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Supplementary Methods 

Overview 

In the following sections, we first provide details on the software and hardware architecture used 
in our framework for spatiotemporally adaptive imaging with light-sheet microscopy 
(Supplementary Methods 1). Second, we provide a systematic analysis of image quality metrics 
and discuss the design principles of our synthetic and real-data benchmarks for identifying the 
best image quality metric for light-sheet microscopy (Supplementary Methods 2). Third, we 
provide the mathematical theory behind local adaptive optimization in multi-axis illumination 
and multi-axis detection light-sheet microscopes (Supplementary Methods 3). Fourth, we 
formulate a general theory of spatiotemporally adaptive imaging using global optimization of all 
degrees of freedom for all imaging depths and colors across the specimen volume 
(Supplementary Methods 4). Fifth, we discuss the theory and concepts behind the image-based 
reconstruction of three-dimensional light-sheet orientation inside the specimen (Supplementary 
Methods 5). Sixth, we describe the methods used to estimate improvements in spatial resolution 
and image quality (Supplementary Methods 6). 
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Part I | Software and Hardware Architecture 

Our framework is an integrated system consisting of a light-sheet microscope equipped with 
digitally controllable piezo positioners and galvanometer scanners for positioning and orienting 
light-sheet and detection focus planes, real-time electronics, microscope control software for 
spatiotemporally adaptive imaging, algorithms for image quality estimation and three-
dimensional light-sheet geometry reconstruction, as well as algorithms for system optimization. 
In the following section we provide details about the system architecture, from mechano-optical 
degrees of freedom to control electronics and main software sub-systems. 
 
Mechano-optical design of light-sheet microscope for spatiotemporally adaptive imaging 

A computer model of the light-sheet microscope is shown in Supplementary Fig. 1, which 
employs a color code to identify the various microscope components responsible for providing 
digital access to the 10 primary degrees of freedom required for spatiotemporally adaptive 
imaging. 
 
Digital control of position and orientation of light-sheet and detection focus planes  

In order to optimize image quality and spatial resolution during long-term imaging of dynamic 
biological processes, such as whole-embryo development or the formation of tissues and organs, 
our approach to spatiotemporally adaptive imaging relies on digital control of the ten degrees of 
freedom characterizing relative offsets and angles between all light sheets and detection focal 
planes. By automating the control of these degrees of freedom, the adaptive imaging framework 
is able to compensate for spatiotemporal changes in the specimen’s optical properties, local and 
global distribution and maturation of fluorescent markers, and mechanical and thermal drift in 
various microscope components. 
A key requirement for exploiting the full potential of the multiview light-sheet microscope in 
providing high-quality image data is the precise digital control of the following degrees of 
freedom: 

 For precise control of the position of detection focal planes (D1 and D2) along the optical 
axis of the respective detection system, both detection objectives of the light-sheet 
microscope are mounted on P-622.1CD Hera piezo positioners with 250 μm travel range, 
operated with E-665 piezo amplifiers and controllers (Physik Instrumente). 

 For precise control of the position of light-sheet waists (Y1 and Y2) along the optical axis 
of the respective illumination system, both illumination objectives of the light-sheet 
microscope are mounted on P-628.1CD Hera piezo positioners with 800 μm travel range, 
operated with E-665 piezo amplifiers and controllers (Physik Instrumente). 

 For precise control of light-sheet offsets perpendicular to the optical axis of the respective 
illumination system (I1 and I2) as well as roll (α1 and α2) and yaw (β1 and β2) light-sheet 
angles in sample space, we use two pairs of dual-axis 6215H galvanometer scanners 
(Cambridge Technology) in the illumination arms of the light-sheet microscope. In each 

Nature Biotechnology: doi:10.1038/nbt.3708



 

5 

illumination arm, the first dual-axis scanner is conjugated to the specimen plane and 
controls the angular orientation of the light sheet in sample space, whereas the second 
dual-axis scanner is conjugated to the objective back focal plane and controls the lateral 
light-sheet offset (and also facilitates scanned light-sheet illumination itself). 

 
Implementation of digital control of light-sheet roll and yaw angles 

In a light-sheet microscope utilizing laser scanning for planar illumination1, a Gaussian “pencil 
beam” is rapidly scanned across the sample to create a thin light sheet. The use of a dual-axis 
galvanometer scanner, such as the Cambridge Technology model 6215H used in the microscope 
described here, facilitates not only light-sheet scanning itself but also offsetting the light sheet 
perpendicular to the illumination axis and controlling the ‘roll’ angle α, i.e. light-sheet rotation 
about the propagation axis of the illuminating laser beam. However, the ‘yaw’ angle β, i.e. 
rotation about the axis defined by the points representing the location of the scanned Gaussian 
beam waist, can only be adjusted by either physically displacing the light-sheet galvanometer 
scanner laterally or displacing the illumination beam at the light-sheet galvanometer scanner 
laterally. The first approach, in addition to being cumbersome, does not allow the flexibility of 
integration of the ‘yaw’ angle into an automated, digital control framework. Below, we describe 
the implementation of the second approach by using a second dual-axis galvanometer scanner in 
the illumination path that allows the light sheet to be pivoted by β in the sample plane in a 
digitally controlled manner. 
A dual-axis pivot galvanometer scanner (see Supplementary Fig. 2 and components labeled 
PG1 and PG2 in Supplementary Fig. 1) is positioned at a focal-distance between two relay 
lenses such that the collimated beam from the laser is focused onto the vertical scanning mirror 
by the first relay lens, and the second relay lens restores collimation and directs the beam onto 
the dual-axis light-sheet galvanometer scanner (see Supplementary Fig. 2 and components 
labeled LG1 and LG2 in Supplementary Fig. 1). By adjusting the tilts of the scanning mirrors 
(L and V in Supplementary Fig. 2; L: lateral scanning mirror, V: vertical scanning mirror), the 
illumination beam can be positioned off the optical axis anywhere in the XZ plane. The beams 
along the optical axis and the pivoted beam are illustrated in blue and red, respectively, in 
Supplementary Fig. 2. We note that the orientation of the pivot plane, illustrated in shaded red 
in Supplementary Fig. 2b, flips by (90°−η) as it exits the dual-axis light-sheet galvanometer 
scanner, where η is the angle between the shafts of the two scanning mirrors in the light-sheet 
galvanometer scanner (for Cambridge Technology 6215H using 61021506R40 XY-mount, η is 
17°). Thus, the pivot galvanometer scanner needs to displace the beam by an optical angle of θx 
to create the lateral displacement after the light-sheet galvanometer scanner, and additionally, to 
correct for the shaft-angle η, the beam needs to also be displaced by θz, as illustrated in 
Supplementary Fig. 2. Cumulatively, the beam is displaced by an angle γ with respect to the 
optical axis as measured at the vertical scanning mirror (V), where the illumination beam is 
brought to focus. This culminates in the light sheet being pivoted by an angle β about the line of 
light-sheet focus in the sample plane. 
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Parameterization of light-sheet roll and yaw angles 

The following mathematical relationships help establish the optical angles θx and θz to be 
generated by the vertical and lateral mirrors of the pivot galvanometer scanner, respectively. The 
deviation of the beam from the optic-axis γ is given by: 
 

ߛ ൌ tanିଵ ൬
ܱܲ

ோ݂
൰ (Eq. 1) 

 
 
In Eq. 1, ோ݂ is the focal length of the relay lens. The pivot angle in the sample plane is given by: 
 

ߚ ൌ tanିଵ ቆ
ܯ ൈ ܱܲ

݂ఏ
ቇ (Eq. 2) 

 
In Eq. 2, M is the magnification of the tube lens and the objective given by ்݂  ݂⁄ , and ݂ఏ is 

the focal length of the fθ-lens. Thus, we can re-write the deviation of the beam from the optical 
axis γ in terms of known quantities as follows: 
 

ߛ ൌ 	tanିଵ ቆ
1

ோ݂
ൈ ݂ఏ

ܯ
ൈ tanߚቇ (Eq. 3) 

 
Note that, in the above equations, all angles are defined in free space. Experimentally, the pivot 
angle is in the immersion medium and is given by ߚ ൌ ߚ ݊⁄ , where nm is the refractive index 
of the immersion medium. Hence, once the intended pivot β (or, ߚ) is defined, the deviation of 
the beam from the optical axis γ can be obtained using the above relationship, and the optical 
angles to be generated by the two scanning mirrors in the pivot galvanometer scanner can be 
ascertained using the following equations derived using the geometric configuration shown in 
Supplementary Fig. 2b: 
 

௫ߠ ൌ tanିଵሺtan ߛ ൈ cos ሻߟ (Eq. 4) 
 

௭ߠ ൌ tanିଵ

ۏ
ێ
ێ
ێ
ێ
ۍ

tan ߛ ൈ sin ߟ

ඨ1  tanଶ ߛ cosଶ ߟ  2 ൬
Δ
ோ݂
൰  ൬

Δ
ோ݂
൰
ଶ

ے
ۑ
ۑ
ۑ
ۑ
ې

 (Eq. 5) 

 
In Eq. 5, Δ is the separation between the L and V scanning mirrors in the pivot galvanometer 
scanner. 
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Detailed list of microscope hardware components 

Our custom light-sheet microscope for spatiotemporally adaptive imaging consists of a laser 
system, two illumination arms, two detection arms, a custom specimen chamber, a four-axis 
specimen positioning system, a computer workstation and real-time electronics for microscope 
control and data acquisition, custom LabVIEW-based software for microscope control and 
custom Java/LabVIEW-based software for spatiotemporally adaptive imaging. An overview of 
the components of this microscope is provided below and in tabular form in Supplementary 
Table 11. 
The two layers of the microscope (comprising optics and sample positioning hardware, 
respectively) are assembled on a custom RG grade breadboard (Newport, custom product code 
04SI69108) and an ST-UT2-48-8 optical table equipped with an IQ-200-YG-8 damper upgrade, 
supported by four S-2000 series 28” isolators with automatic leveling (Newport). 
The laser illumination unit consists of a pulsed Ti:Sapphire laser (Chameleon Ultra II, Coherent), 
beam-splitting optics (Melles Griot, Casix, Linos) for supplying both illumination arms with IR 
laser beams, a laser array with three solid-state lasers coupled into a dual-port fiber module 
(SOLE-3, Omicron), fiber collimators and dichroic mirrors for combining laser beams in the 
visible and IR portions of the spectrum. 
Each illumination arm consist of a laser shutter (VS14S2ZM1-100, Uniblitz), a filter wheel 
(96A351, Ludl) equipped with notch and neutral density filters (Chroma and Melles Griot), a 
two-axis galvanometer scanner with silver-coated 6 mm mirrors for scanned light-sheet 
formation and positioning (Cambridge Technology), a two-axis galvanometer scanner with 
silver-coated 6 mm mirrors for light-sheet pivoting (Cambridge Technology), a lens pair 
(Edmund Optics), a custom f-theta lens supporting 488-1100 nm laser wavelengths (66-S80-30T-
488-1100nm, Special Optics) and two sets of matched tube lenses and illumination objectives 
(Olympus and Nikon; optimized for one- and two-photon excitation, respectively). 
Each detection arm consists of a high numerical aperture water-dipping detection objective 
(16x/0.8 NA, Nikon; or 20x/1.0 NA, Carl Zeiss), a matched tube lens (Nikon or Carl Zeiss), a 
filter wheel (96A354, Ludl) equipped with band-, short- and long-pass filters (Semrock and 
AHF), and an sCMOS camera (Orca Flash 4.0 V2, Hamamatsu). 
The real-time electronics framework consists of a PXI-8110 real-time controller equipped with 
four PXI-6733 high-speed analog output boards, a PXI-8432/2 serial interface board and a PXI-
7354 four-axis stepper/servo motion controller (National Instruments), as well as a C-809.40 
four-channel servo amplifier (Physik Instrumente) and four BNC-2110 shielded connector blocks 
(National Instruments). 
The microscope control software operates on a high-performance computer workstation (Colfax 
International) for image acquisition and short-term data storage. This workstation is equipped 
with two Xeon E5-2687W CPUs (Intel), 192 GB of memory allocated to imaging ring buffers, 
14 SAS hard disks (2.5 XE 900 GB, Western Digital) combined into two RAID-0 arrays using an 
RS2WG160 SAS RAID controller (Intel) for concurrent streaming from two sCMOS cameras 
and an X520-SR1 10G fiber controller (Intel) for data offloading to the storage server.  
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Overview of software architecture 

The custom microscope control software consists of three primary modules, including the 
AutoPilot libraries and two modules for microscope control: 

i) A software layer for real-time control and synchronization of all electronics components 
used in the microscope (incl. cameras, filter wheels, shutters, piezo positioners, 
galvanometer scanners, motorized stages, Pockels cell and laser systems) and execution 
of the imaging workflow. This module was written in 32-bit LabVIEW and deployed on 
the PXI-8110 real-time controller. 

ii) A software frontend that consists of modules for receiving, processing and online 
visualization of image data streams and a graphical user interface (GUI) for configuring 
imaging experiments and AutoPilot-based microscope control. This module was written 
in 64-bit LabVIEW and deployed on the host computer. 

iii) A set of AutoPilot libraries facilitating all core computations and system optimization 
associated with the AutoPilot framework. These libraries were written in Java and 
C/C++. 

