Development of the annelid axochord: Insights into notochord evolution

Antonella Lauri,1,† Thibaut Brunet,1† Mette Handberg-Thorsager,1,2¶ Antje H.L. Fischer,1§ Oleg Simakov,1 Patrick R. H. Steinmetz,1 Raju Tomer,1,2¶ Philipp J. Keller,2 Detlev Arendt1,3⁎

The origin of chordates has been debated for more than a century, with one key issue being the emergence of the notochord. In vertebrates, the notochord develops by convergence and extension of the chordamesoderm, a population of midline cells of unique molecular identity. We identify a population of mesodermal cells in a developing invertebrate, the marine annelid Platynereis dumerilii, that converges and extends toward the midline and expresses a notochord-specific combination of genes. These cells differentiate into a longitudinal muscle, the axochord, that is positioned between central nervous system and axial blood vessel and secretes a strong collagenous extracellular matrix. Ancestral state reconstruction suggests that annelid notochord evolution is devoid of paraxis, which is exclusively expressed in laterally adjacent mesoderm (fig. S8), in line with its vertebrate ortholog demarcating paraxial mesoderm (11). In vertebrates, this segregation depends on canonical Wnt signaling, with β-catenin-positive cells preferentially adopting a paraxial fate and position (12). Consistently, we observed nuclear localization of β-catenin in the more-lateral mesodermal only, and β-catenin over-activation converted the mesodermal midline toward a more lateral fate and position (fig. S8).

We next compared the developmental fate of annelid and vertebrate mesodermal midline cells. Phalloidin staining and expression analysis of muscle markers (fig. S9) revealed that, after elongation, the Platynereis mesodermal midline cells differentiate into the previously described “medial ventral longitudinal muscle” (13) (Fig. 3A). Given the ropelike appearance and axial position of this muscle, we propose to call it “axochord.” A muscular nature of a putative invertebrate counterpart of the chordate notochord is consistent with the observation that in the most basal chordate, amphioxus, the notochord is composed of specialized muscle cells (14) and expresses the same muscle markers (15). We further observed segmental sets of transverse muscles connecting to the axochord (“ventral oblique muscles”) (13) (Fig. 3, A and B, and fig. S9). Scanning electron microscopy revealed that, in adult worms, the axochord is deeply embedded in the fibrous sheath of the ventral nerve cord (16) and remains connected to the transverse muscles (Fig. 3, C and D). Immunostainings confirmed its axial position between neuropil and blood vessel (fig. S12; similar to the notochord; fig. 1, A and B). Axochord contractility was evident from live imaging (fig. S9, E to G, and movie S2) and occurred in alternation with the transverse muscles (movie S3). Electron micrographs confirmed the muscular nature of axochordial cells and revealed a tight physical connection to transverse muscles (Fig. 3, E to I). Laser ablation of the axochord impaired crawling (fig. S10 and movie S4) and confirmed anchoring of the transverse muscles. Additionally, we found that the
Platynereis transverse muscles share a specific molecular profile (en+foxD; fig. SII) with the vertebrate pioneer myocytes flanking the notochord (17).

We next examined whether an axochord is also present in other annelids, lophotrochozoans, or protostomes (Fig. 1C). Phalloidin stainings had revealed ventral midline muscles in almost all annelid families (table S3), yet in some cases only pairs of ventral muscles had been reported (18, 19). One such example is *Capitella teleta*, which belongs to the second big clade of annelids, the Sedentaria (beside Errantia, to which *Platynereis* belongs). We investigated development and molecular identity of ventral muscle fibers in *Capitella* (18) and found that (i), preceding metamorphosis, these converge and fuse into an axochord (Fig. 4, A to D, and fig. S13); (ii) the expression patterns of *foxA*, *noggin*, *brauchygyrus*, *netrin* (Fig. 4, B and D, and fig. S13, B and C); *twist2* (20); and *hedgehog* (21) are consistent with coexpression in the axochord; and (iii) pairs of transverse muscles connect to the *Capitella* axochord (Fig. 4E) as in *Platynereis*. We also investigated the annelid *Oovenia fusiformis* that belongs to the most basal annelid family (22) and likewise found an axochord connected to transverse muscle fibers (Fig. 4F). A similar arrangement also occurs in mollusk (23) and brachiopod larvae (24), and ventral midline muscles are observed in most lophotrochozoan phyla (table S3), suggesting that an axochord is ancestral for lophotrochozoa. The lophotrochozoan axochord is a genuinely paired structure, composed of left and right adjacent muscle strands that often bifurcate anteriorly and/or posteriorly, as also observed in chaetognaths (Fig. 4, G and H), a possible protostome outgroup (25, 26) (Fig. 1C).

