 
optionally both in mitosis and meiosis. The mutation rate R defines the average number of 
essential gene inactivating mutations per mitosis and per genome (or per life cycle and per 
genome, if the meiotic module is active as well). The statistical probability defined by R is 
assumed to be identical for all genes. Intergenic elements cannot mutate. Optionally, the 
simulation framework allows for an adaptive mutation rate (a feature that was not studied in 
this work). In this scenario, the mutation rate is continuously adjusted during simulation run-
time, based on an evaluation of the population size and the speed of population growth. The 
framework subjects the population to the maximum mutagenic stress that still allows for the 
population’s survival. In other words, the mutation rate is increased if the population grows 
rapidly, while it is decreased if the population is in danger of becoming extinct. While this 
type of experiment in principle allows for the determination of the mutational robustness Rmax 
of genome architectures, we employed a different and more robust approach for this purpose 
(see Section A7). 
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Similarly, the genomic rearrangement rate r defines the probability of a restructuring event 
per genomic element and per mitosis. Rearrangements can be applied in two different ways, 
either by site swapping or fragment inversions. Both mechanisms are related, since the effect 
of a site swapping can also be achieved by a pair of fragment inversions (see below). The 
simulation framework provides a switch that allows the user to assign the active module. For 
this work, we restricted the simulation to the application of the swapping module. 

 

If a swapping event is applied to a genomic element e1 (either a gene or an intergenic 
element), a random swapping target e2 is determined within the same column of the 
population matrix (i.e. on the same chromatid). The algorithm then determines the 
homologous site e1’ on the second chromatid of the same chromosome. If e1 is an essential 
gene, the algorithm defines the genomic element with the same identity on the second 
homologue as e1’. In any other case (identifiers “0”, “1” or “2”) the geometrically closest 
region with the same identifier is assigned as the homologous region e1’. e2’ is determined in 
the same way. In the last step, the algorithm swaps the identifiers at the positions e1 and e1’ as 
well as at e2 and e2’. 

 

Fragment inversions are performed similarly. Since genomic rearrangements can lead to a 
decrease in the level of homology of the two strands of a chromosome in outbreeding 
situations (but not in inbreeding situations), fragment inversions are only allowed in 
inbreeding experiments (see below). If an inversion event is assigned to a genomic element 
e1, a second element e2 is determined in the same column of the population matrix in order to 
mark the end point of the inversion. The homologous elements e1’, e2’ are then determined as 
described above and the sections [e1 e2] on the first homologue and [e1’ e2’] on the second are 
inverted. 

  

Additional rules apply for outbreeding in the presence of genomic rearrangements (a scenario 
that was not applied in this work). We observed amplification of EGs as a consequence of 
outbreeding in populations containing individuals with different chromosome architectures. 
To prevent or restrict this phenomenon additional parameters have to be provided, including 
the required number of NEGs and the reproductive barrier (the level of homology that 
chromosomes require in order to allow a faithful meiosis I). While such parameters can in 
principle be specified in S. digitalis, we did not activate these modules in the present work. 

 

Mitotic rearrangements can also influence the position of the mating type locus. If the 
genomic location of the mating type locus is linked to a site that becomes subject of a 
swapping or inversion event, the mating type locus remains linked to this site and is therefore 
also repositioned. 
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5. Computation of crossovers 
 

 Computation of crossover events on the basis of crossover interference 

The computation of crossover events on the basis of crossover interference is facilitated via 
an Erlang probability density distribution (see Figure 3C in Main Text). This mathematical 
model quantifies the probability p of measuring a distance d between two crossovers. The 
distance d between the two crossovers can be defined as the number of intermediate 
recombination hotspots (genetic distance definition) or as the total number of intermediate 
genetic elements (physical distance definition). 

 

The Erlang distribution with the shape factor k is defined as follows: 

 

( ) { } ( )
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A shape factor k = 4 describes crossover interference in S. cerevisiae best (information kindly 
provided by Frank Stahl). This results in the probability distribution: 
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An optional scaling factor s was implemented in the simulation. This factor allows adjusting 
the average number of crossover events per genome, a degree of freedom that was 
investigated in the analyses shown in Figure 10 in Main Text. Depending on the distance 
definition, the discrete distance unit u is normalized by nmax = ngenes (physical definition) or 
nmax = nhotspots (genetic definition). 

 

max

su
n

=  (3) 

 

In the simplified framework of the simulation, each recombination hotspot contributes 
equally to the computation of the distance d, i.e. all hotpots are assumed to be characterized 
by the same quantitative intrinsic ability of facilitating double strand breaks. In order to 
compute a probability distribution q1 for the discrete distances of the simulation framework, 
the probability density distribution must be stepwise integrated. 
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The boundary condition arises from the maximal possible distance: 
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A statistical estimate c of the average number of crossover events per genome can be directly 
computed from q1: 
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The integration over q1 results in a probability distribution q2 that returns the probability for 
observing the next crossover event within n discrete distance units. 

 

( ) ( )2 1
1

n

k
q n q k

=

=∑  (7) 

 

The occurrence of recombination is a statistical phenomenon in the simulation, i.e. in addition 
to activating crossover interference the user can define a probability per genome for the 
initiation of the computation of crossover events. The computation of a complete series of 
crossovers for a given tetrad starts with localizing all hotspots within the four haploids. One 
of these hotspots is chosen at random for the first crossover event. The probability 
distribution q2 is then iteratively employed to determine the location of neighboring events 
(both up- and downstream of the initial event). If a recombination hotspot is present on all 
four haploids (as compared to only two haploids) at a specific genomic location and the 
distance definition mode is set to genetic distance, the probability of a crossover event at that 
position is doubled. The computation of crossover events is aborted, if the next target region 
is located outside the population matrix. 

 

In the last step, the identity of the involved haploids is randomly determined for each 
crossover event. Four configurations are possible. For a tetrad A A’ B B’, which is created by 
duplication of the genome A B, the crossover constellations AB, AB’, A’B, A’B’ are 
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allowed. Crossovers cannot occur between sister chromatids. Having computed the entire set 
of crossovers and the corresponding haploid configurations, the algorithm sequentially 
evaluates the events (starting at one end of the chromatid). A random flag determines whether 
the first chromosomal fragment, i.e. the fragment that stretches from the chromatids’ end to 
the first active recombination hotspot, is recombined or not. Subsequent fragments are then 
recombined in an alternating fashion. The mating types of haploids are swapped if the mating 
type locus is located on a chromosomal fragment that is affected by meiotic recombination. 

  

Computation of random crossover locations in the absence of crossover interference 

The simulation allows investigating the effect of crossover interference. We did not use this 
module in the current work, but, since it is provided in the code, a brief description of its 
implementation shall be given: 

In order to achieve identical levels of crossover as compared to the crossover interference 
situation, the total number of crossover is first computed using the Erlang-based computation 
of crossovers. The actual positions of crossovers are discarded and replaced by locations that 
are computed from a uniform probability distribution within the set of coordinates provided 
by the recombination hotspots. This approach ensures that in the statistical average the 
number of crossovers is identical to a situation, in which crossover interference is active. The 
locations of the crossovers, however, are not affected by the Erlang distribution.  

 

Random recombination with fixed crossover frequencies 

In this scenario, the number of crossover events is not subjected to statistical fluctuations, but 
rather given by the statistical average c defined in equation 6. The locations of the crossover 
events are determined by a uniform probability distribution. This module was not employed 
in the experiments presented in this study. 

 

6. Inbreeding, outbreeding, the mating type locus and mating type switching 
 

Starting with n genomes at the onset of meiosis, the meiotic recombination module will 
provide 4n restructured haploids that subsequently undergo the mating procedure. The 
haploid hp,q (with [ ]1;p n∈ , [ ]1;4q∈ ) originates from the paternal genome p and is 

distinguished from the other haploids of the same tetrad by the identifier q. The simulation 
interface allows defining an arbitrary inbreeding/outbreeding-ratio i (with 0 ≤ i ≤ 1). Thus, 
taking into account the optional presence of a mating type locus, four different mating 
situations can occur. The mating type locus introduces an additional parameter α that is either 
assigned as “-1” or “1”, depending on the mating type of the haploid. The following rules 
apply to the six identifiers a, b, c, d, α and β of the two mating haploids ha,b (with mating type 
α) and hc,d (with mating type β): 
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1. inbreeding without a mating type locus: a = b; α and β are undefined. 

2. inbreeding with a mating type locus: a = b; choice of c and d must result in α·β = -1. 

3. outbreeding without a mating type locus: a  ≠ b; α and β are undefined. 

4. outbreeding with a mating type locus: a  ≠ b; choice of c and d must result in α·β = -1. 
 

Inbreeding and outbreeding events are computed in agreement with these four rules, but at 
random with respect to the existing degrees of freedom. 

 

Optionally, a mating type switching probability s may be defined. If s > 0, an according 
number of haploids are picked at random and subjected to a module for mating type 
switching. These haploids do not participate in inbreeding or outbreeding. Instead, their 
architectures are duplicated and the haploids are combined with their own copy. Since this 
step will inevitably lead to the homozygotisation of any essential gene mutation, an 
individual with a diploid genome that has been created by mating type switching can only 
survive, if none of its essential genes are mutated. 

 

The mating type can be exchanged between haploids by means of crossovers during meiosis 
and can be the target of structural rearrangements during mitosis. The genome duplications 
that occur at the onset of mitosis and meiosis transfer the identity of the mating type to the 
new chromatids. 

 

The simulation framework provides the option to define an “external” mating type locus 
position. This option considers a scenario, in which the simulated chromosome is linked to 
the mating type located on another (non-simulated) chromosome in the same cell. 
Mathematically, this situation corresponds to a 50% probability per meiosis for an inversion 
of the mating type of the four haploids in a tetrad. 