 
Microscope control software 

The microscope control software was developed using the LabVIEW development environment 
(version 2012, National Instruments). The application uses a distributed architecture, with the 
user interface, image acquisition and file logging located on a high performance workstation and 
the instrument control, waveform generation, and experiment sequencing control software 
located on a real-time control system (PXI-8110, National Instruments). The PXI chassis also 
holds four PXI-6733 8-channel analog output modules, which are used to control galvanometer 
scanners, laser modulation, camera triggers, piezo positions and shutter states. Other PXI 
modules are used to control filter wheels and sample stage motion. The host computer and the 
real-time controller communicate via a TCP/IP server client architecture. 
 
AutoPilot software library 

The AutoPilot library was written in Java. This library, which is freely available at 
https://microscopeautopilot.github.io, contains the code for (i) all focus/image quality metrics 
evaluated as part of this work, (ii) the programming interface for microscope state modeling and 
optimization, (iii) the algorithms for mapping the 3D geometry of the light-sheet inside the 
sample and (iv) C/C++ interfaces for AutoPilot integration into the LabVIEW control software.  
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Part II | Image Quality Metrics in Theory and Practice 

After detailing the methodological requirements motivating our systematic investigation of 
image quality metrics, we provide information about the mathematical notation used throughout 
this section and discuss general theoretical concepts underlying image quality metrics. We then 
review 30 different image quality metrics. Some of these metrics are taken from existing 
literature while others are either new or modified from existing metrics. We evaluate these 
measures on synthetic and real-data benchmarks and identify the best image quality metrics for 
light-sheet microscopy. 
 
Alignment and focus optimization in light sheet microscopy 

A fundamental challenge in spatiotemporally adaptive imaging and optimizing the system state 
of complex, multi-axis microscopes is the estimation and comparative analysis of image quality. 
Mechanical or optical proxy measurements (e.g. phase detection autofocus) cannot serve as 
substitutes for an image quality metric because they first need to be calibrated against image 
quality and are subsequently susceptible to the same mechanical and thermal drifts that affect 
optical paths in the microscope. It follows that robust and computationally efficient measures of 
image quality are essential for the development of microscopes capable of spatiotemporal self-
optimization. Mismatches in the geometry of light-sheet and detection focal planes of the light-
sheet microscope cause image quality to degrade, primarily by defocus in a first-order 
approximation. 
Image quality metrics have been studied extensively within the computer vision field2-6. 
However, existing metrics have never been evaluated for the purpose of automated image 
analysis in light-sheet microscopy. Importantly, imaging with light-sheet microscopy is very 
different from other imaging modalities such as wide-field microscopy and photography. Optical 
sectioning of a thin volume is achieved with spatially confined illumination. Subsequently, an 
image of this volume section is acquired using an objective with a similarly thin depth of field. 
Different parts of the illuminated volume appear more or less in focus depending on their 
position relative to the detection focal plane. Further differences arise from the hyperbolic axial 
profile of the Gaussian light sheet, aberrations introduced by the sample, and loss of contrast as a 
result of light scattering. Moreover, the relative impact of noise increases with increasing 
imaging speed and decreasing exposure time. Thus, a thorough evaluation of existing image 
quality metrics is indispensable in order to identify the best-performing metrics for the purpose 
of adaptive imaging in light-sheet microscopy and to determine how these metrics can be further 
improved. 
 
Mathematical notation 

In the following, ܫ is a two-dimensional image with pixel intensities ܫ௫,௬. The number of pixels in 

the image ܫ is denoted by ݊ሺܫሻ. The width and height of image ܫ are ݓሺܫሻ and ݄ሺܫሻ, respectively. 
For simplicity we adopt the convention that the expression ܫ௫,௬ corresponds to the pixel value of 
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image ܫ  at coordinates ሺݔ′, ,′ݔ ሻ, where′ݕ are bounded within 0 ′ݕ  ′ݔ  ሺݓሺܫሻ െ 1ሻ and 0 
′ݕ  ሺ݄ሺܫሻ െ 1ሻ. The mean, maximum, variance and kurtosis of ܫ are denoted by ߤሺܫሻ,	݉ܽݔሺܫሻ	, 
ሻܫଶሺߪ , and ߛሺܫሻ . The histogram of ܾ  bins between ݉݅݊  and ݉ܽݔ  of image ܫ  is denoted by 
݄,,௫ሺܫሻ and is itself treated as a one-dimensional image. The ܮ  norm of an image ܫ is 

denoted as ܮሺܫሻ. The discrete Fourier transform (DFT) of image ܫ  is denoted by ࣠ሺܫሻ, the 

discrete cosine transform (DCT) of image ܫ by ࣠ሺܫሻ, and the Haar wavelet transform of image ܫ 
by ࣱሺܫሻ. In the case of the discrete Fourier transform ࣠ሺܫሻ	the coordinates ሺݔ,  ሻ௫,௬ܫሻ for ࣠ሺݕ

are within the ranges ݔ ∈ ൣെభ
మ
,ሻܫሺݓ భ

మ
ሻ൧ܫሺݓ  and ݕ ∈ ൣെభ

మ
݄ሺܫሻ, భ

మ
݄ሺܫሻ൧ . Applying a k by k 

median filter to an image ܫ is denoted as ܯሺܫሻ. The notation ൣܫ௫,௬ାଵ൧ represents the whole image 

(of unchanged width and height) translated along the y-axis by +1. A constant image can be 
denoted by ሾ1ሿ. In general, any expression with free variables x and y enclosed in brackets 

represents an image with these pixel intensities. The notation ۤۥܫ௫,௬
்,,  represents the pixel 

intensity at ሺݔ, ,ݔሻ of a T by T image tile of coordinate (X,Y). The function ݀ூሺݕ  ሻ returns theݕ
distance of the pixel ሺݔ,  The function abslog is a guarded .ܫ ሻ from the center of the imageݕ
absolute logarithm of base b: 
 

abslogሺxሻ ൌ ቐ
log ݔ
log െݔ
0

݂݅ ݔ  0
݂݅ ݔ ൏ 0
݂݅ ݔ ൌ 0

 (Eq. 6) 

 
Image quality metrics and image formation 

We define an image quality metric as a function ݂ that takes an image ܫ as argument and returns 
a real number. Given an image ܫଵ, and another image ܫଶ that is the result of applying blur to ܫଵ, 
an image quality metric should return a higher value for ܫଵ  than for ܫଶ . In a first-order 
approximation, the blur can be modeled as the convolution with a Gaussian kernel ܫ :ܭଶ ൌ ଵܫ ∗
ܭ . More precisely, this kernel can be approximated as the cross-section of the light-sheet 
microscope’s point spread function (PSF) at the detection focal plane. In practice, the volumetric 
nature of the imaging process combined with non-defocus aberrations and scattering effects lead 
to a more complex relation between ܫଶ	and ܫଵ. The effective primary phenomenon, however, is 
similar to low-pass filtering of the spatial frequency content of the image. We can state the 
defining properties of an image quality metric as follows: 
 

ݎ ൏ ᇱݎ ⇒ ݂ሺܫ ∗ ሻܭ  ݂ሺܫ ∗  ᇱሻ (Eq. 7)ܭ
 
In Eq. 7, ܭ  and ܭᇱ  are arbitrary non-sparse kernels of support radius ݎ  and ݎ′  respectively. 
These kernels can be approximated by Gaussian kernels of standard deviation ߪ  where ݎ ൌ
 .(is a full width at half maximum ݎ assuming) ߪ	1.1775
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Brightness and contrast invariance 

Because of noise and possible slight variations in overall image brightness and contrast, image 
quality metrics should be robust enough to be invariant to affine transformations of the pixel 
intensities: 

݂ሺܫߙሻ ൌ ݂ሺܫሻ 

݂ሺߙሾ1ሿ  ሻܫ ൌ ݂ሺܫሻ 
(Eq. 8) 

Noise invariance 

We consider microscopy images acquired by a band-limited optical system and degraded by 
sensor noise. It follows that any signal outside of the optical transfer function support is 
necessarily noise. Therefore, we also require that image quality metrics be only dependent on 
spatial frequencies that can pass through the optical band pass: 
 

݂൫ܫ ∗ ൯ܭ ൌ ݂ሺܫሻ (Eq. 9) 
 
In Eq. 9, ܭ is a kernel with same support radius ݎ as the optical transfer function. In practice 

we thus need to parameterize the image quality metric ݂ with ݎ  to adapt to different optical 
configurations. In the following, ݂ stands for the image quality metric ݂ parameterized with the 

kernel support radius ݎ. 
 
Classes of image quality metrics 

We surveyed the literature7-9 on image quality metrics and found the following four main classes: 
 

i) Among the oldest metrics are Differential image quality metrics such as Tenengrad4 
and Brenner’s6. These measures rely on first- and second-order image finite 
difference schemes that respond to the sharpness of edges in the image. 

ii) Statistical image quality metrics consider each pixel as the samples from a random 
variable and compute e.g. the pixel intensity histogram entropy, variance, and 
kurtosis to estimate the sharpness of images. 

iii) Correlative image quality metrics such as Vollath’s F4 and F53 rely on image auto-
correlation. 

iv) Spectral image quality metrics are based on the discrete Fourier transform7 (DFT), 
discrete cosine transform2 (DCT) and wavelet transforms10, 11. While the complexity 
of most image quality metrics is linear in image size, computing Fourier transforms 
and other spectral transforms are more expensive computationally – more specifically 
ࣩሺ݊ log ݊ ). With the advent of fast multi-core CPUs, the application of these 
measures for online focusing has become feasible. 
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In the following, we group the different image quality metrics by class and provide mathematical 
details and intuition for each metric. We assume – without loss of generality – that the images ܫ 
for which we compute the image quality metrics are square, i.e. ݓሺܫሻ=݄ሺܫሻ. 
 
Differential image quality metrics 

These metrics rely on the strong response of the first and second derivatives to sharp features in 
well-focused images. Their weakness is that the first and second derivatives of images are also 
very sensitive to noise. Hence, these metrics perform poorly for images with low signal-to-noise 
ratios. To improve comparability of these metrics to other metrics with built-in low-pass filters, 
we augment differential image quality metrics with a low-pass filtering preprocessing step (see 
paragraph “Low-pass filtering” below). 
 