Fig. 1. Comparison of notochord and axochord development, gene expression, and anatomy. (A) Notochord development schematized for zebrafish at 9 hours post fertilization (hpf) or 90% epiboly, 14 hpf/neural keel, and 30 hpf/organogenesis stages. (B) Axochord development schematized for *Platynereis* at 34 hpf, 72 hpf, and 2 months of development. Top left images are in similar orientation with regard to the animal (an)–vegetal (veg) axis. Bold dashed lines represent lines of convergence of neuroectodermal and mesodermal cells, opposite to BMP signaling (blue arrows). The non-BMP body side will be dorsal (d) in vertebrate and ventral (v) in annelid, reflecting inversion of body posture in early chordate evolution (35). Thin black arrows indicate convergence and extension. Thin black dashed lines indicate positions of transverse sections (bottom left). Red, notochord (nch) or axochord (ach); orange, mesoderm (mes); purple, neuroectodermal midline; yellow, medial interneuron column; faint yellow, motor neuron column; gray, sensory interneuron column; blue, epidermis; green, endoderm (end)/gut. Transcription factors defining the respective tissues are written in corresponding colors. Bold black arrows indicate developmental progression. Neuroect, neuroectoderm; coe, coelom; dao, dorsal aorta; pmy, primary myocyte; som, somite; vao, ventral aorta; vom, ventral oblique muscle; vlm, ventral longitudinal muscle. (C) Simplified phylogenetic tree. Black boxes illustrate the proposed evolutionary transition from ventral midline contractile cells to notochord.
An ancestral state reconstruction based on our data and on a survey of bilaterian musculature (table S3) favored the presence of an axochord in protostome ancestors (fig. S14).

Regarding deuterostomes, previous studies on the origin of the notochord focused on the hemichordate stomochord, an unpaired chordoid outpocketing of the pharynx, as a possible notochord homolog (27). Speaking against this hypothesis is its very anterior position and the absence of brachyury, foxA, and noggin expression (27, 28). goosecoid, hedgehog, and colA expression rather suggest homology to the vertebrate prechordal plate (29–33). The pygochord, a stiff vacuolated rod in the posterior trunk of ptychoderid hemichordates (34), lies dorsal to the ventral blood vessel in the ventral mesentery. This stands in contrast to both axochord and

Fig. 2. The molecular fingerprint of *Platynereis* mesodermal midline cells. (A to C) Bright-field images and (D) confocal z-projection of colA WMISH. Dotted white circle and line indicate foregut and midline, respectively. DAPI, 4’,6-diamidino-2-phenylindole. (E to E”) Snapshots of SimView time lapse of a live larva with fluorescently labeled nuclei showing ventrally converging (green dots) and intercalating (red dots) axochordal cells. Time interval, 2 to 3 hours. (F to K) Confocal z-projections of double WMISH 3-dpf larvae, ventral views, anterior up. (L) Explanatory scheme. vom also weakly express colA and foxD. Foregut also expresses bra and foxA.