 

7. Determination of the mutational robustness Rmax 

 

The simulation interface provides the option to screen for the population survival boundary 
with respect to the mutation rate R. This parameter, the mutational robustness Rmax, is defined 
as the average mutation rate at which the transition from population survival to population 
extinction occurs. In other words, Rmax is the largest average mutation rate at which the 
simulated population still survives for a predefined number of life cycles. If Rmax can be 
approximated from previous investigations, the computation time for Rmax can be 
significantly reduced by specifying the desired resolution Rres and an interval of mutation 
rates [ ]0 1;R R  that includes the mutational robustness. The simulation algorithm then starts 

the first simulation run at the specified maximum mutation rate R1 and iterates the experiment 
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with reduced mutation rates (using the step size Rres) until the first successful experiment is 
completed, i.e. until a population survives the predefined number of simulation cycles. The 
simulation returns the mutation rate that corresponds to this run. 

 

Since Rmax is subject to statistical fluctuations, the user can specify the level of averaging a 
performed in the calculation. If a > 1, the procedure of computing Rmax is repeated (a – 1) 
times and an array of the resulting mutation rate survival boundaries as well as the average 
mutation rate survival boundary ,max aR  and its standard deviation are returned. 

 

8. The clustering score 
 

The investigation of clustering of essential genes in genomic regions is a major focus of the 
simulation. Therefore, a parameter has been introduced that quantifies the level of clustering 
and allows comparing different structural constellations. This parameter is termed “clustering 
score” v. The purpose of the clustering score is the rating of genomes, providing a low score 
for unclustered genomes and a high score for strongly clustered ones. In a maximally 
unclustered genome, any pair of essential genes on a chromosome is separated by at least one 
recombination hotspot. This structure scores the lowest v-value. The highest level of 
clustering is reflected by a genome with one large essential gene cluster, i.e. a continuous 
fragment that contains all essential genes but no recombination hotspots as intergenic 
elements. This situation scores the highest v-value. 

 

The clustering score analysis of a genome is performed as follows. The algorithm detects all 
positions ei (i = 1..n) in the genome that at least one of the genome's two homologues has a 
recombination hotspot at. Additionally, the positions e0 and en+1 are defined as the two end 
coordinates of the genome. In the second step, the algorithm computes the numbers si 
(i = 1..(n + 1)) of essential genes that are located in each fragment [ ]1;i ie e− . The clustering 

score v is then defined as: 

 
1

2

1

1 n
hotspots

i
iEGs

n
v s

n

+

=

+
= ∑  (8) 

 

The clustering score is normalized by the total number of essential genes nEGs and the total 
number of hotspot-separated structural fragments nhotspots + 1 in the genome as indicated in 
equation 8. The normalization factor allows comparing the level of essential gene clustering 
in different genome layouts. 
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The seeding genome of the “creation of clustering in small genomes” experiment shall serve 
as an example (see Figures 7C/D in Main Text). The genome layout is characterized by nEGs 
= 5 essential genes and a total of ngenes = 10 genes and nhotspots = 4 recombination hotspots. 

 

The maximally unclustered structure of the seeding genome (each pair of essential genes is 
separated by a recombination hotspot) is defined as follows: 

 

[1001 0 2 1 1002 0 2 1 1003 0 2 1 1004 0 2 1 1005 0 2] 

[1001 0 2 1 1002 0 2 1 1003 0 2 1 1004 0 2 1 1005 0 2] 

  

The two homologues of the genome are identical and reformatted in a row representation. 
The scoring algorithm detects 5 clusters of essential genes (n = 4) with a size of one unique 
essential gene identity each (si = 1 for i = 1..5). Therefore the clustering score v results as 
v = ((1 + 4) / 5) · (12 + 12 + 12 + 12 + 12) = 5. 

 

Using the same layout parameters, we may define a maximally clustered genome as follows: 

 

[1001 0 1002 0 1003 0 1004 0 1005 0 2 1 2 1 2 1 2 1 2] 

[1001 0 1002 0 1003 0 1004 0 1005 0 2 1 2 1 2 1 2 1 2] 

 

All essential genes are located in one large cluster. The clustering value v for this structure 
results as v = ((1 + 4) / 5) · (52 + 02 + 02 + 02 + 02) = 25. In this very simple structural layout 
with five essential genes, the following clustering scores are possible: 5, 7, 9, 11, 13, 17 and 
25. A larger clustering value indicates a higher level of essential gene clustering in the 
analyzed structure. 

 
Due to the nature of its definition, the clustering score is particularly sensitive to large 
clusters. Some non-random distributions may yield relatively low scores, if they are 
accompanied by an unusually large number of single EGs that are flanked by hotspots. While 
this can be seen as the main disadvantage of the “clustering score”, it should also be noted 
that this parameter is particularly robust, analytically accessible and suitable for comparing 
chromosomes of different lengths, due to the normalization on total hotspot and essential 
gene numbers. These were our main reasons to use this score. For a discussion of an 
alternative sore, the “grouping score”, see Section A11 (“Simulation protocols and sliding 
window analyses”). 
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9. Evolution of complex architectures under variable inbreeding/outbreeding conditions 

 

This simulation module allows defining initial populations with arbitrary sizes and arbitrary 
levels of complexity. The aspect of complexity arises from the option of categorizing 
genomes with different architectures in sub-populations within the main population. Only 
individuals within the same sub-population can be partners in outbreeding. Arbitrary 
mutation rates, genome rearrangement rates and inbreeding/outbreeding ratios can be applied 
during the life cycle. The simulation framework keeps track of the modification of 
individuals by stochastic rearrangements and defines new sub-populations upon changes in 
the architecture that lead to repositioning of essential genes, recombination hotspots and 
coldspots and mating type loci. This dynamic grouping of the population matrix into sub-
populations allows applying a global user-defined inbreeding/outbreeding-ratio without the 
need to consider a potential architectural incompatibility of outbreeding individuals. For all 
aspects of the life cycle other than mating (e.g. nutritional supply, stochastic mutations), the 
population matrix is considered as one entity irrespective of the sub-population groupings and 
all individuals are therefore subjected to the same conditions. As a consequence, this 
simulation module is particularly useful for the evolution and monitoring of large genome 
architectures under variable inbreeding/outbreeding conditions. 

 

This aspect of the simulation has been implemented to facilitate the experimental analysis of 
the evolution of MAT-linked and peripheral essential gene clustering in large populations 
with yeast chromosome IX-like genome content (see Figure 8A in Main Text). Initially, the 
35 essential genes, 172 non-essential genes, 58 recombination hotspots and 148 
recombination coldspots of the chromosome IX-like genomes were arranged such that a 
genome architecture with a minimal level of clustering resulted. In this architecture, each pair 
of essential genes was separated by at least one recombination hotspot (clustering score = 
nhotspots + 1 = 59). The evolution of the architectures in the initial seeding populations was 
then monitored over a time period of 100,000 generations with active/inactive mating types 
and at low and high mutation rates (see Video S2). 

 

10. Survival competition experiments 
 

Some of the results shown in this paper are based on survival competition experiments, in 
which two populations with different initial genomes compete for the same pool of nutrients. 
Nutrient limitation is mimicked by a maximum population size that applies to the sum of 
individuals from both sub-populations. Binary identifiers map the individuals in the initial 
population matrix to the sub-populations. The simulation then monitors and analyzes the 
evolution time-course of both populations. Mating occurs strictly within the sub-populations, 
but both populations together are subjected to the population size cap, i.e. if the size of one 
population stagnates but the other population grows rapidly, the stagnating population will 
also be affected by starvation. The populations can be subjected to different reproduction 
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mechanisms (vegetative/sexual) or different recombination rates. The mating types in the two 
populations can be positioned differently (e.g. externally in one population and internally in 
the other, or simply in different regions of the chromosomes). 

 

Each competition experiment starts with the same number of individuals in both populations. 
There are four possible outcomes of the simulation run, which lasts either until all individuals 
of (at least) one of the sub-populations are extinct (cases 1, 2 and 4) or until a specified 
maximum number of generations is reached (case 3): 

 

1. Population A prevails, i.e. population B is extinct and at least one individual of 
population A is still alive. 

2. Population B prevails, i.e. population A is extinct and at least one individual of 
population B is still alive. 

3. Both populations survive a predefined number of simulation cycles (generations). 

4. Both populations simultaneously become extinct before a predefined number of 
simulation cycles is reached. 

 

This competition scenario is a simple and straightforward way of comparing the mutational 
robustness provided by different genome architectures, mating behavior or recombination 
frequencies. 

 

11. Simulation protocols and sliding window analyses  
 

At simulation run-time, protocols are generated that provide an easy access to pre-processed 
data, which are directly obtained from the population matrix. In order to save disk space, the 
population matrix itself is stored on the hard disk only every one-hundredth generation. Using 
the dynamic protocols, every single event that occurred within the simulation framework and 
thus also the population matrix at any given time point can be reconstructed. The core 
protocols monitor the position of recombination hotspots in the matrix, the size of essential 
gene clusters, the “starvation” of individuals (i.e. the removal of genomes induced by the 
population size cap), the crossovers during meiotic recombination, mitotic rearrangements, 
mitotic mutations and the computation of mating partners. 

 

Other protocols monitor the population size after mitosis and after meiosis, the average 
number of mutations in the population, the average number of functional deleterious 
mutations (affecting essential genes), the number of genome removals due to homozygous 
mutations during mitosis and during meiosis, the average number of rearrangements, the 
average number of recombination events, the number of attempted and successful inbreeding 
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and outbreeding events, the number of genome removals due to a lack of homology or due to 
a lack of recombination hotspots (only for outbreeding experiments in combination with a 
non-zero rearrangement rate), the amount of mutagenic load in the population during mitosis 
and meiosis and the amount of mutagenic load in deleted genomes during mitosis and meiosis 
(mutagenic purging). 

Finally, two types of structural analyses are performed at simulation run-time: the 
determination of the average population clustering score (see Section A8) and a sliding-
window histogram analysis of the genetic contents of the population matrix. 