 Brenner’s6 measure: 

ሻܫሺܤ ≝
1

݊ሺܫሻ
൫ܫ௫,௬ିଵ െ ௫,௬ାଵ൯ܫ

ଶ

௫,௬

 (Eq. 10) 

 

 Absolute Laplacian5: 

ሻܫሺܮܣ ≝
1

݊ሺܫሻ
ห2ܫ௫,௬ െ ௫ିଵ,௬ܫ െ ௫ାଵ,௬หܫ
௫,௬

 ห2ܫ௫,௬ െ ௫,௬ିଵܫ െ  ௫,௬ାଵห (Eq. 11)ܫ

 

 Squared Laplacian-like: 

ሻܫሺܮܵ ≝
1

݊ሺܫሻ
൫8ܫ௫,௬ െ ௫ିଵ,௬ܫ െ ௫ାଵ,௬ܫ െ ௫,௬ିଵܫ െ ௫,௬ାଵܫ െ ௫ିଵ,௬ିଵܫ
௫,௬

െ ௫ାଵ,௬ାଵܫ െ ௫ାଵ,௬ିଵܫ െ ௫ିଵ,௬ାଵ൯ܫ
ଶ
 

(Eq. 12) 

 

 Total Variation: 

ܸܶሺܫሻ ≝
1

݊ሺܫሻ
ට൫ܫ௫ାଵ,௬ െ ௫ିଵ,௬൯ܫ

ଶ
 ൫ܫ௫,௬ାଵ െ ௫,௬ିଵ൯ܫ

ଶ

௫,௬

 (Eq. 13) 

 

 Block Total Variation: 

ܶܤ ܸሺܫሻ ≝
1

݊ሺܫሻ


ඩ
 ൫ܫ௫,௬ െ ௫ᇱ,௬ᇱ൯ܫ

ଶ

௫ିஸ௫ᇱ,ஸ௫ା
௬ିஸ௬ᇱஸ௬ା

௫,௬

 
(Eq. 14) 
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 Tenengrad4 measure: 

ሻܫሺܩܶ ≝
1

݊ሺܫሻ
൫࣭ሺܫሻ௫,௬

ଶ  ࣭௩ሺܫሻ௫,௬
ଶ൯

௫,௬

 (Eq. 15) 

 
In Eq. 15, ࣭ሺܫሻ is the Sobel gradient filter: 

࣭ሺܫሻ௫,௬ ≝ ௫ାଵ,௬ିଵܫ  ௫ାଵ,௬ܫ2  ௫ିଵ,௬ିଵܫ௫ାଵ,௬ାଵെܫ െ ௫ିଵ,௬ܫ2 െ  ௫ିଵ,௬ାଵ (Eq. 16)ܫ

࣭௩ሺܫሻ௫,௬ ≝ ௫ିଵ,௬ାଵܫ  ௫,௬ାଵܫ2  ௫ିଵ,௬ିଵܫ௫ାଵ,௬ାଵെܫ െ ௫,௬ିଵܫ2 െ  ௫ାଵ,௬ିଵ (Eq. 17)ܫ
 
Correlative image quality metrics 

These metrics rely on the correlation between neighboring pixels. The intuition underlying these 
metrics is that for sharp images neighboring pixels are less correlated than for blurred images, 
which is a direct consequence of the low-pass filtering introduced by a defocus. 
 

 Vollath F4 measure3: 

ସܸሺܫሻ ≝
1

݊ሺܫሻ
ܫ௫,௬൫ܫ௫ାଵ,௬െܫ௫ାଶ,௬൯
௫,௬

 (Eq. 18) 

 

 Vollath F5 measure3: 

ହܸሺܫሻ ≝
1

݊ሺܫሻ
൮ܫ௫,௬ܫ௫ାଵ,௬
௫,௬

െ
1
݊
ቌܫ௫,௬
௫,௬

ቍ

ଶ

൲ (Eq. 19) 

 

 Symmetric Vollath F4 measure3: 

ܯ ସܸሺܫሻ ≝
1

݊ሺܫሻ

ۉ

ۈ
ۈ
ۈ
ۇ ቮܫ௫,௬൫ܫ௫ାଵ,௬െܫ௫ାଶ,௬൯

௫,௬

ቮ  ቮܫ௫,௬൫ܫ௫ିଵ,௬െܫ௫ିଶ,௬൯
௫,௬

ቮ

 ቮܫ௫,௬൫ܫ௫,௬ାଵെܫ௫,௬ାଶ൯
௫,௬

ቮ  ቮܫ௫,௬൫ܫ௫,௬ିଵെܫ௫,௬ିଶ൯
௫,௬

ቮ
ی

ۋ
ۋ
ۋ
ۊ

 (Eq. 20) 

 
Statistical image quality metrics 

These metrics rely on simple statistical quantities such as mean, max, variance, kurtosis or 
histogram of pixel intensities. A more elaborate and novel metric is the ܮ sparsity measure. By 

taking the ratio between the ܮషభ norm and the ܮ norm (of the image treated as a vector) one 

can measure how sparse the image is. Intuitively, an image is sparsest when it is focused. 
 

Nature Biotechnology: doi:10.1038/nbt.3708



 

14 

 Image mean intensity: 

ሻܫሺܰܣܧܯ ≝  ሻ (Eq. 21)ܫሺߤ
 

 Maximum intensity: 

ሻܫሺܺܣܯ ≝  ሻ (Eq. 22)ܫሺݔܽ݉
 

 Variance: 

ሻܫሺܴܣܸ ≝  ሻ (Eq. 23)ܫଶሺߪ
 

 Normalized variance: 

ሻܫሺܴܣܸܰ ≝
ሻܫଶሺߪ
ሻଶܫሺߤ

 (Eq. 24) 

 

 Kurtosis: 

ሻܫሺܭ ≝  ሻ (Eq. 25)ܫሺߛ
 

 Difference image kurtosis: 

ሻܫሺܭܦ ≝ ௫ାଵ,௬ାଵܫ൫ൣߛ െ  ௫ିଵ,௬ିଵ൧൯ (Eq. 26)ܫ
 

 Histogram entropy: 

ሻܫሺܧܪ ≝݄ሺܫሻ ln ݄ሺܫሻ


 (Eq. 27) 

 

 ܮ sparsity: 

ሻܫሺܵܲܮ ≝ ݊ି
భ
 ൬

షభሺூሻ

ሺூሻ
൰ with p > 1 (Eq. 28) 

 
A choice of p = 2 is sufficient to ensure a higher response for sparse images. The 

correction term ݊ି
భ
 makes the measure independent of image size. 

 
Spectral image quality metrics 

The fact that light microscopy images are degraded by camera readout noise and acquired by a 
band-limited optical system calls for image quality metrics explicitly designed to quantify all and 
only the information that can pass through the optical band-pass filter of the microscope. We 
included the following candidate transforms in our evaluation: Discrete Fourier Transform 
(DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The most 
promising transform turned out to be the Discrete Cosine Transform (DCT) in our tests, 
confirming the results by Kristan2 on the Bayes Spectral Entropy. We construct several variants 
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using e.g. Shannon entropy, Haar wavelet transform, ܮ sparsity, and power ratio of high versus 

low frequencies: 
 

 Kristan’s Bayes spectral entropy2: 

ሻܫሺܧܵܤܭ ≝ െߤ

ۉ

1ۇ െ
ቆ ࣠ሺ଼ۤۥܫ,,ሻ௫,௬

ଶ

௫ା௬ழ
ቇ

ቀ ࣠ሺ଼ۤۥܫ,,ሻ௫,௬௫ା௬ழ
ቁ
ଶ

ی

 (Eq. 29) ۊ

 
 Normalized DCT Bayes entropy: 

ሻܫሺܧܤܶܥܦܰ ≝ 1 െ

మ
ଶ ቆ ࣠ሺܫሻ௫,௬

ଶ

௫ା௬ழ
ቇ

൫∑ ࣠ሺܫሻ௫,௬௫ା௬ழ ൯
ଶ  (Eq. 30) 

 

 Generalized normalized DCT Bayes entropy: 

ሻܫ,ሺܧܤܶܥܦܰܩ ≝ 1 െ
൬
ଶݎ
2 ൰

ିଵ

ቀ ࣠ሺܫሻ௫,௬


௫ା௬ழ
ቁ

൫∑ ࣠ሺܫሻ௫,௬௫ା௬ழ ൯
  (Eq. 31) 

 

 Normalized DCT Shannon entropy: 

ሻܫሺܵܶܥܦ ≝ െ
2
ଶݎ

 ቤ ࣠ሺܫሻ௫,௬
ଶሺܮ ࣠ሺܫሻሻ

ቤ abslogଶ ቆ
࣠ሺܫሻ௫,௬

ଶሺܮ ࣠ሺܫሻሻ
ቇ

௫ା௬ழ

 (Eq. 32) 

 

 Normalized DCT Shannon entropy after 3x3 median filtering: 

ሻܫሺܯܵܶܥܦ ≝ െ
2
ଶݎ

 ቤ ࣠ሺܯଷሺܫሻሻ௫,௬
ଶሺܮ ࣠ሺܯଷሺܫሻሻሻ

ቤ abslogଶ ቆ
࣠ሺܯଷሺܫሻሻ௫,௬

ଶሺܮ ࣠ሺܯଷሺܫሻሻሻ
ቇ

௫ା௬ழ

 (Eq. 33) 

 

 Normalized DFT Shannon entropy: 

ሻܫሺܵܶܨܦ ≝ െ
1

ݎ4
ଶ ቤ

࣠ሺܫሻ௫,௬
ሻሻܫଶሺ࣠ሺܮ

ቤ abslogଶ ቆ
࣠ሺܫሻ௫,௬
ሻሻܫଶሺ࣠ሺܮ

ቇ
ିழ௫ழ
ିழ௬ழ

 (Eq. 34) 

 

 Normalized Haar wavelet transform Shannon entropy: 

ሻܫሺܧܹܵܶܪܰ ≝ െ
1
ଶݎ

 ቤ ࣱሺܫሻ௫,௬
ଶሺܮ ࣱሺܫሻሻ

ቤ abslogଶ ቆ
ࣱሺܫሻ௫,௬

ଶሺܮ ࣱሺܫሻሻ
ቇ

௫ழ
௬ழ

 (Eq. 35) 
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 DCT high to low frequency ratio7: 

ሻܫ,ಹಽ,ವሺܴܶܥܦ ≝

∑ ห ࣠ሺܫሻ௫,௬ห
ଶ

ିழ௫ழ
ିಬಬೝ

െ ∑ ห ࣠ሺܫሻ௫,௬ห
ଶ

ିವழ௫ழವ
ିವಬಬೝವ

∑ ห ࣠ሺܫሻ௫,௬ห
ଶ

ିಹಽழ௫ழಹಽ
ିಹಽಬಬೝಹಽ

െ ∑ ห ࣠ሺܫሻ௫,௬ห
ଶ

ିವழ௫ழವ
ିವಬಬೝವ

 (Eq. 36) 

 
 DFT high to low frequency ratio7: 

ሻܫ,ಹಽ,ವሺܴܶܨܦ ≝

∑ ห࣠ሺܫሻ௫,௬ห
ଶ

ିழ௫ழ
ିಬಬೝ

െ ∑ ห࣠ሺܫሻ௫,௬ห
ଶ

ିವழ௫ழವ
ିವಬಬೝವ

∑ ห࣠ሺܫሻ௫,௬ห
ଶ

ିಹಽழ௫ழಹಽ
ିಹಽಬಬೝಹಽ

െ ∑ ห࣠ሺܫሻ௫,௬ห
ଶ

ିವழ௫ழವ
ିವಬಬೝವ

 (Eq. 37) 

 

 DCT ܮ sparsity: 

ሻܫሺܵܲܮܶܥܦ ≝ ݊ሺܫሻି
భ
 ቆ
షభሺܮ ࣠ሺܫሻ

ሺܮ ࣠ሺܫሻሻ
ቇ (Eq. 38) 

 

 Logarithmic moment of DFT spectral power: 

ܵܯܮ ܲሺܫሻ ≝
1

݊ሺܫሻ
 ࣠ሺܫሻ௫,௬ logሺ1  ݀ூሺݔ, ሻሻݕ

௫మା௬మழమ

 (Eq. 39) 

 
Implementation of the DCT and DFT based spectral image quality metrics 

We use the high-performance multi-threaded pure Java DCT implementation from the 
JTransforms12 library. This library offers comparable performance to FFTW313. 
 
Low-pass filtering 

All spectral measures are parameterized with ݎ , the putative support radius of the optical 
transfer function (OTF). If we assume – without loss of generality – a square image ܫ and a 
laterally isotropic point spread function (PSF), the relationship between the PSF radius ݎ and the 

OTF support radius is: ݎ ൌ
௪ሺூሻ


 . 

In order to put all image quality metrics on equal footing with respect to noise handling, we add 
an image downscaling preprocessing step to non-spectral image quality metrics that emulates the 
low-pass filtering built into spectral metrics. This downscaling factor is chosen as the closest 
integer such that one pixel in the preprocessed image corresponds roughly to a 2ݎ ∗   squareݎ2

patch in the original image. We observed that this simple and convolution-less preprocessing 
step restored the performance of most non-spectral image quality metrics in noisy data sets 
without adversely affecting their speed advantage over spectral measures. 
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Image size invariance 

To the extent mathematically feasible we normalize all measures to the number of pixels in the 
images. This reduces dependency of the image quality metric on image size.  
 
