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ABSTRACT 

 

In the field of biomedical imaging analysis on single-cell 

level, reliable and fast segmentation of the cell nuclei from 

the background on three-dimensional images is highly 

needed for the further analysis. In this work we propose an 

interactive cell segmentation toolkit that first establishes a 

set of exemplar regions from user input through an easy and 

intuitive interface in both 2D and 3D in real-time, then 

extracts the shape and intensity features from those 

exemplars. Based on a local contrast-constrained region 

growing scheme, each connected component in the whole 

image would be filtered by the features from exemplars, 

forming an “exemplar-matching” group which passed the 

filtering and would be part of the final segmentation result, 

and a “non-exemplar-matching” group in which components 

would be further segmented by the gradient vector field 

based algorithm. The results of the filtering process are 

visualized back to the user in near real-time, thus enhancing 

the experience in exemplar selecting and parameter tuning. 

The toolkit is distributed as a plugin within the open source 

Vaa3D system (http://vaa3d.org). 

Index Terms—interactive image segmentation, learning 

based approach 

 

1. INTRODUCTION 

 

Cell segmentation and classificaiton has been an important 

task in biological/biomedical image analysis [1-3]. Although 

well-discussed with various algorithms developed, it is still 

a challenging and data-specific problem. By recognizing the 

importance and potential for incorporating human prior 

knowledge into the segmentation process, interactive 

machine-learning based algorithms have been proposed in a 

series of recent studies, including computer vision [4] as 

well as on biomedical image process [5, 6]. In order to 

achieve an effective interactive image segmentation, there 

are four major challenges for the algorithm and application: 

1) intuitive and easy-to-use user interface; 2) translation 

from implicit human domain knowledge into learning 

features, even for the user without image processing 

expertise [6]; 3) propagation of the learned features onto the 

whole image (i.e. classification) in an accurate, and more 

importantly, fast manner, thus be able to provide the near 

real-time feedback to the user with minimal error; and 4) 

further user interaction on the results to refine the learned 

features and classification process.  

In responding to these challenges, in this work we have 

proposed an interactive exemplar-based cell segmentation 

toolkit building on the Vaa3D system [7]. It would be 

shown in later sections that albeit algorithmically simple, 

the proposed toolkit is powerful and fast for analyzing our 

current dataset, where target cells are relatively homogenous 

but the image is large and dense. The results comparison 

show that our proposed toolkit outperforms widely-used 

segmentation techniques in both speed and accuracy. 
 

Related works in bioimage informatics 
 

Among tools developed for the image segmentation in the 

field of bioimage informatics [8], several recent works are 

specifically related to our proposed toolkit. BIOCAT [2] 

performs both supervised and unsupervised classification 

using multiple classifiers based on textural, morphological, 

and structural features of the image. Unlike our proposed 

toolkit which uses interactive exemplar definition, it 

employs prior knowledge as a chain of selections for the 

features and classifiers, plus the corresponding parameters. 

ilastik [6] utilizes a similar interactive approach with our 

toolkit to define “labels” where several image features 

would be learned from their neighborhoods. Then it uses 

random forest classifier for the cell classification based on 

the learned features. The random forest classifier utilized by 

ilastik is designed for robustly handling multiple types of 

biological images, yet it is much slower than the filtering 

scheme used by our approach. On very large images, ilastik 

could hardly achieve near real-time feedback to the user, 

which has been shown to be an important feature of our 

proposed toolkit. The algorithm combining automatic 

clustering with supervised deconvolution proposed in [1] is 

also built on Vaa3D and uses 3D pinpointing interaction to 

define the centers of training set, while they utilized cylinder 

mean shift clustering to define regions around the center. 
 

2. METHODS 
 

2.1. Algorithm overview of the proposed toolkit 
 

As shown in the algorithmic pipeline in Fig. 1, the proposed 

toolkit would first obtain the connected components of the 

input thresholded image through local contrast-constrained 

region growing (described in 2.2). Then it applies a filtering 
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process on the connected components to identify the 

“exemplar-matching” regions which are similar to the 

exemplar in both intensity and shape (2.3). The rest of the 

connected components, named “non-exemplar-matching” 

regions, would then be further segmented by the gradient 

vector field (GVF) method (2.4). The filters, as well as 

parameters for regions growing process, are learned from 

the user-specified exemplar regions (2.2). 

 
Figure 1. Pipeline of exemplar analysis and component filtering. 

 

2.2. Interactive exemplar specification via Vaa3D 
 

 
Figure 2. (a) Red dot: marker point definition by a single click 

from the user, its corresponding region is shown as red transparent 

surface in the highlighted zoomed-in view; (b) Exemplar-matching 

regions shown in red transparent surfaces covering the segmented 

cells. One non-exemplar-matching region is highlighted by the 

yellow box. The example further segmentation results by GVF are 

shown as surfaces covering this region with different colors. 