 

In the sliding-window analysis, each column in the population matrix is analyzed with respect 
to a local presence of essential genes and recombination hotspots. A sliding window filter, 
typically of the size nwindow = 10 genetic units, is moved unit-wise from the top to the bottom 
of each column, while the total number of essential genes and hotspots is noted in two 
protocol arrays. In the histogram analysis the frequencies of the sliding window counts are 
determined. The “grouping score” g is defined as the standard deviation of the array that 
results by subtracting the sliding-window array for essential genes from the array for 
recombination hotspots. g is another measure for essential gene clustering in the population 
matrix. We found both the grouping score g and the clustering score v to be useful in the 
analysis of structural phenomena in the simulation. However, the clustering score v (in 
contrast to the grouping score g) gives access to a simple analytical assessment of the 
simulation’s results (see e.g. Figure 7B-D in Main Text). Therefore, the results derived in this 
study are based on the clustering score v.  

 

All protocols and analyses described in this section are stored in individual arrays in the sub-
directories “clustering_plots” and “protocol_plots”. Graphical visualizations in plots and 
histograms are also generated and provided as JPEG images. A movie of the evolution of 
inbreeding populations is provided as Video S1.  

 

12. Open and internal simulation parameters 
 

Most of the simulation’s parameters are assigned at the command line when invoking the 
simulation program. An overview of all open and non-open parameters is provided in a table 
(see Table 2). The table contains the identifiers used in the simulation code, a brief 
description of the parameters, the valid numerical ranges and experimental values that are 
known from literature (if applicable). 
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13. Estimating the mutational robustness of asexual populations 
 

A deactivation of meiosis in the simulation framework leads to a situation, in which the 
deleterious mutagenic load k of the genomes monotonously increases until the saturation 
level k = nEGs is reached (there are 2 nEGs essential gene copies in the diploid genome). At this 
stage, any additional deleterious mutation will inevitably lead to the death of the concerned 
individual. Since recombination of the genomes is not possible, neither structural 
rearrangements nor mating types or recombination hotspots have any effect on the handling 
of deleterious mutational load. The mutational robustness of the population depends on the 
number of essential gene copies per diploid genome (2 nEGs) and the size s of the population 
(expressed as the number of diploid genomes). We define m as the mutation rate per essential 
gene copy and per mitosis, i.e. m = R / (2 nEGs). The probability psurvival(m) for an equilibrated 
genome (a genome that reached the saturation level of deleterious mutations) to not 
experience a mutation in one of the remaining functional essential gene copies at a mutation 
rate m is then 

 

( ) ( )1 EGsn
survivalp m m= − . (9) 

 

Thus, psurvival is the probability of survival for an equilibrated genome. In a population of s 
individuals, the probability ps(m,n) that precisely n genomes survive the random application 
of deleterious mutations is therefore: 

 

( ) ( )( ) ( )( ), 1
n s n

s survival survival

s
p m n p m p m

n
− 

= − 
 

 (10) 

 

An estimate for the mutational robustness Rmax in the population can be obtained from the 
mutation rate mr = Rmax / (2 nEGs), for which the first momentum of the probability 
distribution ps with respect to n takes the value of s / 2: 
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s r
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snp m n
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=∑  (11) 

 

At this value of m in average half of the population size s is removed due to homozygous 
deleterious mutations. Since each mitotic cycle duplicates the population, the population is 
exactly at the edge of survival. The population does on average neither shrink nor grow. 
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The mutational robustness of an asexual population is independent of the population size s (a 
result that can also be directly derived from equation 9). Inserting equations 9 and 10 in 
equation 11 yields: 
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We obtain the formula for the mutational robustness Rmax of an asexual population: 

 
1

max
12 2 1
2

EGsn

EGs r EGsR n m n
 

  = ⋅ = −    
 

 (13) 

  

14. Computation 

 

S. digitalis was developed in Matlab (v7.4, The Mathworks). Using the Matlab Compiler, the 
Matlab code was compiled for Unix platforms and executed on computer clusters at the 
European Molecular Biology Laboratory (EMBL) and at the Karlsruhe Institute of 
Technology (KIT). 
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B) Supplementary Results and Discussion 

 
1. Nature of the lethality caused by depletion of Msh2 during vegetative growth 

 

In order to analyze the deleterious mutations that accumulate during vegetative growth in 
cells depleted for Msh2, we used cells that have been grown on YPD three times for 10-12 
generations using serial transfer in order to allow for accumulation of mutations. Thereafter, 
2 x 107 cells were grown for approximately 1 day on YP-Gal/Raf plates, in order to induce 
the GalS-promoter followed by sporulation and tetrad dissection. Under these specific 
conditions we found that ascus formation occurred with a frequency of > 99% within a period 
of 36 hours. 400 tetrads were dissected and spore viability was scored. Replica plating onto 
YPD containing G418 or ClonNat was used to investigate the segregation of the two GalS-
MSH2 loci, one marked with kanMX (which confers resistance to G418) and the other one 
with natNT2 (which confers resistance to ClonNat) and on SC-LEU medium to follow the 
segregation of the leu2 allele. All tetrads that produced two viable spores were scored, and 
the linkage of the lethal phenotype was analyzed using the formula cM = 
100/2(T/(PD+NPD+T)) [6]. The segregation of lethality in 131 tetrads with two viable spores 
PD:NPD:T=27:34:70 (versus MSH2, marked with kanMX and natNT2) and 
PD:NPD:T=21:18:92 (for leu2). T stands for tetratype tetrads. In our case we scored 
situations, in which the two viable spores had a different allele with respect to the 
investigated marker (leu2/LEU2 and MSH2-kanMX/MSH2-natNT2). PD and NPD tetrads 
were scored when both viable spores had the same marker. In the case of GalS-MSH2 (which 
is not centromere-linked), no linkage to the load was measured (35 cM, a linkage ≥ 35 cM 
cannot be calculated using this formula), whereas the lethal load scored a linkage of 27 cM to 
leu2/LEU2, indicating that some lethal mutations exhibited centromere linkage. Since spore 
lethality must be caused by a different mutation in each tetrad with two viable spores, the 
global linkage of 27 cM of the load to leu2 represents an average. This average is composed 
of mutations in essential genes, which may themselves exhibit centromere linkage. 
Additionally, some linkage may be caused by meiosis I non-disjunction of a chromosome, 
which results in two (or zero, in the case of several non-disjoined chromosomes) viable 
spores.  

 

In order to mate, a spore needs to be able to break open the spore wall and show some 
indication of germination. Microscopic inspection of single dead spores that failed to form 
visible colonies revealed that their majority (93.5%; n=200) was able to germinate. In most 
cases they formed micro-colonies of up to approximately 20 cells (the histogram of the 
observed colony sizes is shown in Supplementary Figure 10). This is likely due to maternal 
contribution of functional mRNA or protein. We moreover found that most of the spores that 
did not show signs of germination appeared nevertheless swollen and we could often see faint 
remnants of what may have been a spore wall (after touching the spore with the needle of the 
micromanipulator). This indicates some metabolic activity. But it is unclear whether those 
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spores would still be able to mate. Together, these results provides additional support for 
single mutations as the cause of the lethal phenotypes, since spores that lack entire 
chromosomes (either due to meiosis I non-disjunction or meiosis II chromosome miss-
segregation) usually fail to germinate. For methods, see Section C below. 

 

For successful mating, spores furthermore require a functioning complement of the proteins 
required for mating. In order to estimate the frequency of mutations that inactivate the mating 
machinery, we tested the viable spore colonies for pheromone secretion and mating. We 
found that 1.2% (5 out of 425) viable spore colonies were deficient in mating, four of which 
also failed to secrete pheromone. One spore colony was well secreting mating pheromone but 
completely mating deficient. One spore colony could be induced to undergo haploid meiosis, 
which could be due to an extra chromosome III. For the remaining three spore colonies we 
could not easily determine the defect that hindered them from mating. 

 

These tests provide additional support for our claim that mutagenized yeast genomes 
accumulate mutations that, even though they may be lethal, do not prevent the transmission 
of genomes through meiosis in the vast majority of the cases, provided that the spores have 
access to a mating partner immediately after germination.  

  

2. Essential gene clustering in pericentromeric regions 

 

Our simulations predict a fitness advantage for a linkage of essential gene clusters to 
centromeres. While clustering can be caused by the absence of meiotic recombination in 
pericentromeric regions, an enrichment of essential genes near centromeres (our previous 
finding [7]) constitutes evidence for a force underlying chromosome organization that arises 
from the mutational robustness. In Taxis et al. (2005) [7], we have calculated the essential 
gene enrichment in a region of 10 kb on either side of the centromeres, which corresponds to 
the physical distance that shows significant centromere linkage (within 35 cM). The 
correlation between physical distance p (in kbp) and genetic distance g (in cM) in 
pericentromeric regions (up to approximately 40 cM) can be approximated using the formula: 

 

1 42.2ln 2 1
0.228 42.2

g
p

 
= − ⋅ − + 

 (14) 

 

The formula was derived from a compilation of the genetic and physical distances present in 
the yeast genome available at www.yeastgenome.org. Batada and Hurst [8] reported that the 
essential gene enrichment for this interval is not (or borderline) significant (P = 0.077), while 
we found it to be significant (P = 0.03) [7]. The deviation arises from the different statistical 
tests employed in both studies. Batada and Hurst used the non-parametric Mann-Whitney U 

http://www.yeastgenome.org/�
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test to decide whether the two distributions are significantly different. Non-parametric tests 
have less statistical power than the corresponding exact tests, which conversely can only be 
used if the correct theoretical distribution is known. In our case, we are comparing 
independent counts in two samples, rendering the theoretical distribution hypergeometric, and 
thus employ Fisher's exact test. In conclusion, Batada and Hurst arrive at a P-value of 0.077 
whereas we obtain the P-value 0.03 for the same data. 