Benchmark data set of synthetic focus stacks 

Real light-sheet microscopy image data sets are degraded by multiple factors, such as noise, 
optical aberrations, and loss of contrast by light scattering. The first benchmark data set we used 
to evaluate the 30 image quality metrics introduced above is a synthetic data set in which the blur 
kernel and amount of noise are known. This data set consists of four test images: Lenna14, 
Barbara, Fingerprint as well as Embryo (our own test image obtained from a RFP-histone 
marked fly embryo). As shown in Supplementary Fig. 4a these test images offer a variety of 
textures beyond what can typically be found in light-sheet microscopy image data. For each of 
the four test images we generated a synthetic defocus image sequence consisting of 100 images. 
The blur kernel was chosen as a plain Gaussian kernel ܭ	with standard deviation ݎ ൌ |݅ െ 50| 
for each plane ݅ in this image stack. We generated five additional stacks by adding Gaussian 
noise with standard deviations 10%, 20%, 30%, 40% and 50% of the signal’s average intensity 
(see Supplementary Fig. 4a). The result is a data set of 24 focus stacks with varying levels of 
noise (see examples in Supplementary Fig. 4c). Since the purpose of our first benchmark is to 
understand the influence of blur kernel size and noise on the various image quality metrics, we 
first test the image quality metrics on synthetic focus stacks generated from known standard 
images, Gaussian blur kernels of known standard deviation, and Gaussian noise of known level. 
For each focus stack and each image quality metric, we compute a focus curve (see examples on 
Supplementary Fig. 4b) and analyze its characteristics.  
 
Quantifying error, range, noise and computational cost 

For each focus curve obtained with a given image quality metric we compute the focus error, 
range score (R-score), density of local extrema (DLE), and computation time in nanoseconds per 
pixel. 
The focus error is ݁ = |݅ െ 50| where ݅ is the index of the plane for which the image quality 
metric reaches its highest value. The R-score is defined by the ratio between ܴଵ and ܴଽ as 

follows: ܴ ൌ 	ோభబ
ோవబ

 where ܴ௫  is the diameter of the set of values ݅  for which ݂ሺܫሻ 
ೣ
భబబ
݂ሺܫହሻ, 

with ܫ  representing the image with index ݅. The R-score characterizes the shape of the focus 
curve: it is large for image quality metrics that have a sharp tip and a wide base. The density of 
local extrema is the proportion of local extrema in the focus curve. A perfect focus curve 
unaffected by noise has only one extremum (its maximum), whereas an image quality metric 
affected by noise can have extrema at any location in a worst-case scenario and thus have a DLE 
of 1. Computing the DLE of a focus curve is a way of estimating the trustworthiness of local 
extrema. 
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The computation time was determined in units of nanoseconds per pixel (ns/p). This measure is 
normalized to the number of pixels. For example 10 ns/p means roughly a 10 ms computation 
time for a 1000 × 1000 image. Of course this quantification ignores in a first approximation the 
non-linear complexity of some operations such as the DFT and DCT. Yet, these averages are 
sufficient and intuitive for the purpose of comparing computational efficiency on a benchmark 
data set. 
 
Tuning the low-pass filter parameter 

As discussed above, all image quality metrics included in this comparison either have a built-in 
low-pass filter parameter (for spectral metrics) or were retrofitted with a low-pass filter pre-
processing step. We determined the optimal support diameter by determining the parameter ݎ 

for which the median focus error is minimal (see Supplementary Fig. 7). In the case of the 
synthetic benchmark we determined the optimal parameter ݎ to be 6 pixels (see Supplementary 

Fig. 7a). 
 
Benchmark results for synthetic focus stacks 

For each image quality metric we compute the median focus error, mean focus error, max focus 
error, median R-score, and median DLE. The results are shown in Supplementary Table 1. 
Mean errors range from 0.16 to 31 and most metrics achieve a median error of 0. However, only 
4 measures – all based on entropy measures applied to the DCT – achieve a mean error of 0.16 
and median error of 0 at the same time (units are Gaussian kernel standard deviations measured 
in pixels). Only 5 metrics fail to produce a median error of zero: Mean, Kurtosis, Kurtosis of 
differences, Maximum and Normalized Haar wavelet transform Shannon entropy (the worst of 
all evaluated image quality metrics). Considering the results on a per-class basis, we find that 
statistical image quality metrics perform worst, correlative and differential metrics are tied in the 
middle, and spectral metrics (except Haar-based) achieve the lowest mean error. 
 
Noise is the challenge 

As shown in Supplementary Fig. 3, the focus value response to a noiseless focus stack is 
remarkably accurate for almost all image quality metrics. Only a few – mostly statistical metrics 
– fail to produce a unimodal monotonous response: Normalized Haar wavelet transform 
Shannon entropy, Kurtosis, Kurtosis of differences, and Shannon entropy of histogram. It is only 
after adding noise that the image quality metrics start to exhibit performance differences. Image 
degradation due to non-defocus aberrations is not a major problem. Indeed, it is known that 
image quality metrics respond similarly to non-defocus and defocus aberrations15. This can be 
intuitively understood by the fact that non-defocus aberrations only lead to an increase in the 
support volume of the point-spread function, which in turn leads to a low-pass filter behavior. 
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Canonical response 

The noiseless response of the best DCT based image quality metrics shown in Supplementary 
Fig. 3 suggests a simple approximate model for the image quality metric response to blur by a 
kernel ܭ in the ideal noiseless case. In a first-order approximation one can empirically model 
the relationship between the standard deviation ݎ of the Gaussian kernel and the normalized 
image quality metric value ݂ሺܫ ∗  :with a power-tent function	ሻܭ
 

݂ሺܫ ∗ ሻܭ ൌ Τఈሺݎሻ 

with Τఈሺݎሻ ൌ 1 െ ఈ and 0|ݎ| ൏  ߙ
(Eq. 40) 

 
Note that the tent is concave for 0 ൏ ߙ ൏ 1 and convex for 1 ൏  depends on the ߙ The value .ߙ
frequency content of the image. Supplementary Fig. 3 shows that the focus curves for the 
noiseless Fingerprint focus stack have more pronounced concavity than the other noiseless focus 
stacks. Moreover, Supplementary Fig. 4b shows that the addition of noise also increases 
concavity. 
The normalized image quality metric can be modeled as follows: 
 

݂ሺܫ ∗ ܭ ሻ ൌ ܽ  ܾΤఈሺݎߪሻ (Eq. 41) 
 
 are normalization parameters. Until now we have not considered the optical parameters ߪ ,ܾ ,ܽ
of the system. For a perfect lens of given numerical aperture (NA) and a given wavelength ߣ the 
relationship between the defocus distance ݖ  and the standard deviation ݎ  of the point-spread 
function approximated as a Gaussian kernel is: 
 

ሻݖሺݎ ൌ ඨ1ݎ  ൬
ݖ
ݖ
൰
ଶ

 (Eq. 42) 

 

In Eq. 42, ݖ ൌ
గబమ

ఒ
 is the Raleigh length of the corresponding focal volume16, with ݎ ൌ

ఒ

గே
. 

It follows that an approximate and partly empirically derived model for the image quality metric 
response to defocus by ݖ is: 
 

݂ሺܫ௭	ሻ ൎ 	ܽ  ܾΤఈ ቌݎߪඨ1  ൬
ݖ
ݖ
൰
ଶ

ቍ (Eq. 43) 

 
Here, ܫ௭ ൌ ܫ	 ∗  ሻ is asymptotically linearݖሺݎ the kernel radius ݖ ሺ௭ሻ. For large defocus distancesܭ

and thus the tent function is a good approximation. For small defocus distances ݖ the hyperbolic 
profile takes precedence. This smooth maximum is seen in real measured focus curves (see 
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Supplementary Fig. 5c). This is in contrast to the sharp tip at the maximum of the focus curves 
parameterized by ݖ instead of ݎሺݖሻ (see Supplementary Fig. 4b).  
The model given above for ݂ሺܫ௭	ሻ would suggest that the image quality metric always decreases 
when increasing |ݖ| and thus does not admit a lower bound. However, in practice, size and 
bandwidth limited images cause a saturation effect: increasing the kernel radius eventually leads 
to a nearly constant image and thus a nearly constant response of the image quality metric. At the 
limit, the saturation effect leads to a finite support and asymptotically constant behavior and the 
hyperbolic profile induces a smooth maximum. These two effects explain why most focus curves 
have Gaussian-like unimodal responses. 
 
Benchmark data set of light-sheet focus stacks 

After studying the response of image quality metrics to ideal, synthetic focus stacks we turn to a 
more realistic and practically relevant benchmark for light-sheet microscopy. It consists of 66 
focus stacks collected with a SiMView light-sheet microscope. Each focus stack is a series of ݊ 
images ܫ௭	acquired at focus locations ݖ ൌ 	 ௧ݖ  iΔݖ, with the optimal focus position ݖ௧ and 

the step size Δݖ. Samples used in these imaging experiments range from fluorescent beads as 
well as nuclei-labeled D. melanogaster and C. elegans embryos at various developmental stages 
and in various orientations. Moreover, to make the benchmark data set more challenging and 
diverse we varied the step size Δݖ, number of planes per focus stack ݊, image size, size ratio of 
sample vs. field of view and the signal to noise ratio (by varying the laser power). We also added 
focus stacks for samples in which faint auto-fluorescence is the only visible signal. 
We performed ground truth annotations for each focus stack by manually determining the plane 
exhibiting the best focus quality. The best focused image in a given focus stack is determined by 
browsing the sequence of images in forward and reverse order and visually determining the 
sharpest image. Such manual focusing is non-trivial and time-consuming and the procedure must 
be executed carefully to maximize confidence in the annotation. The procedure is furthermore 
inherently subjective and biased – e.g. the choice might be biased towards the regions of the 
image considered most relevant by the human annotator. However, despite this potential bias this 
approach is both valid and important, since the purpose of the manual data assessment is to 
determine the image quality metric that best mimics the natural focus sensitivity of human vision 
and all implicit criteria that contribute to the decision-making process. This analysis is thus 
complementary to the objective, synthetic benchmarks described above. Using the ground truth 
annotations, we compute focus error, R-score and DLE for all focus curves obtained by applying 
each image quality metric to each focus stack. 
 
Benchmark results for light-sheet focus stacks 

As shown in Supplementary Fig. 7b, we determined the optimal diameter of the low-pass filter 
to be 3 pixels, i.e. the optimal value of ݎ is 1.5 (see Supplementary Table 2). The value of 

3 pixels is expected for our optical configuration, since the theoretical PSF associated with our 
16×/0.8 NA detection objectives covers a 3×3 pixel region on the detector, i.e. PSF support is 
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effectively 3×3 pixels. This optimal value is expected to be different for detection systems with 
significantly different NA and/or magnification, and for detectors with a significantly different 
pixel size. The benchmark results are shown in Supplementary Table 3. Only 4 metrics achieve 
a median error of zero: all of these are based on entropy measures applied to the DCT and they 
furthermore match the four best-performing metrics determined in the synthetic benchmarks. 
Differential metrics, which are augmented with low-pass filtering (ݎ ൌ 3) like all other non-

spectral metrics, follow with median focus errors between 250 and 810 nm. Correlative metrics 
perform similar to differential metrics, with the exception of Vollath’s F5 (median focus error of 
1.63 µm). Statistical metrics perform worse, with a median focus error of 10 µm for the worst 
metric (Shannon entropy of pixel intensity histogram). 
 
The best image quality metrics for light-sheet microscopy 

The four best image quality metrics perform almost identically – the dominant component being 
the DCT. Yet, the very best image quality metric is the Normalized DCT Shannon entropy 
(DCTS) with a mean error of 320 nm and the highest R-Score among the four best measures. It 
has a higher median DLE but this does not affect its accuracy. We choose DCTS as our image 
quality metric because it is the second fastest (27 ns/p on average) and has the highest range 
score (7.35) which yields a better tradeoff between maximum sharpness and broad side tails of 
the focus curve. The four best measures have mean errors below or equal to 330 nm, which is 
close to half of the emission wavelengths of GFP (515 nm) and RFP (600 nm) but well below the 
detection system’s depth of focus of 1.75 µm (using a Nikon 16x/0.8 objective and a Hamamatsu 
Orca Flash 4.0 camera with pixel pitch of 6.5 µm). With such high accuracy in some of the most 
difficult, real image data sets (see three particularly challenging examples in Supplementary 
Fig. 6) the image-based assessment of optimal focus settings in light-sheet microscopy can 
effectively be considered a solved problem. In practice, the human observer needs time and 
experience to resolve sharpness differences at a focus distance of about 1 µm from the optimal 
focus, which can already be sufficient to compromise our ability to delineate boundaries between 
neighboring cell nuclei, as shown in the first example presented in Supplementary Fig. 6 (see 
blue arrow highlighting one such boundary between two neighboring cell nuclei). 
 