 

The Vaa3D system that the proposed toolkit is built on 

provides an efficient and ergonomic platform for 3D image 

visualization and human interaction [7], where the user can 

easily rotate, zoom, pan and then perform direct 3D 

pinpointing on the large-scale image. As shown in Fig. 2(a), 

the user would only need to specify one or more marker 

points targeting at the desired cells in the 3D view, each 

with one single computer mouse operation (called “Virtual 

Fingers”) [9], then the exemplar region(s) would be 

automatically estimated and visualized from region growing 

results from the marker points (zoomed-in to the green box 

in Fig. 2(a)), providing an instant feedback. The user can 

also specify the marker points on the 2D tri-view window.  

From the definition of exemplar regions, the toolkit 

extracts a set of shape feature vectors and the histogram (i.e. 

intensity feature vector). Specifically, to calculate the shape 

feature vectors for any given region, the algorithm would 

first obtain a bounding sphere with radius r covering the 

whole region with the center at the region’s center of mass. 

Then three other smaller spheres with the same center but 

with radius of 2 (minimal), 1/3*r and 2/3*r are obtained, to 

a total of four spheres. The shape feature vector is then 

defined by the normalized eigenvalues of the three principle 

components (λ1, λ2, and λ3) calculated from those four 

spheres: 

𝑆𝑖,𝑚,𝑘 𝑚∈[1,2,3]𝑘∈[1,2,3,4] = [𝜆1, 𝜆2, 𝜆3]/(𝜆1 + 𝜆2 + 𝜆3)(1) 

Thus the shape feature vector could characterize the change 

of anisotropy from center to the boundary of the region. The 

proposed step-wise, anisotropy-based shape characterization 

is invariant to geometry transformations and scalable to 

region sizes, thus enabling the toolkit to generalize the pre-

knowledge from the simple user input. 

In addition, the average local contrast of the voxels on 

the exemplar region boundary versus the voxels outside the 

region is estimated from the unthresholed image, as the 

regions boundaries identification in this work are not only 

based on foreground/background information (i.e. growing 

is stopped when adjacent voxel is lower than threshold), but 

also constrained by the local contrast between adjacent 

voxels (i.e. growing is stopped when the change of intensity 

between adjacent voxels is too large than threshold).  

 

2.3. Connected components filtering by feature-based 

exemplar matching 

 

After the whole-image region growing using local maxima 

as seed points, the obtained connected components would 

then be matched with the exemplar regions based on their 

intensity and shape features vectors extracted in a similar 

fashion as for the exemplar regions. For the i-th connected 

component Ci with histogram Hi and shape feature vector Si, 

the cost function for matching it to the j-th exemplar Ĉj with 

histogram Ĥj and shape feature vector Ŝi is: 

𝐸(𝐶𝑖 , Ĉ𝑗) = (1 − 𝑐𝑜𝑟𝑟(𝐻𝑖 , 𝐻̂𝑗)) + 𝜆 ∑ ∑
|𝑆𝑖,𝑚,𝑘−𝑆̂𝑗,𝑚,𝑘|

|𝑆̂𝑗,𝑚,𝑘|
4
𝑛=1

3
𝑚=1  (2) 

The cost function is estimated individually for each 

exemplar, by aggregating the costs across N exemplars and 

comparing to the pre-defined threshold value T, we have: 

𝐶𝑖 ∈ {
𝑎𝑟𝑔𝑚𝑖𝑛 Ĉ𝑗,𝑗∈[1…𝐍]  (𝐸(𝐶𝑖 , Ĉ𝑗))

∅, 𝑖𝑓 𝑚𝑖𝑛 Ĉ𝑗,𝑗∈[1…𝐍]  (𝐸(𝐶𝑖 , Ĉ𝑗)) > 𝑇
            (3) 

Thus there would be two parameters for tuning: λ which 

balance the trade-off between intensity and shape matching, 

and T which balances the proportion between matching and 

non-matching. As the visual feedbacks of the exemplar-

matching regions could be provided by our proposed toolkit 

in a near real-time speed, the tuning could be done 

interactively. An example illustration of the exemplar-

matching regions is visualized in Fig. 2(b). 
  

2.4. Local segmentation by GVF 
 

GVF based image segmentation has been applied on 3D 

biological and biomedical image analysis with reliable 

accuracy [10] and has the capability of handling regions that 
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are closely juxtaposed or touching each other [11]. We 

employ the GVF method to segment the non-exemplar-

matching regions that are denied by the filtering process. 

The algorithmic pipeline of the further segmentation route is 

shown in Fig. 3, and the details of the GVF method could be 

referred to [11]. One distinguish feature of our framework is 

that the GVF segmentation is performed locally on each 

small patches from the original image defined by the 

bounding box of the non-exemplar-matching regions. The 

rationale for the proposed toolkit to use the local GVF 

segmentation, rather than the global GVF which directly 

applied on the whole image is that: 1) the segmentation 

speed would be greatly increased because of the reduced 

input size; 2) the strategy could effectively avoid the over 

segmentation for connected components passed the filtering, 

which are the majority of regions in our working images. 

After local GVF, its results are then merged with the 

exemplar-matching regions to form the final segmentation 

results, which could be visualized as color-coded volumes, 

center markers, or contour lines as cell boundaries. The 

results could be easily further refined by simply adding or 

deleting marker points on the image then re-generate the 

region growing results based on the new centers. 