 
3. Mitotic versus meiotic mutations 

 

For most in silico experiments we implemented mutations only in mitosis. With respect to all 
conclusions drawn from our simulation in the present work, this is qualitatively and 
quantitatively identical to the situation, in which mutations would occur during pre-meiotic 
DNA replication. This is demonstrated in a series of comparative and competitive 
benchmarks (Supplementary Figure 2A-D). However, our simplified simulation framework 
does not consider the possibility of other meiotic mutations (e.g. during meiotic 
recombination) that may have a quantitative or qualitative impact on the simulation readout. 
This possibility is disregarded, because there is currently no data available that reports on this 
specific class of mutations.  
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C) Supplementary Materials and Methods 

 
Yeast mutator experiment 
 
Haploid yeast strains NKY289 (MATa lys2 ura3 ho::hisG) and NKY292 (MATα lys2 ura3 
leu2::hisG ho::LYS2) [9] in the well-sporulating SK1 background were used. The 
endogenous MSH2-promoter was substituted using PCR targeting and plasmids pYM-N30 
and pYM-N31 as templates for PCR as described [10]. The correct integration of the PCR 
product was validated using PCR. Competent cells and selection of transformants were done 
using YP-medium containing 2% galactose and 2% raffinose (YP-gal/raff). Upon mating the 
spore viability of diploids was tested using tetrad dissection and was found to be identical to 
the wild type strains. For sporulation cells were grown for 24 h on YP-gal/raff plates at 30°C 
followed by sporulation on plates containing 1% KAc and each 0.02% of raffinose and 
galactose at 23°C for 36 – 48 hours. For sporulation of cells during a mutation accumulation 
experiment, 0.2 ml of cells grown in liquid YPD culture (2x107 cells) were plated on a YP-
gal/raff plate, grown for 24 h, washed off with sterile water and plated on SPO plates. 
Random spores were prepared using washed-off cells in water and Zymolyase 100T (0.2 
mg/ml, Seikagoku) and Sulfatase (10%, Sigma) for 1 hour, followed by vigorous vortexing of 
the cells with acid-cleaned glass beads (1 volume beads, 1 volume cells) for 6 min in total. 
Spores were then washed two times with 100 mM sodiumcitrate (pH 5.8) containing 1% 
Triton X100 and once with water. This procedure disrupted all non-sporulated cells and all 
asci, and also disrupted most of the interspore bridges that were reported to keep pairs of 
spores together [11]. Most of the dyads observed in the FACS formed after the Triton X-100 
washes upon dilution of the spores in the buffer used for FACS, but a few remaining dyad 
pairs linked by interspore bridges may not have been disrupted. Interspore bridges are likely 
to keep spores together, which involve genomes separated during meiosis I. This explains 
why the rate of diploid formation resulted as 53% in sorted dyads in the contest of the MAT-
centromere linkage and not exactly as 50% in both the wild type strain and at time point 0 h 
of the GalS-MSH2 strain. 
 
Germination of FACS-sorted spores was investigated following growth on YPD plates for 
three days by looking at the individual spores using a tetrad dissection microscope (Singer 
Instruments). Successful germination was scored when a spore had formed an extension 
(which may be the shape of a bud or more tube-like) of at least one spore diameter in size. In 
most cases spores formed micro-colonies that consisted frequently of cells of aberrant shape. 
A spore was considered to be “dead” if it failed to form a colony visible by eye. Counting or 
approximate estimation of the number of cells per colony was used to classify the lethal 
phenotypes. The experiment was conducted with two different clones of the GalS-MSH2 
strain, which both yielded identical results. 
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For mating testing, two assays were used. Pheromone secretion was tested using a halo-assay 
and by using pheromone-sensitive strains. Mating was tested using complementation of rare 
auxotrophic mutations.   
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D) Supplementary Figures, Tables and Videos 

 

 
 

Supplementary Figure 1: Mutations and selection for reproductive fitness in S. digitalis 

(A) Mutations that inactivate essential genes occur at random in mitosis. Mutation of both 
alleles of an essential gene leads to the death of the individual. Surviving individuals (that 
carry at least one functional copy of each essential gene) are subjected to meiotic 
recombination followed by mating of the meiotic products (spores) with other spores. Mating 
can occur within the tetrad (intratetrad mating/inbreeding) or among spores from different 
tetrads (outbreeding/amphimixis). The chromatids involved in mating carry a specific load of 
lethal mutations. Only homozygotisation of mutated essential genes leads to death of an 
individual. 

(B) Two mechanisms lead to the death of individual in the simulation: a random removal of 
individuals due to limitations in the nutritional supply (starvation) and a selective removal of 
individuals with homozygous mutations in essential genes. The parameters that govern the 
recombination of genomes in meiosis and mating (chromosome architecture, inbreeding and 
outbreeding, crossover frequency) affect the mutational load and its distribution across the 
genome and thereby the frequency of homozygotisation of haploid lethal mutations. 
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Supplementary Figure 2: Mutational robustness Rmax of S. cerevisiae chromosome IX 
and random chromosomes 

Scatter plots and histograms of mutational robustness (Rmax) benchmarks performed for 
populations with S. cerevisiae chromosome IX and for populations with random 
architectures. In the first series of experiments, mutations were applied in mitosis (A), in 
meiosis (B) or in mitosis and meiosis (C). Notably, almost the same mutational robustness 
results for these different scenarios. As an additional test, two populations of S. cerevisiae 
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chromosome VI carrying individuals were subjected to a competitive advantage simulation. 
Mutations were applied exclusively in mitosis in population #1 and exclusively in meiosis in 
population #2. The histogram in (D) shows the competition wins, indicating comparable 
performance of both populations.  

In the second series of experiments, populations with S. cerevisiae chromosome IX and 
populations with random architectures were analyzed for their mutational robustness (Rmax), 
considering a contribution of mating type switching of either 10% (E) or 50% (F) during 
breeding following meiosis. As a reference, the maximal robustness in the absence of mating 
type switching is indicated by a grey dashed line. At 10% mating type switching the maximal 
robustness is decreased by 8%, while it is increased by 42% at 50% mating type switching. 

Statistics: n = 3,000 (A-C) or 1,000 (E/F) experiments per chromosome configuration, 
n = 4,994 experiments (D). 
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Supplementary Figure 3: The effect of essential gene clustering on mutational 
robustness at different inbreeding rates 

Mutational robustness Rmax of chromosomes with different levels of essential gene clustering 
(1-100 clusters, 100 EGs in total) for different mating type configurations (+/-MAT) and for 
different inbreeding fractions (0-100%). In a chromosome architecture with n essential gene 
clusters, each cluster contains x/n essential genes, where x is the total number of essential 
genes in the chromosome. Thus, the architecture with one essential gene cluster represents a 
maximally clustered genome, while the architecture with 100 essential gene clusters 
represents a maximally unclustered genome. Rmax is color-encoded (left) and provided in 
dependency of the genome architecture and as a function of the inbreeding fraction. The plot 
(right) shows the average mutational robustness maxR  (average of Rmax for the entire 
inbreeding domain). Error bars indicate SD. 
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Supplementary Figure 4: Evolution of pericentromeric EG clustering requires a mating 
type 

Levels of essential gene clustering obtained in the evolution of the small model architecture 
shown in Figure 7C in Main Text. The evolution experiment was performed for different 
rearrangement rates, mutations rates and mating type configurations (+/-MAT). The 
chromosomes contain five essential genes, five non-essential genes, four recombination 
hotspots and five recombination coldspots. The initial genome architecture is maximally 
unclustered (resulting in a clustering score of ν = 5). The evolution of the architectures was 
simulated for 100,000 generations. Without a mating type, the clustering score does not 
increase beyond the level found in random populations (between 8 and 9). In the presence of 
a mating type, the architectures evolve towards a clustering score between 10 and 13 for 
rearrangement rates below 10-3 per genetic element and generation. The highest possible level 
of essential gene clustering is reflected by a clustering score of 25 (all five essential genes in 
a single cluster without recombination hotspots). “rnd” indicates the average clustering score 
of randomly generated genomes (ν = 8.5). 
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Supplementary Figure 5: Evolution of essential gene clustering in S. cerevisiae X-like 
chromosomes 

(A) Evolution of chromosome architectures with a yeast chromosome X-like size and genetic 
content. Starting with completely unclustered chromosomes, populations with and without 
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MAT were allowed to evolve at different mutation rates R as indicated (nred = 495, 
ngreen = 500, nblue = 500 experiments). Similar to the analysis in Figure 8A in Main Text, 
clustering was scored by measuring both the size of the largest essential gene cluster and the 
average size of the remaining clusters. For genomes containing a MAT, the largest cluster was 
always observed to be linked to the MAT. The scatter plot shows the scores obtained after an 
evolution period of 200,000 generations. Score distributions for the different populations are 
spanned along the axes (including reference distributions for randomly generated populations 
of the same size as in the +MAT scenario at R = 1). The unclustered starting architecture 
provides a clustering score of ν = 131. Random architectures with a chromosome X genetic 
content provide a clustering score of ν = 221 ± 23 (SD), whereas the chromosome X 
architecture itself scores ν = 408. The percentages indicate the fraction of experiments 
yielding genomes with a clustering value ν at least 2σ above the average score of randomly 
generated genomes (i.e. ν ≥ 267). 

(B) Survival competition of the evolved genomes shown in (A) versus chromosome X and 
random genome architectures. The matrices show the average statistical results for n = 300 
evolved genomes picked randomly from the red, green and blue groups.  