Why do DCT-based measures perform so well? 

Our benchmark shows that the single most important factor for achieving high accuracy is the 
use of a DCT as frequency domain transform. The DCT is known as one of the best transforms 
for signal compression purposes, compared to the DFT or other related transforms (Hartley, SLT, 
Walsh, Haar). The DCT (and more precisely, the DCT-2) can accurately encode an image with 
fewer coefficients than the DFT17, while producing less ringing. This is in part a consequence of 
the DCT being the most energy-compact transform after the signal-dependent Karhunen-Loève 
transform (KLT)18. Our first intuition that the DCT could be used for focusing came from 
anecdotal evidence using digital cameras: when taking multiple shots of the same scene under 
low light conditions the sharpest picture (least shaking of the camera’s detector) can be reliably 
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recognized as the largest JPEG-encoded file. Indeed, the JPEG format uses the DCT as its 
primary transform followed by an entropy-encoding compression scheme. This intuition was 
further confirmed when consulting the work by Kristan on the Bayes Spectral Entropy2. In 
general, compression-based methods for measuring data quality have shown their success in 
other fields19. Our synthetic focus stack benchmark results revealed that achieving insensitivity 
to noise is the main challenge. Since the DCT concentrates most of the signal energy in the low 
frequency components, the low-pass filtering intrinsic to the definition of the DCTS and other 
DCT-based image quality metrics becomes especially effective at separating noise from signal.  
 
Computational cost 

The cost of accuracy is computation time: the computational cost for DCTS is on average 27 
nanoseconds per pixel across the entire benchmark data set, which is almost 6 times slower than 
the best non-spectral metric (Tenengrad) with median and mean errors of just 250 and 610 nm, 
respectively. In more time-constrained scenarios the Tenengrad measure thus offers a reasonable 
tradeoff between accuracy and speed. 
 
Structured illumination focusing 

For samples with difficult (featureless) texture of the fluorescent signal or when photo-bleaching 
and photo-toxicity must be kept to a minimum, we implemented an option to use a digitally 
modulated structured light sheet20 to artificially introduce high-frequency modulation in the 
optical section. In the same manner that structured light sheets can improve the optical sectioning 
ability of a light sheet microscope, structured light sheets can also improve the response of an 
image quality metric. The spatial modulation frequency must be chosen as high as the optical 
transfer function of the microscope allows. When acquiring a focus stack, we maintain the same 
phase for all images and reduce the laser power to a level that still allows good focusing. 
The optimal modulation period can be automatically determined by performing a systematic, 
sampled search of e.g. ten periods within a predefined interval ሾ,  ௫ሿ. Selecting the period
yielding the highest DCTS value is a good heuristic for this purpose. 
 
Adjusting laser power 

The DCT spectrum can be leveraged to estimate the signal-to-noise ratio in an image. Intuitively, 
an image composed exclusively of noise has a random DCT spectrum with uniformly distributed 
energy over all frequencies. In the presence of signal, computing the power ratio of signal versus 
noise provides a way of estimating the signal to noise ratio. This can be achieved by estimating 
the noise baseline power outside of the microscope’s transmitted frequency band and thus 
estimating the ratio of signal to noise within the band pass (the baseline is the same). The laser 
power can be adjusted to the lowest level that satisfies a certain minimal observed SNR ratio.
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Part III | Special Optimization Theory for Spatiotemporally Adaptive Imaging 

We showed in Part II above that the DCTS image quality metric and other DCT based metrics 
are the best-performing image quality metrics for light-sheet microscopy. Equipped with these 
metrics we can in principle adjust and evaluate each alignment parameter of the microscope in 
isolation to optimize image quality. However, in a complex multi-view light sheet microscope 
with multiple detection and illumination arms, all relevant parameters are interdependent. In the 
following we explain the mathematical theory behind our optimization approach. For simplicity 
and exposition clarity we first restrict ourselves to a local optimization approach for a light-sheet 
microscope comprising up to two illumination and two detection arms (SiMView microscope 
layout21) and consider only system parameters corresponding to the translation of detection focus 
and light sheet planes. In Part IV, we extend this theory further to a general optimization theory 
that considers measurements at all reference planes simultaneously. For simplicity, we omit the 
advanced degrees of freedom of the adaptive imaging framework (ܻ, α, β) in Part III. 
 
The microscope’s state variables 

The SiMView microscope layout consists of two coaxial detection arms and two coaxial 
illumination arms in an orthogonal configuration. The state variables relevant for focusing are 
the positions of the two detection planes, denoted ܦଵ and ܦଶ, and the positions of the two light 
sheets along the detection axis, denoted ܫଵ and ܫଶ. These four state variable constitute the state 
vector of the system: 
 

ܵ ൌ ൮

ଵܦ
ଶܦ
ଵܫ
ଶܫ

൲ (Eq. 44) 

 
The two detection arms image light emitted by the specimen onto two cameras ܥଵ and ܥଶ. For 
each camera ܥ௨ there are two different images that can be formed by illuminating the sample 
using either the first or second illumination arms. Therefore, for each combination of 
illumination and detection arm (ܫ௨,  ௩) the microscope can produce an image that is more or lessܦ
focused depending on the values of ܫ௨ and ܦ௩. These variables are directly controllable by the 
microscope’s electronics and software framework and have arbitrary undefined zero positions 
that cannot be assumed to correspond to a focused state. 
 
Manual focusing 

Manual focusing of a four-arm light-sheet microscope would consist of e.g. fixing the ܦଵ 
variable and then adjusting ܫଵ  and ܫଶ  independently. Finally, variable ܦଶ  can be set to two a 
priori different values based on the previously determined values ܫଵ and ܫଶ. In order to reconcile 
these two values, one can simply take the average (if imaging eventually needs to be performed 
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with both light sheets simultaneously). Other orders are possible, for example: fix ܫଵ first, then 
determine ܦଵ and ܦଶ, and finally find a compromise for ܫଶ. This naïve sequential approach has 
several shortcomings: (i) The only constraint that can be defined is the fixing of a variable, (ii) 
there is no guarantee that the overall system corrections are minimal, and (iii) the scheme is 
inherently progressive and as such it is not possible to take all necessary measurements before 
changing the state of the system. In the following, we show how these shortcomings are 
addressed in our focus optimization theory. 
 
Focus matrix 

Focusing depends on the distance between each detection plane and each illumination plane. We 
can compute these distances with the following matrix: 
 

ܯ ൌ ൮

1 0 െ1 0
1 0 0 1
0 1 1 0
0 1 0 െ1

൲ (Eq. 45) 

 
The signs of the entries depend on the orientations of the axes (see Supplementary Fig. 8a). In 
practice, it is possible that different units are used for ܦଵ, ܦଶ, ܫଵ and ܫଶ. If this is the case, a single 
unit is chosen and some entries in matrix ܯ will have values that differ from +1 or –1. Moreover, 
variables ܦଵ, ܦଶ, ܫଵ and ܫଶ have a priori undefined zero positions because they directly translate 
into actuator (e.g. piezo positioner or galvanometer scanner) commands. It follows that the 
distances computed by M also have undefined offsets – a physical zero distance does not 
necessarily correspond to a numerical zero. We will discuss below how the formalism can handle 
these under-determinacies. In fact, the primary purpose of the following theory is to be able to 
reason about the focused state of the microscope in the absence of prior system calibration. 
 
Focus state 

The matrix ܯ computes from the state vector ܵ the focus state vector ܨ: 
 

ۉ

ۇ

ଵ,ଵܨ
ଵ,ଶܨ
ଶ,ଵܨ
یଶ,ଶܨ

ۊ ൌ ܨ ൌ  (Eq. 46) ܵܯ

 
Since the matrix M is rank-deficient of rank 3, it follows that different system states ܵ 
correspond to the same focus state ܨ. Intuitively, this can be understood by noting the focusing 
invariance when translating all planes in the same physical direction by the same amount. 
Formally, the system state ܵ can be translated by any vector ܭ in the kernel ݎ݁ܭሺܯሻ of ܯ: 
 

ܨ ൌ ሺܵܯ   ሻ (Eq. 47)ܭ
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In the case of the multi-view microscope described here the kernel can be generated as follows: 
 

ሻܯሺݎ݁ܭ ൌ ൞݇൮

1
െ1
1
െ1

൲ ተ݇߳Թൢ (Eq. 48) 

 
In practice, since the state variables have limited ranges, the range of ݇ is also limited. 
 
Focusing by pseudo-inverting the focus matrix 

Focusing the system means finding the optimal focus vector ܨ  such that all detection and 
illumination planes coincide. Each component ܨ௨,௩  of vector ܨ  is related to an image ܬ௨,௩ 

acquired with detector ܦ௨, from which a focus value ݂ሺܬ௨,௩) can be computed. Hence for each 

focus state ܨ  we can compute the following vector (by acquiring images and computing the 
focus value of each image): 
 

൮

߮ଵ,ଵ
߮ଵ,ଶ
߮ଶ,ଵ
߮ଶ,ଶ

൲ ൌ ߮ ൌ 	

ۉ

ۈ
ۇ
݂ሺܬଵ,ଵሻ
݂ሺܬଵ,ଶሻ
݂ሺܬଶ,ଵሻ
݂ሺܬଶ,ଶሻی

ۋ
ۊ

 (Eq. 49) 

 
For simplicity, we write ߮ ൌ ݂ሺܨሻ. The search for the optimum is achieved by independently 
varying each component ܨ௨,௩ of vector ܨ until the maximum of each ߮௨,௩ is attained. Each ܨ௨,௩ 

can be varied by changing the position of the corresponding detection plane ܦ௨ or ܫ௩ (see first 
two columns of focus matrix ܯ). However, in practice it is better to maintain the light sheets 
stationary in order to improve the comparability of the acquired images. We thus vary ܨ௨,௩ by 

varying ܦ௨. Corrections determined by varying ܦ௨ instead or ܫ௩ are valid for small displacements 
because we assume locality and continuity of corrections. Considering that we start from an a 
priori unfocussed focus state ܨ and find by this method a new better focus state ܨ′, we have: 
 

Δܨ ൌ ܨ	 െ ᇱܨ ൌ ሺܵܯ െ ܵᇱሻ ൌ  Δܵ (Eq. 50)ܯ
 
Δܨ is the correction vector to the current focus state that achieves the highest focus quality and 
Δܵ is the equivalent correction vector of the system state. Determining the system correction Δܵ 
based on the focus state corrections Δܨ requires to pseudo-invert the focus matrix ܯ. 
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The Moore-Penrose pseudo-inverse22 of ܯ is: 
 

ାܯ ൌ ଵ
଼
൮

3 3 1 1
1 1 3 3
െ3 1 3 െ1
െ1 3 1 െ3

൲ (Eq. 51) 

 
The Moore-Penrose pseudo inverse returns the minimal ܮଶ norm solution Δܵ of the system Δܨ ൌ
 :ܨΔܵ for a given Δܯ	
 

Δܵ ൌ ܨାΔܯ (Eq. 52) 
 
The system can then be moved to a better-focused state ܵᇱ  by applying: ܵᇱ ൌ ܵ  Δܵ . This 
formalism guarantees that the correction is mathematically well-defined. This addresses point (i) 
mentioned above in our discussion of manual focusing. Furthermore, we will see below that we 
can easily find solutions that satisfy other constraints and meet other minimization goals. 
 