 
Figure 3. Algorithmic Pipeline for GVF-based segmentation. 

 

3. EXPERIMENTAL RESULTS 
 

3.1. Cell segmentation on light-sheet microscopy image 
 

In this paper, we first used the light-sheet microscopy image 

dataset acquired from developing drosophila melanogaster 

embryos [10], with dimensions 234*222*122, as a testing 

example to showcase the cell segmentation performance of 

the toolkit. The results of applying the toolkit on two sample 

images which were acquired from the same region at two 

different time points are shown in Fig. 4. Note that for both 

images, we only specified one exemplar for the feature 

learning, while it turned out that around 3/4 of the total 

connected components passed the filtering, showing that the 

simple feature-based filtering is an effective approach for 

the cell segmentation. Further, as shown by the touching 

cells in the zoomed-in view in Fig. 4, the filtering process 

recognized them as non-exemplar regions and left them for 

the local GVF segmentation, which correctly identified the 

boundaries between the touching cells.  

 
Figure 4. Cell segmentation results on two sample images. (a): 

results on image acquired at time point T1, centers of the 

segmentation results are visualized as red dots. The zoomed-in 

view of the corner region shows contour lines as cell boundaries. 

(b): similar to (a), while the image was acquired at time point T2. 

 

3.2 Performance comparison of the proposed toolkit 
 

In this work, we have compared the performance (accuracy 

and speed) of the proposed toolkit with two widely-used 

unsupervised methods (watershed and GVF with adaptive 

threshold) and one supervised method (ilastik). The ground 

truth was provided by manually segmenting a portion of the 

sample images shown in the zoomed-in view in Fig. 4(a). 

Results are summarized in table 1, where Type I error 

indicates the percentage of the number of mis-segmented 

cells over the total number of cells, and Type II error 

indicates the percentage of the number of over-segmented 

cells. 
 Type I Error Type II Error Speed 

Our toolkit 5% 2% 4.1 

GVF 2% 9% 10.2 

Watershed 2% >20% 43.8 

ilastik 7% >30% 25.4 

Table 1. Performance comparison between methods. Speed was 

measured in seconds, time for interactions were excluded. 

 

It can be seen that our proposed toolkit has similar or better 

performance with the other three methods, while achieving a 

two to ten-fold speed increase. A zoomed-in view of the 

comparison is visualized in Fig. 5. 
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Figure 5. Comparison between cell segmentation result on a 

portion of the sample image between methods. Note that the output 

of ilastik is not color-coded by the segmentation indices, thus there 

is no boundary information in this visualization. 

 

3.2 Neuron segmentation on mouse brain image 
 

For further validation, we have tested the proposed toolkit 

on the fluorescence-labeled neuron image from mouse brain. 

One major challenge of the testing image is that it contains a 

large area with very high voxel intensity (as shown in the 

bright blob to the upper right and in the zoomed-in view of 

Fig. 6), while at the same time contains spreading cell 

regions with lower intensity. The experimental results 

shown that global GVF and watershed segmentation method 

could not segment these two types of regions 

simultaneously, even with adaptive thresholding. However, 

our proposed toolkit could identify most of the cells in the 

image even within the bright blob area, where GVF failed to 

detect the cells inside the blob using the same threshold 

value as shown in the zoomed-in view. They key reason for 

the improved performance of our proposed toolkit is that the 

local contrast constraint for the region growing process 

which were learned from the exemplars helps it to identify 

the correct boundary more robustly, thus we can use a 

lowered threshold for the whole image while still be able to 

recover the cells within high intensity background. It should 

be noticed that most of the segmented regions are exemplar-

matching (shown as red dots) due to the relatively high 

homogeneity of the cell shapes in this image, which is the 

preferred scenario for our proposed toolkit as it lower the 

computational load from the further GVF routine. It took 

around 6 seconds for the toolkit to segment this 

1500*1376*10 image (excluding human interaction time), 

which is much faster than global GVF and watershed. Also, 

it could be observed in the zoomed-in view that certain non-

exemplar-matching regions segmented by our proposed 

toolkit are not actual cells (pointed by the yellow arrow), 

such region could be removed by an option in the toolkit to 

further filter the local GVF segmentation results.  

 
Figure 6. (a): Neuron segmentation results on sample image from 

mouse brain. Centers of exemplar-matching regions are visualized 

as red dots, centers of the GVF results are visualized as blue dots. 

(b): Zoomed-in view of our result, segmented regions are colored 

separately, only centers of the exemplar-matching regions are 

shown. (c): Zoomed-in view of the segmentation result by global 

GVF on the whole image. 

4. CONCLUSION 
 

In this work we have proposed an easy-to-use interactive 

cell segmentation toolkit based on region features learned 

from user-specified exemplars, where visual feedbacks of 

user interaction could be provided in near real-time. 

Experiment results show that the proposed toolkit is both 

accurate and fast on the example datasets. The toolkit is 

open source and distributed as a plugin within the open 

source Vaa3D system. (http://vaa3d.org) 
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