(C) The bars indicate the total number of wins of the evolved architectures and of 
chromosome X or the random architectures respectively in the competition experiments 
shown in (B). 
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Supplementary Figure 6: Competition analysis of mating type switching populations vs. 
non-switching populations at different levels of deleterious pre-load 

Survival competition experiments of populations with S. cerevisiae chromosome VI 
subjected to different levels of mating type switching (2%, 10% and 25%) versus populations 
that do not perform mating type switching (n = 2,000 experiments per matrix). Before the 
start of the competition, 0, 2, 4, 6, 8 or 10 essential genes were deactivated (distributed on 
both homologues). When starting with two or less essential gene mutations in the entire 
chromosome, the switching populations clearly outperformed the non-switching populations 
for mutations rates between 10-3 and 10-1. The situation is reversed in the presence of more 
than two mutations in the chromosome: non-switching populations win against switching 
populations. At high mutation rates (R = 1), non-switching populations have a strong 
quantitative advantage, even in the absence of a mutational pre-load. Only when competing 
with populations subjected to high fractions of mating type switching (≥ 25%) with a 
mutational pre-load of less than four essential gene mutations, the switching populations 
outperform non-switching populations at R = 1. 
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Supplementary Figure 7: Number of crossovers and ORFs in S. cerevisiae chromosomes 

Crossover frequencies and ORF content of the 16 chromosomes of S. cerevisiae. Data was 
compiled from www.yeastgenome.org.  
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Supplementary Figure 8: Competition analysis of crossing over rates in yeast 
chromosomes 

Average competitive advantage in the experiments shown in Figure 10B/C in Main Text. The 
direct competition of the S. cerevisiae chromosome IX crossover rate (cIX) versus altered 
crossover rates (shown in red) reveals a global performance maximum at the S. cerevisiae 
chromosome IX rate. In this regime, S. cerevisiae chromosome IX also performs particularly 
well against random architectures (shown in blue). The SEM errors bars are smaller than the 
data circles. 
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Supplementary Figure 9: FACS sorting of spores and dyads 
(A) Spores were gated based on green autofluorescence of the cells and ultraviolet 
autofluorescence of the spore wall (R1, excitation/emission: 326/404 nm). Spores (R3) and 
dyads (R2) could be distinguished using shape parameters determined from side and forward 
scatter. 

(B) To assess the sorting specificity, 500 spores and 500 dyads were sorted onto an agar plate 
in 50 groups of 10 and counted using a microscope equipped with a 20x magnification air 
lens. The dyad plate was contaminated with tetrads (0.2%), triads (3.2%) and single spores 
(0.7%), whereas the spore plate was effectively contamination-free. 

(C) Examples of sorted spores and dyads grown on YP-galactose/raffinose (2% each) plates.  
Colony formation was scored using ImageJ (NIH, Bethesda) to count colonies in the plate 
images. A spore was considered to be viable when it formed a colony that could be clearly 
identified by the image analysis procedure.  
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Supplementary Figure 10: Germination efficiency and colony size distribution of FACS-
sorted single spores 

Histogram of the distribution of colony sizes of sorted single spores upon mutation 
accumulation for 33-36 generations in the conditional Msh2 mutator strain. Sorted spores that 
did not give rise to visible colonies were investigated with microscopy and categorized 
according to their approximate cell counts. Visible colonies were categorized according to 
their diameter relative to the average wild type colony size (wild type = colonies with no 
obvious growth defect). 
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Supplementary Figure 11: Mating success rates in the presence of mutational load 

A simplified model that illustrates the increase in mating success due to essential gene 
clustering and MAT-linkage in the case of pure inbreeding and a two-gene configuration with 
a single recombination hotspot. The model considers a static scenario of maximum load (50% 
inactivated EGs). The genome undergoes a meiotic duplication and a meitotic recombination 
of two sister chromatids. The six possible pairings of the resulting four haploids are shown as 
schematic illustrations. Large red crosses indicate lethal combinations. All possible 
architectures (unclustered = hotspot between genes, clustered = non-separated genes), 
mutation distributions (on one chromosome or on homologue strands) and mating type 
configurations (with/without MAT) were considered. Clustered architectures provide higher 
survival rates than unclustered architectures. The presence of a MAT further increases the 
chance of obtaining a viable combination. No lethal combination is possible for a clustered 
MAT-linked architecture (100% mating success).  

This scenario was chosen to highlight the correlation between clustering and the viability 
after mating. It does not reflect the complex processes of the dynamic life cycle, in which the 
load is also affected by the linkage relationship of the essential genes, as determined by their 
distribution and the distribution of meiotic recombination hotspots. In the dynamic scenario, 
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populations with different chromosome architectures will accumulate different levels of load, 
which are specific to their architecture and the environmental conditions. This circumstance 
will affect the lethality caused by homozygotisation of lethal mutations and the associated 
purging of lethal load. 
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Supplementary Figure 12: Purging and survival rates in the evolution of clustering 
experiment 

Average clustering scores (A), purging ratios (mitosis over meiosis, B), inbreeding success 
rates (C) and outbreeding success rates (D) as a function of simulated generations for the 
three types of evolution experiments discussed in Figure 8A in Main Text. The light-colored 
areas indicate standard deviations over the entire set of experiments (n = 816 high-R +MAT 
populations [red], n = 816 low-R +MAT populations [green], n = 825 high-R -MAT 
populations [blue]). In all experiments, inbreeding and outbreeding success rates are 
positively correlated to the clustering score. This effect is particularly strong in high-R +MAT 
populations. 
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Video S1: Maintenance of EG clustering at low and at high mutation rates 

Maintenance of essential gene clustering in evolving inbreeding populations for two of the 
data points in Figure 7A in Main Text. The right panel corresponds to data point #1, while the 
one to the left corresponds to data point #2. The graphs at the top show the genomic element 
densities for the entire population. Chromosomes are vertically aligned. The color-coding 
reports the differences in density of EGs and recombination hotspots (sliding window 
analyses of individual genomes, window size is 20 elements). Histograms of the sliding 
window analyses are shown at the bottom. Initially, all EGs are located on one side of the 
chromosomes, while recombination hotspots form a cluster in the middle of the non-essential 
genes (at the other end of the chromosome). At high mutation rates, the EG clustering is 
maintained (left, movie shows a period of 100,000 generations). At low mutation rates, EG 
clustering is not maintained and the EGs become distributed in random patterns (right). Both 
simulations used identical values for all parameters except for R. 

 
Video S2: Evolution of EG clustering 

Visualization of the evolution of clustered genome architectures as a function of time in a 
population representative for the high-R +MAT evolution experiment shown in Figure 8A in 
Main Text. The top left panel shows a density difference sliding window plot of all genomes 
(red = only essential genes, blue = only hotspots, green = equal densities of essential genes 
and hotspots). The bottom two panels show essential gene and hotspot densities in the entire 
population. The average clustering score in the population (white, SD in red) is indicated in 
the top right panel (dashed white line = level of clustering in random architectures 
[107 ± 17]). The simulation starts with a maximally unclustered genome architecture. The 
inbreeding percentage is 50%. Movie playback speed: 6,000 generations per second (400 
generations per frame).  
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Table 1: Essential gene clustering in S. cerevisiae 

 
S. cerevisiae chromosome statistics S. cerevisiae chromosome analysis Random reference architecture analysis Comparison 

# EGs non-
EGs 

hot-
spots 

cold-
spots 

clustering 
score 

largest 
EG 

cluster 

peripheral 
clustering 

clustering 
score 

largest 
cluster 

peripheral 
clustering 

clustering level 
above 

random mean 
(in SD units) mean SD mean SD mean SD mean SD 

1 15 76 38 52 96,20 5 1,11 0,33 54,59 10,13 2,31 0,66 1,12 0,27 4,11 
2 74 337 172 238 327,30 5 1,38 0,64 258,71 24,09 3,47 0,83 1,21 0,46 2,85 
3 17 139 73 82 91,41 2 1,07 0,27 90,03 13,06 1,97 0,56 1,06 0,16 0,11 
4 174 609 277 505 559,20 5 1,47 0,82 499,91 34,52 4,85 1,05 1,37 0,67 1,72 
5 45 223 113 154 169,73 3 1,20 0,47 163,81 19,11 2,95 0,78 1,18 0,40 0,31 
6 27 94 57 63 143,93 6 1,24 0,56 84,99 12,43 2,76 0,75 1,17 0,39 4,74 
7 113 432 223 321 446,02 5 1,42 0,79 355,62 28,41 3,91 0,87 1,27 0,54 3,18 
8 43 215 96 161 232,35 7 1,29 0,53 149,07 18,94 3,23 0,82 1,21 0,45 4,40 
9 37 164 99 101 132,43 3 1,10 0,30 136,42 15,16 2,69 0,68 1,14 0,35 -0,26 
10 72 285 130 226 407,56 10 1,59 0,82 220,80 22,87 3,90 0,93 1,30 0,57 8,17 
11 69 263 129 202 239,28 4 1,41 0,65 212,42 22,35 3,72 0,89 1,28 0,54 1,20 
12 100 418 209 308 369,60 4 1,35 0,66 326,55 28,09 3,77 0,86 1,25 0,52 1,53 
13 76 400 179 296 274,74 3 1,26 0,52 273,26 25,38 3,47 0,81 1,23 0,48 0,06 
14 74 333 145 261 244,65 4 1,30 0,57 239,92 24,49 3,80 0,89 1,28 0,55 0,19 
15 100 447 198 348 358,20 4 1,37 0,68 325,40 29,25 3,99 0,96 1,28 0,56 1,12 
16 96 377 188 284 413,44 7 1,39 0,77 303,63 27,58 3,90 0,93 1,27 0,54 3,98 

 

Conservative estimate of essential gene clustering using whole-genome data from Mancera et al. (2008) [1]. Note that these data yield a 
clustering score for yeast chromosome IX that differs from the data provided by Pal and Hurst (2003) [12]. The data set used for the initial 
chromosome IX architecture is based on the hotspot distribution from Gerton et al. (2000) [5], whereas the data from Mancera et al. (2008) [1] 
used for the analyses underlying Table 1 report on the distribution of actual crossover events. Detailed information about the architectures used 
in our simulation experiments are provided in Text S1, Section E. 