Constraining solutions 

In order to guarantee that the system does not drift over time, one can anchor the system by 
requiring one of the system’s variables ܦଵ, ܦଶ, ܫଵ, or ܫଶ to be fixed. This can be achieved by 
adding to Δܵ an appropriately chosen vector Δܭ ∈  ሻ such that the chosen component ofܯሺݎ݁ܭ
Δܵ  becomes zero. Since Δܭ  belongs to ݎ݁ܭሺܯሻ this new correction is still a solution to the 
system Δܨ ൌ  .Δܵ. This is similar to what could be achieved using the naïve manual approachܯ
However, we can also decide to maintain a fixed center of mass of the system instead. Since all 
degrees of freedom considered here are along the same axis, and since the kernel ݎ݁ܭሺܯሻ is of 
rank one, it follows that the center of mass can be parameterized by a single dimension obtained 
with the following product: 
 

ܿ ൌ ൮

1
െ1
1
െ1

൲

T

ܵ (Eq. 53) 

 
The alternating signs originate from the different axis orientations of ܦଵ ଶܦ , ଵܫ , , and ܫଶ  (see 
Supplementary Fig. 6a). One can then adjust the correction Δܵ by adding a Δܭ ∈  ሻ suchܯሺݎ݁ܭ
that the center of mass of the system remains invariant. This capability addresses point (ii) 
mentioned previously when discussing manual focusing. 
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Focusing reduced systems 

In those cases where only one detection arm and/or one illumination arm is needed, the 
corrections Δܵ  can be found by first setting the corresponding components of the focus 
correction vector Δܨ to zero and computing the state corrections Δܵ.  
 
Fast and robust search for the optimal Δܨ 

We have seen that Δܵ can be determined from Δܨ and that Δܨ is found by searching for the ܨ௨,௩ᇱ  

that maximize the corresponding ߮௨,௩ᇱ . In practice we find the optima ܨ௨,௩ᇱ  that maximize ߮௨,௩ᇱ  by 

sampling ݉ values of ܨ௨,௩ᇱ  around the initial values ܨ௨,௩	 : 

 

௨,௩ܨ ൌ ௨,௩ܨ  ൬
2݇ െ ݉  1
݉ െ 1

൰  (Eq. 54) ݎ

 
݇ is the search radius and ݎ ∈ ሾ0, … ,݉ െ 1ሿ. In practice, it is useful to pick an odd number of 

samples ݉  so that 
ଶିାଵ

ିଵ
 can be zero, thus offering the possibility of no correction to the 

system. The optima ܨ௨,௩ᇱ  are then: 

 
௨,௩ᇱܨ ൌ argmax

ிೠ,ೡ
ೖ

߮௨,௩  (Eq. 55) 

 
߮௨,௩ ൌ ݂ሺܬ௨,௩ ሻ  and ܬ௨,௩  is the image acquired on detector ݑ  using light sheet ݒ . This simple 

ordered and batched sequential approach is faster than performing Fibonacci search, Golden 
section search or Brent’s method because of the preferred modes of operation of the 
microscope’s hardware and electronics: The camera and low-level control electronics perform 
much faster when instructed to acquire a deterministic, predefined sequence of images, and 
mechanical considerations require sequentially ordered commands. To improve robustness for 
low numbers of samples (݉  10) we normalize the focus values: 
 

ො߮௨,௩ . ൌ
߮௨,௩ െ ߮௨,௩

߮௨,௩௫ െ ߮௨,௩ (Eq. 56) 

 

Here, ߮௨,௩ ൌ 	min

߮௨,௩  and ߮௨,௩௫ ൌ 	max


߮௨,௩  . We then apply a standard Gaussian fit or our 

more robust argmax algorithm to find ܨ௨,௩ᇱ .  

 
Gaussian fit 

Computing the argmax given k points of ߮௨,௩ ൌ ݂ሺܬ௨,௩ ሻ  is a trivial problem. The simplest 

approach is to fit a Gaussian curve ߶
	 ൌ ି݁ߙ	

ሺೖషഋሻమ

మ  by optimizing the choice of ߤ ,ߙ, and ߪ by 
means of the Levenberg–Marquardt algorithm23. As discussed above, this Gaussian prior was 
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found empirically to be a good model for the shape of the focus curve. Polynomial models are 
plagued by their natural tendency to oscillate and other Gaussian-like distributions such as 
Lorentz-Cauchy or Voigt do not perform well in practice and do not contribute anything more 
than added complexity. We use the MINPACK based implementation in the Apache Commons 
Math library (https://commons.apache.org/proper/commons-math) with an initial step bound 
factor of 100, a cost relative tolerance of	10ିଵ, a parameters relative tolerance of 10ିଵ, and an 
orthogonality tolerance of 10ିଵ. The optima ܨ௨,௩ᇱ  are then obtained by the following formula: 

 

௨,௩ᇱܨ 	ൌ 	௨,௩ܨ	  ൬
௨,௩ߤ2 െ ݉  1

݉ െ 1
൰  (Eq. 57) ݎ

 
While this approach performs well in many cases, we also observed that it can lack robustness in 
imaging scenarios suffering from a low signal-to-noise ratio. 
 
Robust argmax algorithm 

We need to consider that argmax potentially has to be computed thousands of times during a 
time-lapse imaging experiment. In cases when the signal-to-noise ratio of the images is very low 

such as for pan-neural marker expression onset, this leads to noisy focus measurements ߮௨,௩ , 

which in turn leads to noisy ܨ௨,௩ᇱ  values that ultimately degrade the overall stability of the system. 

To address this problem we developed a robust argmax fitter algorithm that uses an ensemble 
approach. 

Any straight-forward approach to fitting a curve to data points ߮௨,௩ ൌ ݂ሺܬ௨,௩ ሻ and for finding the 

argmax is vulnerable to certain conditions. For example, Gaussian curve fitting works well with 
symmetric unimodal curves but is generally unsuited if the response is biased and asymmetric 
(non-null skewness). In this case, a 3rd or 4th order polynomial might be a better choice, but 
polynomials are notoriously bad interpolants that have a natural tendency to over-fit and 
catastrophically oscillate, especially in the presence of noise. Better approaches are e.g. spline 
interpolation or Loess filtering approaches, but again, there will be cases in which these fail, too. 
Our solution is to estimate the argmax by leveraging many different approaches simultaneously. 
In the following we assume that we search for the argmax of ݕ ൌ ݂ሺݔሻ . We compute the 
following 11 estimates in parallel: 
 

1. Three point quadratic fit: This algorithm takes just three points (min, average, and max 
for x) and fits a single parabola.  

2. Levenberg–Marquardt quadratic fit: This algorithm fits all the points to a parabola and 
returns the parabola’s extremum location. 

3. Levenberg–Marquardt Gaussian fit: This algorithm fits all the points to a Gaussian and 
returns the Gaussian’s mean. 

4. Levenberg–Marquardt quartic fit: This algorithm fits all the points to a quartic and 
returns its argmax. 
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5. Spline fit: We fit an unclamped spline to the data and determine the argmax empirically 
by high-resolution sampling. 

6. Random spline fit: We select random subsets of the data, fit splines to each, and compute 
the median argmax across all data subsets. The objective is to achieve robustness against 
outliers. 

7. Loess fit: We fit the data using the Local Regression Algorithm (Loess) and compute the 
argmax empirically by high-resolution resampling. 

8. Top 5 quadratic fit: We select the 5 data points ሺݔ, ሻݕ  of highest ݕ  value and fit a 
parabola. We return the extremum location. 

9. Center-of-mass argmax: We compute the center of mass of the data points interpreted as 
a distribution. 

10. Mode: We compute the mode of the data points interpreted as a distribution (ݔ value for 
highest ݕ value)  

11. Median: We compute the median of the data points interpreted as a distribution. 
 
All these rather simple algorithms run simultaneously on different processor threads and 
computing the median estimate combines their results into one robust estimate. It is highly 
unlikely that all or even many of the above argmax estimators will fail or give biased results for 
the same data sets. Overall, the median of all estimates gives us a more robust estimate of the 
ideal argmax value. For more details on this approach, please consult the AutoPilot source code 
repository. 
 
The capability to estimate the correct argmax value even in the presence of strong noise is 
important. However, knowing when to ‘give up’ is even more important. As we will explain in 
more detail, knowing when a piece of information is unreliable gives us the chance to replace 
this information with an estimate derived from reliable, complementary measurements. We 
explain below how to decide when an argmax computation is reliable or not. 
 
Estimating the probability that an argmax fit did not just occur by chance 

In the worst-case scenario, we are attempting to adjust the microscope for a region of the sample 
devoid of significant fluorescence signal. This leads to a sequence of dark images ܬ௨,௩  dominated 

by noise and thus to a random sequence of ߮௨,௩  values. Most of the time, setting a threshold on 

the max
ிೠ,ೡ
ೖ
൫߮௨,௩ ൯ will be sufficient to detect such cases and mark these measurements as unreliable. 

However, it is often necessary to adjust these thresholds for different types of experiments. In 
our experience, it is better to instead use a conservatively low DCTS threshold that excludes 
measurements that derive with high certainty from low quality images. Unfortunately, this leaves 
many borderline cases for which some signal is present but not enough to make a reliable argmax 
estimate. Another complementary approach is to set a threshold on the root mean square 
deviation (RMSD) of the data to a Gaussian fit. However, there is a fundamental difficulty in 
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deciding on a threshold for the RMSD – this can be done empirically but with few guarantees. 
Overall, it would certainly be better if no such thresholds were needed in the first place. To solve 
this problem we compute the RMSD of the fit to the data. We then compute the RMSD values 
obtained by fitting Gaussians to hundred instances of the same data randomized by permutation 

of the ߮௨,௩  values. This allows us to make an estimate of the probability that the observed RMSD 

is due to chance alone. Intuitively, if the data is already random, it will be statistically 
undistinguishable after random permutation. However, if the data is not random – i.e. it has a 
unimodal Gaussian-like shape – then after permutation it will lose its structure and the fit error 
will be drastically different. Formally, from the point of view of classical statistical hypothesis 
testing, our null hypothesis is that the data is random. By random permutation we compute 
empirically the probability distribution of the RMSD under the null hypothesis – which allows us 
to compute the corresponding p-value. The p-value (௩) is the probability of an event at least as 
extreme as the event we are considering (a given RMSD for true non-randomized data), 
assuming the truth of the null hypothesis. We now can apply a threshold not on an arbitrary 
quantity (RMSD) but on an actual probability: 1 െ  ௩ which is usually well above 0.99 for good
fits and can easily fall below 0.5 for highly noisy curves. In practice we choose thresholds such 
as 0.99 which have a well-defined interpretation: we reject measurements that have a > 1% 
probability of being ‘hallucinated’ from noisy data. 
 
Iterative initial focusing 

Before starting long term imaging sessions an initial focusing step is required. Since the optima 
௨,௩ᇱܨ  are a priori far from the current value ܨ௨,௩	 , we would have to set ݎ and ݉ to large values 

(typically ݎ ൌ 60	μm and ݉ ൌ 121) to achieve an expected error of 0.5	μm. This would be far 
too wasteful with respect to the available photon budget and might affect the physiology of e.g. 
early-stage embryos that are quite sensitive to light exposure. Instead, we use an iterative 
approach that incrementally narrows the search space. We typically set ݉ ൌ 11 and apply the 
entire focusing procedure with radii from ݎ ൌ 60	μm	to ݎ ൌ 3	μm in ݏ steps, typically using ݏ ൌ
3 . This achieves a higher expected accuracy of ~0.25	μm  (which is realizable in practice 
considering the benchmark performance of DCTS) for a total of only 33 samples (75% reduction 
of measurements). 
 