Fig. 3. The axochord is a ventral medial longitudinal muscle. (A) Ventral view of *Platynereis* immunolabeled musculature and nervous system, z-projection of confocal stack. Vnc, ventral nerve cord; mvlm, median ventral longitudinal muscle (axochord). (B) Pseudocolored scanning electron micrograph of *Platynereis* juvenile trunk, dorsal view. Axochord (deep pink) and attached oblique muscles (light pink). (C and D) Pseudocolored scanning electron micrographs. (C) Adult cross section. g, gut; vbv/dbv, ventral/dorsal blood vessel. (D) Dissected specimen showing axochord and oblique muscles embedded in the vnc sheath. Closeup illustrates axochord cell morphology. (E) Transmission electron micrograph showing axochordal cells, ventral oblique muscles, neuronal midline (nm), and the neuropil (np). (F) Closeup of area in black square in (E). One axochordal cell is outlined with dashed black line; asterisk indicates extracellular matrix. (G) Schematic drawing of (E). (H) Closeup of area in white square in (E), showing interdigitations between axochordal cells and oblique muscles. (I) Closeup of (F) (orange square) showing cross-sectioned myofibers (red arrow).
nootchord, which are positioned between blood vessel and nerve cord (Fig. 1). Thus, vacuolization in the hemichordate stomochord and pygochord might have occurred independent to that of the chordate notochord. Unfortunately, no data are available for the specification and developmental fate of ventral mesodermal midline cells in hemichordates or larval echinoderms; except for Protoglossus, no ventromedian musculature has yet been observed (table S3).

Our study of annelid development reveals a population of mesodermal cells that converge and extend along the ventral midline and express a combination of transcription factors, signaling molecules, and guidance factors that closely matches that of the vertebrate chordamesoderm. These comparative data suggest that a similar population of mesodermal midline cells already existed in urbilaterians but leave open its ancient developmental fate. In annelids, these cells differentiate into an axochord; our investigation of chaetognath musculature and an ancestral state reconstruction based on comparative anatomy suggest that a similar paired longitudinal musculature and an ancestral state reconstruction based on comparative anatomy might have occurred independent to that of the chordate notochord given that zebrafish notochord (which is absent from Platynereis–catenin, A. Altenburger for brachiopod data; S. Kaul-Strehlow, M. Catala, M. A. Teillet, E. M. De Robertis, M. L. Le Douarin, Nature 371, 85-88 (1973).

ACKNOWLEDGMENTS

We thank A. Miyawaki for kirGFP, R. Renkawitz-Pohl for the antibody against β-tubulin; P. McKeon for the antibody against β-catenin; A. Altenburger for brachipod data; S. Kaul-Schlow, G. Mayer, M. V. Sarriès, and K. Worsaae for insightful discussions; I. Hauber-Siller at the Electron Microscopy Core Facility (EMCF) (BioQuant, Heidelberg University); and the EMBL EMCF. The work was supported by the European Union’s Seventh Framework Programme project “Evolution of gene regulatory networks in animal development” (EVONET) [215782-2] (A.L.), the Zoomet EU-Marie Curie early training network [6005624] (A.F. and R.T.), the European Molecular Biology Laboratory (A.L., T.B., M.T., A.H.L.F., O.S., P.R.H.S., and R.T.), the EMBO International PhD Programme (A.L., T.B., A.H.L.F., P.R.H.S., R.T.), the Boehringer Ingelheim Foundation (O.S.), the Howard Hughes Medical Institute (P.J.K.), and the Visiting Scientist Program at the Janelia Farm Research Campus (M.H.T., R.T., D.A., and P.J.K.). A.L. and T.B. designed, performed, and documented most of the experiments; developed protocols; and wrote the manuscript. R.T. initiated and, together with M.H.T. and P.J.K., developed the Platynereis SMView live imaging assay, and M.H.T. acquired the SMView data. A.H.L.F. investigated musculature development and gene expression in Platynereis. M.H.T. contributed to the expression analysis. O.S. did transmission electron microscopy with T.B. and A.L. P.R.H.S. cloned and characterized the kikGR construct, and drew the summary figure. The plasmid encoding the kikGR construct is covered by a material transfer agreement provided by the RIKEN Brain Science Institute. Alignments used for tree building are deposited on Dryad (10.5061/dryad.1ct1s).

SUPPLEMENTAL MATERIALS

www.sciencemag.org/content/345/6202/1365/suppl/DC1 Materials and Methods Figs. S1 to S6 Tables S1 to S3 References (17–162) Movies S1 to S4

14 March 2014; accepted 6 August 2014 10.1126/science.1253396