 43 

Table 2: The parameters and simulation modules of S. digitalis 

 

The table lists all parameters, modules and simulation functionality in S. digitalis. The valid parameter space is indicated for each parameter. 
Some parameters are not accessible via the function interface and are therefore listed as “internal” parameters (see second part of the table). 

 
Command line parameters of the simulation S. digitalis (version 1.79, 10/2005-02/2009) 

 
Parameter types – red: simulation core parameters | green: optional module parameters | blue: simulation layout parameters 

 

# type parameter name parameter description Restrictions 

1 ● nGenes number of genes per chromosome x∈  

2 ● nEssentialGenes number of essential genes per chromosome 0x∈  

3 ● nRPIE number of recombination hotspots ( ); 1genesx x n∈ ≤ −  

4 ● mutationRates mutation rate(s) 
note: considered as initial rate(s), if feedback is active (see #29) 0x +∈  

5 ● mutationRateSpacing precision of robustness determination for survival screen experiments 
note: alternatively a list of mutation rates can be provided via parameter #4 0x +∈  

6 ● rearrangementRates rearrangement rate(s) 0x +∈  

7 ● statisticalAveraging number of iterations of the simulated experiments x∈  

8 ● seedingSetup structural layout of the seeding genome 
note: provides access to templates, see code for details ;0 13x x∈ ≤ ≤  

9 ● clusterFrequency cluster frequency of the seeding genome 
note: only required if parameter #8 is set to 12 or 13 ; 100x x∈ ≤  

10 ● clusterFrequencyArray cluster frequency array of the seeding genome 
note: only required for seeding knockout survival screen (see #14) 

; genesx x n∈ ≤  
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11 ● seedingKnockout fraction of mutated essential genes at the start of the simulation ( ) ;0 0.5genesx n x⋅ ∈ ≤ ≤  

12 ● seedingKnockoutArray fraction array of mutated essential genes at the start of the simulation 
note: only required for seeding knockout survival screen (see #14) ( ) ;0 0.5genesx n x⋅ ∈ ≤ ≤  

13 ● fittingScheme 
indicator for fitting type of clustering values 
settings: 0 for linear fitting 
 1 for exponential fitting 

{ }0;1x∈  

14 ● performSurvivalScreen 

indicator for screening type 
settings: 0 for no screening 
 1 for mutation/rearrangement rate survival screen 
 2 for seeding knockout ratio survival screen 

{ }0;1;2x∈  

15 ● screeningArray 

indicator for mutation rate or rearrangement rate screen 
note: only required, if parameter #14 is set to 1 
settings: 1 for rearrangement rate screen 
 2 for mutation rate screen 

{ }1;2x∈  

16 ● positiveSurvivalRuns number of successful experiments before switching the screening column 
note: only required for screening experiments x∈  

17 ● totalSimulationSteps simulated time period (measured in half life cycles) ( )2
x ∈  

18 ● inbreedingFraction inbreeding fraction in the mating process 
note: two parameters can be provided in survival competition experiments ;0 1x x∈ ≤ ≤  

19 ● requiredHomologousFraction level of homology required for genome survival 
note: only required if #44 is set to 0 and outbreeding fraction is non-zero ( ) ;0 1genesx n x⋅ ∈ ≤ ≤  

20 ● rearrangementMode 
indicator for type of rearrangement mode 
settings: 0 for switching 
 1 for flipping 

{ }0;1x∈  

21 ● recombinationProbability probability of meiotic recombination (per tetrad) 
note: two parameters can be provided in survival competition experiments ;0 1x x∈ ≤ ≤  

22 ● recombinationUnitFactor scaling factor for adjustment of crossover rate 
note: two parameters can be provided in survival competition experiments x +∈  
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23 ● recombinationMode 
indicator for the type of recombination position determination 
settings: 0 for an Erlang-based computation (crossover interference) 
 1 for random positions 

{ }0;1x∈  

24 ● erlangApplicationFlag 
indicator for the distance mode that is used for the Erlang distribution 
settings: 0 for physical distance 
 1 for genetic distance 

{ }0;1x∈  

25 ● randomApplicationFlag 

indicator for the type of recombination event number determination 
note: only required, if parameter #23 is set to 1 
settings: 0 for an Erlang-based event number 
 1 for a constant number of events 

{ }0;1x∈  

26 ● matingLocusFlag 
indicator for the presence of a mating type locus 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  

27 ● matingLocusPosition 
position of the mating type locus on the genome 
notes:  only required if parameter #26 is set to 1, 
 two parameters can be provided in survival competition experiments 

( ); 2 1genesx x n∈ ≤ −  

28 ● externalLocusFlag 
indicator for the definition of an externally-linked mating type locus 
settings: 0 for internal mating type locus 
 1 for mating type locus on external chromosome 

{ }0;1x∈  

29 ● matingSwitching mating type switching fraction in the mating process 
note: two parameters can be provided in survival competition experiments ;0 1x x∈ ≤ ≤  

30 ● adaptiveMutationRate 
indicator for the activation of a mutation rate feedback 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  

31 ● relativeFeedbackFlag 

indicator for the type of mutation rate feedback 
note: only required if #29 is set to 1 
settings: 0 for an absolute feedback computation 
 1 for a relative feedback computation 

{ }0;1x∈  

32 ● feedbackPopulationSize population size feedback coefficient 
note: only required if #29 is set to 1 ;0 1x x∈ ≤ ≤  

33 ● feedbackPopulationSizeDerivative population size variation feedback coefficient 
note: only required if #29 is set to 1 ;0 1x x∈ ≤ ≤  
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34 ● derivativeDistance 
time interval that is considered in the computation of population size variations 
(measured in life cycles) 
note: only required if #29 is set to 1 

x∈  

35 ● populationCapSize 
indicator for a population size cap 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  

36 ● initialOrMaxGenomes maximum number of genomes in the population matrix 
note: if #34 is set to 0, this is only the initial number of genomes x∈  

37 ● protocolSplittingSize time period (in generations) that is covered per protocol file , 2 1000x x∈ ≤ ≤  

38 ● databaseResolution temporal spacing (in generations) between two population matrix snapshots ; 2x x∈ ≥  

39 ● numericalCorrectionFactor 
normalization factor for the Erlang distribution that allows setting up a reference 
crossover rate 
note: the crossover rate can be modulated by parameter #22 

x +∈  

40 ● skipMeiosisFlag 
indicator for the simulation of purely vegetative reproduction 
settings: 0 for standard mitosis-meiosis cycles 
 1 for mitosis-only cycles 

{ }0;1x∈  

41 ● randomizeCycles 

indicator for a randomization of the starting point in the life cycle at the 
beginning of the simulation 
settings: 0 for no randomization (starting point: mitosis) 
 1 for randomization (starting point: either mitosis or meiosis) 

{ }0;1x∈  

42 ● mutationCycleFrequency 
temporal spacing (in mitoses) between the determination of random mutation 
events 
note: the standard setting 1 applies random mutations at each mitosis 

x∈  

43 ● mutationMode 

indicator for life cycle steps, in which mutations can occur  
settings: 0 for mitosis only 
 1 for meiosis only 
 2 for mitosis and meiosis 

{ }0;1;2x∈  

44 ● subPopulationFlag indicator for the dynamic definition of architecture-linked sub-populations 
note: sub-populations are treated as isolated domains in the mating-module { }0;1x∈  
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45 ● displayInfoFlag 
indicator for displaying of simulation statistics at runtime 
settings: 0 for deactivation of runtime information 
 1 for activation of runtime information 

{ }0;1x∈  

46 ● loadRandomGeneratorSeed 
indicator for the seeding type of the random number generator 
settings: 0 for seeding with the current system time 
 1 for reading of seeding number in “randomGenerator.mat” 

{ }0;1x∈  

47 ● silentIOFlag 
indicator for minimal disk space mode 
settings: 0 for recording of standard protocols at runtime 
 1 for recording of final simulation results only 

{ }0;1x∈  

48 ● analyzeClusteringFlag indicator for clustering score determination at simulation run-time (1=yes, 0=no) { }0;1x∈  

49 ● frontendFlag indicator for S. digitalis being invoked by a frontend program (1=yes, 0=no) 
note: allows returning survival competition results as a data array { }0;1x∈  

50 ● clusterModeFlag 
indicator for deployment on computer cluster or single workstation 
settings: 0 for computer cluster 
 1 for single workstation 

{ }0;1x∈  

51 ● centralRepository runtime and output directory String 

52 ● centralSeeding input directory for population seeding database String 

53 ● touchDirectory directory name to be subjected to the “touch” command in regular intervals 
note: prevents data loss on cluster file systems with automated clean-up settings String 

   
 

 
  

Internal parameters of the simulation S. digitalis (version 1.79, 10/2005-02/2009) 
 

# type parameter name parameter description restrictions preset 

54 ● homozygosityAdvantage statistical selection factor for a homozygous hotspot as compared to a single 
hotspot during meiotic recombination x +∈  2 

55 ● printoutSeedingGenome 
indicator for the visualization of the initial population matrix 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  0 
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56 ● saveASCIIFiles 
indicator for the storing of arrays in a text editor compatible format 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  0 

57 ● printoutMitoticGenome 
indicator for the visualization of the population matrix in mitosis 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  0 

58 ● printoutMeioticGenome 
indicator for the visualization of the population matrix in meiosis 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  0 

59 ● createGenomicDatabase 
indicator for the storing of population matrix snapshots 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  1 

60 ● minimalDiskSpaceMode 
indicator for the activation of a non-redundant protocol mode 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  1 

61 ● analyzeClustering 
indicator for a computation of the population matrix clustering value 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  1 

62 ● clusterAnalysisPower power parameter in the definition of the clustering value x +∈  2 

63 ● visualizeProtocols 
indicator for the generation of JPEG plots of the protocol arrays 
settings: 0 for deactivation 
 1 for activation 