Spatial adaptive focusing 

In the absence of aberrations introduced by the sample or the embedding medium, one can 
assume that the determined focused state ܵ remains valid at different depths in the specimen. 
However, we observed that in most specimens, such as entire fruit fly or zebrafish embryos, 
different corrections are required for optimal image quality at different imaging depths. To 
address this variability we determine the best system state at several imaging planes:	ݖ, …	,  ିଵݖ
(for e.g. ݊ ൌ 8 see Supplementary Fig. 8b), store the corresponding optimal states: ܵ, …	, ܵିଵ 
and linearly interpolate in between and linearly extrapolate outside to obtain a state ܵ௭  at an 
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arbitrary imaging depth ݖ. We note that for not entirely transparent specimens, each detection 
arm can typically acquire high-quality image data only for about half of the specimen (the half 
the objective is facing, Supplementary Fig. 8b) – the respective other detection arm will 
generally provide better image quality for the other half of the specimen, owing to the shorter 
detection path length. With this in mind, let the centermost focusing planes be ݖ௦ and ݖ௦ିଵ (e.g. 
see Supplementary Fig. 8b, where ݏ ൌ 4). It follows that determining optimal states ܵஸ௦ିଵ for 
the first half of the sample should only involve variables ܦଵ ଵܫ ,  and ܫଶ , whereas determining 
optimal states ܵஹ௦ in the second half of the sample (ݖ  0) should only involve variables ܦଶ, ܫଵ 
and ܫଶ . Determining optimal state ܵ  for each plane ݖ  independently would not ensure 
continuity of the imaged volume in the presence of relative drifts between variables ܦଵ and ܦଶ. 
Spatial continuity is ensured for the first half by maintaining ܦଵ in a fixed position and for the 
second half by maintaining ܦଶ in a fixed position. Fixing ܦଵ and ܦଶ is usually a better choice 
than fixing ܫଵ or ܫଶ, in particular when using highly accurate piezo positioners for moving the 
detection objectives (in contrast to the less accurate galvanometer scanners or tip-tilt mirrors 
responsible for moving the light sheets). We establish a continuous and well-defined link 
between the two halves by carrying over light sheet positions ܫଵ and ܫଶ at plane ݖ௦ିଵ	to plane ݖ௦ 
and by solving the system at plane ݖ௦  for ܦଶ  by fixing both ܫଵ  and ܫଶ . This ensures seamless 
spatial continuity of the whole specimen volume. 
 
Temporal adaptive refocusing 

During long-term imaging of e.g. developing embryos, which can take up to several days, 
imaging quality is usually at the mercy of thermal, mechanical and electronic drifts as well as 
optical changes introduced by the specimen’s own development. To guarantee optimal focusing 
throughout time-lapse experiments we thus need to be able to adjust ܵ௭ at successive time points. 
The system state variable ܵ௧,௭ becomes a function of time (ݐ) and depth (ݖ). Performing an entire 
refocusing sequence involving e.g. 8 reference planes typically requires on the order of 80 image 
acquisitions. Given an average computational cost of 240 ms per image (including acquisition 
and processing), refocusing the whole system would require approximately 19 seconds, which 
may not be acceptable depending on the available time budget. For example, when imaging 
Drosophila embryonic development for the purpose of cell tracking we would typically aim for a 
temporal resolution of 30 seconds in order to ensure that cells do not move by more than half a 
cell diameter from one time point to the next. When using motorized stages to move the 
specimen for volumetric imaging in this scenario21, there may not be more than 5 seconds of idle 
time (i.e. time not spent on primary image acquisition) between time points that can be utilized 
for AutoPilot measurements. The solution to this problem is to distribute the measurements 
required for refocusing over multiple time points. Our quanta of observation – the measurement 
that cannot practically be broken into smaller measurements – is the measurement of ߮௨,௩  for a 

given wavelength and depth. From previous work24 we know that the acquisition duty cycle is 
often up to 90%. This gives us less than 10% of time available to perform image quality 
measurements. For typical acquisition settings in developmental time-lapse imaging, this 
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translates to a time budget of 3 to 6 seconds between two time points available to acquire ݉ 
images, compute the image quality metrics and determine the optimum parameter setting. Once 
all information is available to correct the system state at depth ݖ, a new value ܵ௧ାଵ,௭ is computed, 
thus updating the previous value ܵ௧,௭. Supplementary Fig. 8c shows the experiment timeline 
and illustrates how image quality measurements can conceptually be distributed in time. We note 
that in the case of high-speed functional imaging25 it is typically not possible to perform image 
quality measurements without impacting the temporal resolution of the imaging experiment 
(simply because one would often run the acquisition at the maximum imaging speed the 
microscope is capable of, thus leaving no time for image quality measurements). However, these 
types of recordings are usually so short that they only require initial focusing and do not benefit 
significantly from temporal refocusing. 
 
Robust and fast recovery from system perturbations 

In addition to handling sample-induced image perturbations, an automated microscope for 
adaptive imaging must also be able to quickly recover from system-induced image perturbations. 
In order to systematically test the capabilities of our framework to this end, we induced external 
perturbations while recording a 4-hour time-lapse of germ band retraction and dorsal closure in a 
nuclear labeled (His2Av-RFP) Drosophila melanogaster embryo (Supplementary Video 1). 
During this experiment, we manually shifted (at the hardware level) the zero offsets of piezo 
actuators defining detection objective positions and tip/tilt mirrors defining light sheet offsets. 
Importantly, the computational framework is unaware of the execution, timing and magnitude of 
these perturbations since the perturbations were manually induced downstream of the software 
and electronics layers (by adjusting baseline voltages through the respective knobs on the analog 
controllers). 
A complete four-view 3D image data set of the Drosophila embryo (comprising 515×1186×111 
voxels per image stack) was acquired once every 30 seconds. Every 4 minutes a full correction 
cycle for 4 uniformly spaced reference planes was completed. Depending on when perturbations 
occurred relative to the phase of the correction cycle, single planes and views could be corrected 
within as little as 30 seconds. To ensure that the whole system does not drift with respect to the 
sample over time, we locked the position of the first detection objective (D1) and allowed 
corrections only to the other degrees of freedom. We triggered 9 different types of perturbations, 
each involving a subset of the four main degrees of freedom of the microscope: the positions of 
the two detection objectives (D1 and D2) and the offsets of the two light sheets (I1 and I2). 
Supplementary Fig. 10a provides an overview of the 9 perturbations, including the 
corresponding degrees of freedom affected by each perturbation and the amplitude of the 
perturbation. Perturbations #1 to #6 are instantaneous changes of individual degrees of freedom 
(D1, D2, I1, I2) and pairs of degrees of freedom (D1 and D2, I1 and I2). Perturbations #7 and #8 are 
two slow ramps (misaligning the system at a rate of 1 µm/min), involving first I2 and then D1. 
The final perturbation #9 is a strong (8 µm) instantaneous change of I2 and D1 simultaneously 
that brings the system back to the initial baseline configuration prior to perturbation #1. This last 
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perturbation is so strong that it is very unlikely to occur in a ‘normal experiment’ performed with 
the biological specimen alone. However, we included this test as well in order to seriously 
challenge the system and evaluate its robustness under extreme conditions. 
In order to monitor the quality of the image data recorded by the microscope, we compute for 
each acquired volume a volumetric quality metric based on our best performing focus metric 
(DCTS, see Supplementary Methods 2). Supplementary Fig. 10a shows that embryonic 
development leads to a positive longitudinal trend in the volumetric focus quality metric, which 
is due to the increase in nuclei density and the corresponding increase in fine details and high 
frequency textures in the imaging volume over time. More importantly, this visualization also 
shows how each perturbation leads to a temporary dip in the volumetric focus quality metric. 
Supplementary Fig. 10b shows the changes automatically applied by the system to the four 
degrees of freedom at reference plane z3. We intentionally selected reference plane z3 for this 
demonstration because images at this plane are linked to the unconstrained degree of freedom D2 
(which makes the data readout at this location particularly useful for evaluating system 
robustness). Panels (c), (d) and (e) in Supplementary Fig. 10 show how image quality at plane 
z3 is affected by three example perturbations #4, #5 and #9. As shown in panel (a), perturbation 
#4 leads to a very small dip in the volumetric image quality metric, which is further confirmed 
by the almost imperceptible degradation of image quality following the perturbation shown in 
Supplementary Fig. 10c. Perturbation #5 involves both detection objectives and is fully 
compensated at plane z3 within 2 time points (1 minute) and throughout the entire volume within 
10 time points (a period close to the length of the full-system correction cycle (see 
Supplementary Fig. 10a). In contrast, the exceptionally strong perturbation #9 (amplitude: 
8 µm) requires two full correction cycles to be fully corrected throughout the specimen volume. 
As shown in Supplementary Fig. 10a,e and Supplementary Video 1 our system is capable of 
successfully recovering even under extreme conditions, such as when confronted with strong 
external perturbations of its properly focused state. Notably, during this same test experiment the 
system also successfully handled sample-induced perturbations by following and adjusting to the 
development of the live embryo. We conclude that if our system succeeds under these extreme 
conditions it will likely maintain optimal image quality also under the normal, slow and 
progressive drifts occurring in time-lapse imaging of living organisms. 
 
On-demand spatio-temporal focusing 

The expression of fluorescent markers is not necessarily constant in space or time, e.g. when 
imaging fluorescently tagged transcription factors or individually labeled populations of cells 
that move within the developing embryo. Thus, there is not always enough fluorescent signal 
(i.e. information) at a given time ݐ and reference plane ݖ to determine the best system state ܵ௧,௭. 
A spatio-temporal adaptive microscope has to be robust to lack of signal either in time or space. 
Despite the high sensitivity of the DCTS image quality metric (see Supplementary Fig. 4c and 
Supplementary Fig. 6c), focusing in the absence of a sufficient amount of fluorescent signal 
introduces the risk of system oscillations due to noise. To address this challenge, we 
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experimented with two strategies to decide whether a plane is devoid of signal: (i) we set an 
absolute focus value threshold ݂, and (ii) we set an upper-bound for the error of the Gaussian 
fit. If, based on this definition, we find that a reference plane ݖ is empty the new state ܵ

ᇱ 	is set to 

the average ܵ
௧ାଵ ൌ 	 భ

య
ሺܵିଵ

௧	  ܵ
௧  ܵାଵ

௧	 ሻ, where ܵିଵ
	௧  and ܵାଵ

	௧  are the previously determined 

focused states from neighboring planes (if ݇ െ 1 ൏ 0 or ݇  1  ݊ െ 1 then ܵ
௧  is used instead). 

It follows that reference planes that do not provide enough fluorescent signal will follow the 
behavior of their neighboring planes until the local signal becomes strong enough to determine a 
better local optimum. 
 
Drift correction 

A common sample preparation strategy in light-sheet microscopy is based on sample embedding 
in low-density agarose gels. These gels offer excellent imaging quality but they can also 
introduce a tendency of sample drift in long-term imaging sessions. In extreme cases, these drifts 
can jeopardize the recording itself if parts of the specimen move outside of the imaged volume. 
In addition, the position of the planes ݖ	relative to the embryo may change because of these 
drifts, which can in principle affect the quality of the spatio-temporal focusing. To address this 
problem we implemented three-dimensional specimen tracking techniques that maintain the 
specimen stationary within the imaged volume.  
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Part IV | General Optimization Theory for Spatiotemporally Adaptive Imaging 

The basis of the general optimization theory for spatiotemporally adaptive imaging is the 
realization that the inverse problem formulated in the basis of the focus matrix ܯ  can be 
extended so that a single potentially large linear inversion problem can represent all 
observations, linear parameter relationships and constraints pertaining to all degrees of freedom 
for all reference z-planes and all colors. The optimization is performed simultaneously for all 
degrees of freedom, thus reducing the propagation of noise from individual observations. This 
makes it possible to accurately compensate for chromatic aberrations in multi-color imaging and 
to introduce sophisticated parameter anchoring and bridging schemes.  
 
The microscope’s state variables 

In the following we assume – without loss of generality – that spatiotemporally adaptive imaging 
is performed for a multi-view light-sheet microscope comprising two detection arms and two 
illumination arms. The microscope’s state vector now contains the values for all degrees of 
freedom for all reference planes and all color channels: 
 

ܨ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ଵܦ
ଶܦ
ଵܫ
ଶܫ
ଵܻ

ଶܻ
αଵ
αଶ
βଵ
βଶ

…
ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 (Eq. 58) 

 
The degrees of freedom ܦଵ,	ܦଶ,	ܫଵ, ܫଶ are the same variables previously described. The new state 
variables ଵܻ,	 ଶܻ correspond to the translation of light sheets along their respective illumination 
axes, and αଵ,	αଶ, and	βଵ,	βଶ correspond to the two angular degrees of freedom of each light sheet 
(see Fig. 5a). For every color channel and for every plane the state vector ܵ௧ contains entries for 
each of the 10 degrees of freedom. For example, for a two-color, three-plane configuration, the 
state vector ܵ	would be of length 60.  
 