{ }0;1x∈  1 

64 ● fullFitnessIdentifier offset for the identification of functional essential genes in the population matrix ( ) ; 640001000
x x∈ ≤  1000 

65 ● noFitnessIdentifier offset for the identification of mutated essential genes in the population matrix ( ) ; 640001000
x x∈ ≤  2000 

66 ● matingLocusIdentifier offset for the identification of the mating type locus in the rearrangement 
protocols ( ) ; 640001000

x x∈ ≤  3000 

67 ● derivativeFeedbackCap cut-off value for parameter #32 x +∈  0.1 
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68 ● slidingWindowSize size of the sliding window filter that is used for the histogram analysis ; genesx x n∈ ≤  10 

69 ● slidingWindowPlotSize size of the sliding window filter that is used for the visualization of the population 
matrix 

; genesx x n∈ ≤  20 
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E) S. digitalis Simulation Settings 

 
Experimental settings for Figure 4A: Mutational robustness Rmax of S. cerevisiae chromosome IX and 
random architectures with the same number of essential genes and recombination hotspots 
population size 200 
crossover interference Active 

mating type 
active and linked to the centromere of a (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 333, which 
is equivalent to the centromere-position of chromosome IX. 

recombination rate 2.63 crossovers per chromosome and meiosis 
inbreeding percentage 0-100% in 1% steps 

mutational robustness 
Rmax precision 
(step size) 

0.007 
Note: the scored Rmax values denote the smallest values R, at which a 
population (specified by either chromosome IX or a randomly generated 
genome, and a particular inbreeding ration) became extinct within the 
maximally allowed number of generations. 

simulation time 2,000 generations 
total statistics 3,000 experiments per subset (chromosome IX and random) 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run.  

 
Experimental settings for Figure 4B: Survival competition of S. cerevisiae chromosome IX vs. 
random architectures with the same number of essential genes and recombination hotspots 
population size 2,000 
crossover interference Active 

mating type 
active and linked to the centromere of an (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 333, which 
is equivalent to the centromere-position of chromosome IX. 

recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 5% steps 
mutation rate R 0.0-2.8 in 0.07 steps 

simulation time 
max. 10,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 10 experiments per grid point 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run.  
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Experimental settings for Figure 4C: Survival competition of S. cerevisiae chromosome IX vs. 
random architectures for a wide range of mutation rates and for different population sizes 
population size 150; 1,500; 15,000 
crossover interference Active 

mating type 
active and linked to the centromere of an (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 333, which 
is equivalent to the centromere-position of chromosome IX. 

recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 25% steps 
mutation rate R 10-4, 3x10-4, 10-3, 3x10-3, 10-2, 3x10-2, 10-1, 3x10-1, 1 

simulation time 
max. 40,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 50 experiments per mutation rate and inbreeding fraction 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run.  

 
Experimental settings for Figure 4D: Results of survival competition experiments for the sixteen 
yeast chromosomes versus randomly generated chromosome architectures 
population size 150; 1,500; 15,000 
crossover interference Active 

mating type 

active on external chromosome; centromere-linked locations: 
135 (chr. I), 215 (chr. II), 115 (chr. III), 489 (chr. IV), 147 (chr. V), 
123 (chr. VI), 511 (chr. VII), 91 (chr. VIII), 321 (chr. IX), 427 (chr. X), 
447 (chr. XI), 127 (chr. XII), 277 (chr. XIII), 661 (chr. XIV), 
319 (chr. XV), 551 (chr. XVI), derived from Mancera et al. (2008) [1] 

recombination rate average experimental rate for S. cerevisiae 
inbreeding percentage 0-100% in 25% steps 
mutation rate R 10-2, 10-1, 1 

simulation time 
max. 40,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 35 experiments per mutation rate and inbreeding fraction 

chromosome 
architecture 

S. cerevisiae chromosomes were digitized using information about the 
distribution of approximately 4,000 crossover in 50 meiosis [1]. Essential 
gene locations were taken from www.yeastgenome.org.  
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run.  
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Experimental settings for Figure 5A: Mutational robustness Rmax of a clustered chromosome (seven 
clusters) as compared to random chromosomes with the same genetic building blocks 
population size 200 
crossover interference Active 
mating type absent or active on the same chromosome 
recombination rate S. cerevisiae chromosome IX 
inbreeding percentage 0-100% in 1% steps 

mutational robustness 
Rmax precision 
(step size) 

0.02 
Note: the scored Rmax values denote the smallest values R, at which a 
population (specified by either chromosome IX or a randomly generated 
genome, and a particular inbreeding ration) became extinct within the 
maximally allowed number of generations. 

simulation time 5,000 generations 
total statistics 3 experiments per inbreeding fraction and subset (clustered/unclustered) 
chromosome 
architecture 

100 essential genes, 400 non-essential genes, 166 recombination hotspots, 
333 recombination coldspots 

 
Experimental settings for Figure 5B: Mutational robustness Rmax of chromosome architectures with 
different levels of essential gene clustering and in populations of different sizes 
population size 50; 100; 200; 400; 1,600 
crossover interference Active 
mating type Absent 
recombination rate S. cerevisiae chromosome IX 
inbreeding percentage 0-100% in 10% steps (figure shows averaged results) 

mutational robustness 
Rmax precision 
(step size) 

0.02 
Note: the scored Rmax values denote the smallest values R, at which a 
population (specified by either chromosome IX or a randomly generated 
genome, and a particular inbreeding ration) became extinct within the 
maximally allowed number of generations. 

simulation time 1,000 generations 

total statistics 
11 experiments per data point (with 11 different inbreeding fractions, see 
above) 

chromosome 
architecture 

100 essential genes, 400 non-essential genes, 166 recombination hotspots, 
333 recombination coldspots 
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Experimental settings for Figure 5C: Survival competition of CF1+5 and CF1+R architectures 
(mating type in essential gene cluster, remaining essential genes in 5 clusters or random arrangement) 
population size 1,000 
crossover interference Active 

mating type 
active on external chromosome, location inside the essential gene cluster 
(one sixth of the total number of essential genes) 

recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 5% steps 
mutation rate R 0.0-2.8 in 0.07 steps 

simulation time 
max. 10,000 generations, the simulation stopped as soon as one species 
became extinct. 

total statistics 10 experiments per grid point 
chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 

 
Experimental settings for Figure 6A: Survival competition of super cluster architecture vs. random 
chromosomes 
population size 2,000 
crossover interference Active 
mating type active on the same chromosome (at position 41 or 333 respectively) 
recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 5% steps 
mutation rate R 0.0-2.8 in 0.07 steps 

simulation time 
max. 10,000 generations, the simulation stopped as soon as one species 
became extinct. 

total statistics 5 experiments per grid point 
chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 

 
Experimental settings for Figure 6B/C: Survival competition of super cluster architecture vs. random 
architectures for a wide range of mutation rates and for different population sizes 
population size 150; 1,500; 15,000 
crossover interference Active 
mating type active on same (b) or external chromosome (c), located inside super cluster 
recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 25% steps 
mutation rate R 10-4, 3x10-4, 10-3, 3x10-3, 10-2, 3x10-2, 10-1, 3x10-1, 1 

simulation time 
max. 40,000 generations, the simulation stopped as soon as one species 
became extinct. 

total statistics 50 experiments per mutation rate and inbreeding fraction 
chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
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Experimental settings for Figure 7A/B: Maintenance of essential gene clustering 
population size 2,000 
crossover interference Active 
mating type absent or active on the same chromosome 
recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 100% 
mutation rate R 0.0-2.4 in 0.2 steps 
rearrangement rate 5x10-5 and 10-4 per genetic building block and mitosis 
simulation time 150,000 generations 

total statistics 
6 experiments per grid point in +MAT subset (each 3 experiments with 
MAT initially inside/outside of essential gene), 3 experiments per grid point 
in -MAT series 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 

 
Experimental settings for Figure 7C/D: Evolution of essential gene clustering in small genomes 
population size 100 
crossover interference Active 
mating type absent or active on the same chromosome 
recombination rate minimum (1 hotspot) and maximum (all hotspots = 4 hotspots) 
inbreeding percentage 100% 
mutation rate R 2.0 
rearrangement rate 10-5 and 3x10-5 per genetic building block and mitosis 
simulation time 100,000 generations 
total statistics 1,000 experiments per mating type configuration and recombination rate 
chromosome 
architecture 

5 essential genes, 5 non-essential genes, 4 recombination hotspots, 
5 recombination coldspots 
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Experimental settings for Figure 8A: Evolution of essential gene clustering in large yeast 
chromosome IX-like genomes under mixed inbreeding/outbreeding conditions 
population size 4,000 
crossover interference Active 
mating type absent or active on the same chromosome 
recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 50% 
mutation rate R 0.1; 1.0 
rearrangement rate 3x10-5 per genetic building block and mitosis 
simulation time 100,000 generations 

total statistics 
830 experiments for R=1.0/+MAT 
826 experiments for R=0.1/+MAT 
839 experiments for R=1.0/-MAT 

chromosome 
architecture 

initial arrangement: maximally unclustered architecture (clustering score 
59) consisting of  S. cerevisiae chromosome IX building blocks (35 
essential genes, 172 non-essential genes, 58 recombination hotspots, 148 
recombination coldspots) 

 
Experimental settings for Figure 8B/C: Survival competition of evolution products from the 
experiments shown in 5E (red and green subsets) vs. random architectures and S. cerevisiae 
chromosome IX 
population size 2,000 
crossover interference Active 

mating type 
active on the same chromosome, location at the respective evolved position 
in the evolution products and at position 333 for S. cerevisiae chromosome 
IX 

recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 25% steps 
mutation rate R 10-3, 10-2, 10-1, 1 

simulation time 
max. 10,000 generations, the simulation stopped as soon as one species 
became extinct. 

total statistics 
competitions were performed for all evolution products 
(n = 830 populations for the red subset and n = 826 populations for the 
green subset). 

chromosome 
architecture 

evolved architectures (products of previous experiment), S. cerevisiae 
chromosome IX and random architectures with S. cerevisiae chromosome 
IX building blocks (35 essential genes, 172 non-essential genes, 58 
recombination hotspots, 148 recombination coldspots) 
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Experimental settings for Figure 9: Survival competition of S. cerevisiae chromosome IX vs. random 
architectures with and without mating type switching 
population size 2,000 
crossover interference Active 

mating type 
active and linked to the centromere of a (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 333, which 
is equivalent to the centromere-position of chromosome IX. 

recombination rate S. cerevisiae chromosome IX rate 
inbreeding percentage 0-100% in 5% (A) or 25% (B) steps, 0/10% mating type switching 
mutation rate R 0.0-2.8 in 0.07 steps (A), 10-3/10-2/10-1/1 (B) 

simulation time 
max. 10,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 10 (A) or 100 (B) experiments per grid point 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run. 

 
Experimental settings for Figure 10A: Mutational robustness at different recombination rates 
population size 100 
crossover interference Active 
mating type active on the same chromosome 
recombination rate between 1 and 58 crossovers per chromosome and meiosis 
inbreeding percentage 0-100% in 20% steps (figure shows averaged results) 

mutational robustness 
Rmax precision 
(step size) 

0.01 
Note: the scored Rmax values denote the smallest values R, at which a 
population became extinct within the maximally allowed number of 
generations. 

simulation time 2,000 generations 

total statistics 
6 experiments per data point (with 6 different inbreeding fractions, see 
above) 

chromosome 
architecture 

random architecture; 50/100/150/200/300 essential genes (20%), 
200/400/600/800/1,200 non-essential genes, 84/166/250/336/498 
recombination hotspots, 165/333/499/663/1,001 recombination coldspots 

 

 

 

 

 

 



 57 

Experimental settings for Figure 10B: Survival competition of two S. cerevisiae chromosome IX 
populations with different recombination rates 
population size 1,000 
crossover interference Active 
mating type active on external chromosome, centromere-linked location: 333 

recombination rate 

first population: 1 crossover per chromosome and meiosis (min. rate), 
0.5x/1.0x/2.0x/4.0x S. cerevisiae chromosome IX rate, all hotspots active 
at each meiosis (max. rate) 
second population: S. cerevisiae chromosome IX rate 

inbreeding percentage 0-100% in 5% steps 
mutation rate R 0.0-2.8 in 0.07 steps 
simulation time 10,000 generations 
total statistics 5 experiments per grid point 
chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 

 
Experimental settings for Figure 10C: Survival competition of S. cerevisiae chromosome IX vs. 
random chromosomes for different recombination rates 
population size 1,000 
crossover interference Active 
mating type active on external chromosome, centromere-linked location: 333 

recombination rate 
1 crossover per chromosome and meiosis (min. rate), 
0.5x/1.0x/2.0x/4.0x S. cerevisiae chromosome IX rate, 
all 58 hotspots active in each meiosis (max. rate) 

inbreeding percentage 0-100% in 5% steps 
mutation rate R 0.0-2.8 in 0.07 steps 
simulation time 10,000 generations 
total statistics 10 experiments per grid point 
chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
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Experimental settings for Supplementary Figure 2A-C/E/F: Mutational robustness Rmax of 
S. cerevisiae chromosome IX and random architectures for different mutation and mating type 
switching settings 
population size 200 
crossover interference Active 

mating type 
active and linked to the centromere of a (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 333, which 
is equivalent to the centromere-position of chromosome IX. 

recombination rate 2.63 crossovers per chromosome and meiosis 
inbreeding percentage 0-100% in 20% steps (figure shows averaged results) 
mating type switching 0% (A-C), 10% (E), 50% (F) 

mutational robustness 
Rmax precision 
(step size) 

0.007 (A/B), 0.014 (C/E/F) 
Note: the scored Rmax values denote the smallest values R, at which a 
population (specified by either chromosome IX or a randomly generated 
genome, and a particular inbreeding ration) became extinct within the 
maximally allowed number of generations. 

mutation application mitosis only (A), meiosis only (B), mitosis and meiosis (C/E/F) 
simulation time 2,000 generations 

total statistics 
3,000 (A-C) or 1,000 (E/F) experiments per subset (chromosome IX and 
random) 

chromosome 
architecture 

S. cerevisiae chromosome IX building blocks (35 essential genes, 172 non-
essential genes, 58 recombination hotspots, 148 recombination coldspots) 
Note: random chromosomes contained the same number of elements as the 
yeast chromosome, but using a random distribution that was calculated 
independently for each simulation run.  

 
Experimental settings for Supplementary Figure 2D: Survival competition of mitotic mutators vs. 
meiotic mutators for S. cerevisiae chromosome VI 
population size 200 
crossover interference Active 

mating type 
active and linked to the centromere of an (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 123, which 
is equivalent to the centromere-position of chromosome VI. 

recombination rate S. cerevisiae chromosome VI rate 
inbreeding percentage 50% 
mutation rate R 0.1 
mutation application mitosis only (population #1) vs. meiosis only (population #2) 

simulation time 
max. 2,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 5,000 experiments 
chromosome 
architecture 

S. cerevisiae chromosome VI (27 essential genes, 94 non-essential genes, 
57 recombination hotspots, 63 recombination coldspots) 
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Experimental settings for Supplementary Figure 3: The effect of essential gene clustering on 
mutational robustness at different inbreeding rates 
population size 200 
crossover interference Active 
mating type absent (-MAT) or active inside one of the EG clusters (+MAT) 
recombination rate 7.79 crossovers per chromosome and meiosis 
inbreeding percentage 0-100% in 10% steps 

mutational robustness 
Rmax precision 
(step size) 

0.02 
Note: the scored Rmax values denote the smallest values R, at which a 
population became extinct within the maximally allowed number of 
generations. 

simulation time 1,000 generations 
total statistics 1 experiment per grid point 

chromosome 
architecture 

100 essential genes, 400 non-essential genes, 166 recombination hotspots, 
333 recombination coldspots; essential genes were arranged in n clusters, 
with n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 50, 100.  

 
Experimental settings for Supplementary Figure 4: Evolution of essential gene clustering in small 
model chromosomes 
population size 200 
crossover interference Active 
mating type absent (-MAT) or active (+MAT) 
recombination rate recombination occurring at all four hotspots in each meiosis 
inbreeding percentage 100% 
mutation rate R 0.5, 1.0, 1.5, 2.0 
simulation time 100,000 generations 
total statistics 10 experiments per grid point 

chromosome 
architecture 

5 essential genes, 5 non-essential genes, 4 recombination hotspots, 5 
recombination coldspots; the initial architecture was maximally 
unclustered (clustering score ν = 5). 

 

 

 

 

 

 

 

 
 

 



 60 

Experimental settings for Supplementary Figure 5A: Evolution of essential gene clustering in large 
yeast chromosome X-like genomes under mixed inbreeding/outbreeding conditions 
population size 2,000 
crossover interference Active 
mating type absent or active on the same chromosome 
recombination rate S. cerevisiae chromosome X rate 
inbreeding percentage 50% 
mutation rate R 0.1; 1.0 
rearrangement rate 10-5 per genetic building block and mitosis 
simulation time 200,000 generations 

total statistics 
495 experiments for R=1.0/+MAT 
500 experiments for R=0.1/+MAT 
500 experiments for R=1.0/-MAT 

chromosome 
architecture 

initial arrangement: maximally unclustered architecture (clustering score 
131) consisting of  S. cerevisiae chromosome X building blocks 
(72 essential genes, 285 non-essential genes, 130 recombination hotspots, 
226 recombination coldspots) 

 
Experimental settings for Supplementary Figure 5B/C: Survival competition of evolution products 
from the experiments shown in 5A (all subsets) vs. random architectures and vs. S. cerevisiae 
chromosome X 
population size 2,000 
crossover interference Active 

mating type 
active on the same chromosome, location at the respective evolved position 
in the evolution products and at position 427 for S. cerevisiae chromosome 
X 

recombination rate S. cerevisiae chromosome X rate 
inbreeding percentage 0-100% in 25% steps 
mutation rate R 10-3, 10-2, 10-1, 1 

simulation time 
max. 10,000 generations, the simulation stopped as soon as one species 
became extinct. 

total statistics 
competitions were performed for n = 100 randomly chosen evolution 
products from each subset. 

chromosome 
architecture 

evolved architectures (products of previous experiment), S. cerevisiae 
chromosome X and random architectures with S. cerevisiae chromosome X 
building blocks (72 essential genes, 285 non-essential genes, 
130 recombination hotspots, 226 recombination coldspots) 
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Experimental settings for Supplementary Figure 6: Survival competition of mating type switching 
vs. non-switching in S. cerevisiae chromosome VI with different levels of mutational pre-load 
population size 1,000 
crossover interference Active 

mating type 
active and linked to the centromere of a (virtual) chromosome; the 
centromere of the simulated chromosome is located at position 123, which 
is equivalent to the centromere-position of chromosome VI. 

recombination rate S. cerevisiae chromosome VI rate 
inbreeding percentage 0-100% in 25% (B) steps, 0% vs. 2/10/25% mating type switching 
mutation rate R 10-3, 10-2, 10-1, 1 
mutation pre-load 0/2/4/6/8/10 deactivated EGs (distributed on both homologues) 

simulation time 
max. 5,000 generations; the simulation stopped as soon as one species 
became extinct. 

total statistics 100 experiments per grid point on each matrix 
chromosome 
architecture 

S. cerevisiae chromosome VI (27 essential genes, 94 non-essential genes, 
57 recombination hotspots, 63 recombination coldspots) 

 
Experimental settings for Supplementary Figure 8: Survival competition experiments at different 
recombination rates 
all parameter settings as in Figure 10B/C in Main Text 
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