Decoupling state variables 

The fundamental difficulty in adding the angular degrees of freedom αଵ and	αଶ as well as	βଵ 
and	βଶ is their coupling with ܫଵ and ܫଶ and indirectly ܦଵ and	ܦଶ. Indeed, since the rotation axes of 
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the light sheets are not necessarily matched to the geometrical center of a given optical section of 
the specimen, a change of the angular degrees of freedom can also lead to a defocus of the light 
sheets relative to the detection focal planes. A simple calibration scheme can be utilized to 
identify the parameters required to shift the rotation point of a light sheet to a specific point 
within the sample: 
 

′ܫ ൌ ܫ	 െ ݀ tanሺαሻ െ ݀ tanሺβሻ (Eq. 59) 
 

Here, ቀௗಉௗಊቁ is the vector that displaces the light-sheet’s rotation point. Supplementary Fig. 2c 

illustrates how translating the light sheet by െ݀ tanሺθሻ along the z-axis (where θ is either α or 
β) effectively shifts the position of the rotation axis by ݀ along the y-axis. This transformation 
ensures orthogonality of the image quality metric with respect to the positions and angles of the 
light sheets. In the following we assume that for each light sheet the control variables ܫ, α and β 
have been decoupled by such a transformation. The optimization of the variables ܻ,	α and	β is 
largely independent of the main variables ܦ  and ܫ	 . It follows that each of these degrees of 
freedom can be optimized as an independent, one-dimensional optimization problem. For 
simplicity we thus ignore the new, additional variables in the following exposition. A detailed 
explanation of the implementation of α and	β measurements is provided in Part V. 
 
 
Constraint graph 

In a manner reminiscent of factor graphs in Bayesian probability theory, we can represent the 
optimization problem as a constraint graph in which the nodes are state variables (individual 
entries of the state vector	ܵ) and the edges are constraints on these variables. Supplementary 
Fig. 9a provides an example of a constraint graph for a two-color, three-plane configuration with 
a single bridging plane (z1) and the same center of mass for both color channels. In this example, 
there are three types of constraints: defocus constraints (F) that are dependent on defocus 
measurements and can thus vary in time, equality constraints (=) that enforce sample depth 
invariance of the positions of the detection objectives, and center of mass equality constraints (C) 
that ensure that the mid-point between the two detection objectives is the same for all color 
channels. For simplicity we omitted constraints that are required for anchoring the system or 
handling missing or unreliable defocus information. In the following we discuss in detail the 
three constraints shown in Supplementary Fig. 9a as well as other useful constraints. 
 
Defocus constraints 

The most important constraints are defocus constraints that link detection objectives positions 
ሺܦଵ, ,ଵܫଶሻ to light sheet positions ሺܦ  :ଶሻܫ
 

Δܨ௨,௩ ൌ Δܦ௨ െ Δܫ௩ (Eq. 60) 

Nature Biotechnology: doi:10.1038/nbt.3708



 

37 

 
The sign of the difference is chosen so that Δܦ௨	Δܨ௨,௩  0, which allows measuring the defocus 

Δܨ௨,௩ by changing ܦ௨ while keeping ܫ௩ constant. 

 
Equality constraints 

This other very basic constraint arises e.g. when it is necessary for the positions of the detection 
objectives (ܦଵ and	ܦଶ) to be invariant with imaging depth (ݖ): 
 

0 ൌ Δܦ௨௭ െ Δܦ௨௭ᇱ (Eq. 61) 
 
This signifies that any change Δܦ௨௭  to ܦ௨௭  must be accompanied by the same change to	ܦ௨௭ᇱ . 
Assuming that ܦ௨௭ and ܦ௨௭ᇱ are initially equal it follows that ܦ௨௭ and ܦ௨௭ᇱ will remain equal after 
corrections are applied. The differential aspect of these constraints can be removed by replacing 

0 with a correction term obtained by observing the current values of ܦ௨
௧,௭ and ܦ௨

௧,௭ᇱ: 
 

െቀܦ௨
௧,௭ െ ௨ܦ

௧,௭ᇲቁ ൌ Δܦ௨௭ െ Δܦ௨௭ᇱ (Eq. 62) 

 

This ensures that the corrections Δܦ௨௭ and Δܦ௨௭ᇱ are such that ܦ௨
௧ାଵ,௭ ൌ ௨ܦ

௧ାଵ,௭ᇲ, even if this is not 
the case initially. 
 
Center of mass equality constraints 

Detection objectives suffer from chromatic aberrations that cause the working distance to slightly 
vary from one wavelength to another. For example, for the Nikon 16x/0.8 objectives used in 
some of our experiments, the focal plane shifts by about 0.8 μm when imaging GFP vs. RFP. 
Since the SiMView-type multi-view light-sheet microscopy arrangement used in our study 
employs two detection objectives that face each other, different wavelengths require different 
relative distances between the two objectives. Ideally, the center of mass of the two objectives 
should be stationary as it coincides with the focal planes. This constraint can be expressed as 
follows: 
 

0 ൌ Δܦଵ
ఒభ  Δܦଶ

ఒభ െ Δܦଵ
ఒమ െ Δܦଶ

ఒమ (Eq. 63) 
 
Similarly, this differential constraint can be made integral: 
 

െቀܦଵ
ఒభ  ଶܦ

ఒభ െ	ܦଵ
ఒమ െ ଶܦ

ఒమቁ ൌ Δܦଵ
ఒభ  Δܦଶ

ఒభ െ Δܦଵ
ఒమ െ Δܦଶ

ఒమ (Eq. 64) 

 

For simplicity in our notation, we omit ݐ in ܦଵ
ఒభ, ܦଶ

ఒభ, ܦଵ
ఒమ, ܦଶ

ఒమ. 
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Anchoring constraints 

The matrix ܯ  in Supplementary Fig. 9a does not have full rank. There remains one 
unconstrained degree of freedom: the center of mass of the entire system can be translated while 
still maintaining proper instrument alignment. 
To anchor the system and prevent drift over multiple correction rounds, one can constrain the 
center of mass of the detection objectives to remain constant: 
 

0 ൌ Δܦଵ  Δܦଶ (Eq. 65) 
 
Again, in integral form this can be expressed as follows: 
 

െሺܦଵ
	  ଶሻܦ ൌ Δܦଵ  Δܦଶ (Eq. 66) 

 
The corresponding constraint is shown in Supplementary Fig. 9c. 
 
Filling-in missing information with substitution constraints 

We previously discussed those cases in which fluorescent signals may be (sometimes or even 
permanently) low or nonexistent for certain color channels or reference planes in which the 
respective fluorescent markers are not present. In this situation image quality measurements are 
not necessarily reliable. In the interest of system robustness, it is thus preferable to use 
neighboring planes or complementary color channels as proxies. In this way one can e.g. 
substitute missing defocus observations by interpolating neighboring light-sheet positions. This 
can be done in practice by simple averaging, for example: 
 

0 ൌ െ2Δܫ௩
௭ೖ  Δܫ௩

௭ೖషభ  Δܫ௩
௭ೖశభ (Eq. 67) 

 

If this is the only constraint involving Δܫ௩
௭ೖ the value of ܫ௩

௭ೖ will follow the average variation of 
its neighbors, but it will not necessarily be equal to the average value of its neighbors. 
Alternatively, we can use the integral form: 
 

െ൫െ2ܫ௩
௭ೖ  ௩ܫ

௭ೖషభ  ௩ܫ
௭ೖశభ൯ ൌ െ2Δܫ௩

௭ೖ  Δܫ௩
௭ೖషభ  Δܫ௩

௭ೖశభ (Eq. 68) 
 

In this case, the value of ܫ௩
௭ೖ will be the average of ܫ௩

௭ೖషభ and ܫ௩
௭ೖశభafter corrections are applied 

even if this is not the case initially. The corresponding constraint is shown in Supplementary 
Fig. 9c. 
 
From constraint graph to the generalized focus matrix 

Each constraint in the graph is a linear equation involving a subset of entries in ܵ  and the 
corresponding entry in ܨ. It follows that each constraint can be encoded as a row in matrix ܯ. 
Supplementary Fig. 9b shows the matrix ܯ  corresponding to the constraint graph in 
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Supplementary Fig. 9a. The different types of constraints are implicitly grouped together in 
matrix ܯ by means of ordering the entries in ܨ. 
 
Generalized focus matrix 

The generalized focus matrix explicitly relates the vector of defocus observations Δܨ to the state 
vector correction Δܵ: 
 

Δܨ ൌ Δܵܯ (Eq. 69) 
 
In contrast to the basic approach (special optimization theory), the state vector ܵ now contains 
the state information for all colors and planes, and Δܨ  contains defocus measurements and 
correction terms for integral constraints. 
 
Obtaining the optimal correction vector 

Corrections Δܵ of the state vector ܵ are computed by pseudo-inverting the focus matrix ܯ and 
computing Δܵ given Δܨ: 
 

Δܵ ൌ ܨାΔܯ (Eq. 70) 
 
As discussed in Part III this solution corresponds to the least-squares solution (Lଶ norm). This 
means that the vector Δܵ of minimal energy (Lଶ norm) is returned. This is the simplest approach 
to obtaining Δܵ. We formulate two more sophisticated and powerful approaches below. 
 
L1 minimization based solver 

The approach described previously is best if ܯ is of full rank or is over-constrained. If ܯ is not 
of full rank – for example if the system is not anchored – the problem is ill-posed, as there are 
potentially many different solutions Δܵ. In this case it is advantageous to search for the solution 
Δܵ  of minimal Lଵ  length that favors sparse correction vectors Δܵ . Intuitively, this approach 
modifies the least number of degrees of freedom to achieve optimal focus.  
 
Optimal bounded corrections 

Despite all our efforts to limit the propagation of noise from the measurements to the actual 
corrections, it remains necessary in practice to limit the correction amplitude of certain degrees 

of freedom more than others (for example for detection planes ܦ௨
௧,௭ versus light sheet offsets 

௩ܫ
௧,௭ ). Limiting corrections after optimization is not an option because it might lead to an 

improperly aligned system. Our solution to this problem consists of integrating the bounds into a 
more general optimization problem. 
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We solve the following constrained quadratic programming problem: 
 

 argmax	


‖MΔܵ െ Δܨ‖ଶ   

(Eq. 71)  െܮ ൏ Δ ܵ ൏ all	 forܮ ݅  

 െΔܨ ൏ ሺܯΔܵሻ ൏ Δܨ   
 
The ܮ  are the components of the limits vector ܮ  that limit corrections for each degree of 
freedom. The values Δ ܵ are the components of the state correction vector Δܵ, and ሺܯΔܵሻ are 
the components for the vector ܯΔܵ. The first set of inequalities limits the corrections for each 
degree of freedom. The second set ensures that when a constraint from the constraint graph is 
already satisfied, ሺΔܨሻ ൌ 0, it will remain satisfied, ሺܯΔܵሻ ൌ 0. Another way to understand 
the role of these inequalities is as sparsity-inducing inequalities that avoid propagation of 
corrections throughout the constraint graph by favoring local corrections for local problems (but 
not local solutions to global problems).  
 
Robust hybrid solver 

In practice, we use a robust hybrid solver that combines the three solvers described above. While 
the quadratic programming based solver (QP solver) produces the most accurate results, it 
requires a semi-definite matrix ܯ and is thus fragile if exposed to missing information – e.g. 
when focusing fails at certain planes or in certain imaging channels. To mitigate this problem, 
we detect when the QP solver fails and fall back to the L1 solver, which is still able to provide 
bounded results but in a less accurate manner. If the L1 solver itself fails, we finally fall back to 
an L2 solver that cannot fail but offers the lowest quality for state corrections. It should be noted 
that there are additional reasons why the more advanced solvers could fail – for example, the 
optimization routine of the QP solver can also fail internally as a result of numerical instabilities. 
The general philosophy applied here for ensuring robustness without sacrificing quality is to first 
try the advanced, higher-quality but more brittle algorithms and then fall back to simpler, lower-
quality but also more robust algorithms if needed. 
 
Scheduling observations and corrections 

A correction cycle consists of (i) acquiring all defocus measurements Δܨ and (ii) computing the 
correction vector Δܵ  and applying these corrections. Defocus measurements are obtained as 
described in Part III. 
 
Instant local defocus corrections 

In extreme cases, a correction cycle for several color channels and many reference planes can 
take up to a few minutes to complete. In particular, there is a delay between the defocus 
measurements and the application of corrections (the expected delay is half a correction cycle). 
This means that on average 1.5 correction cycles elapse until a system perturbation is corrected. 
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However, we can apply defocus corrections for the light sheets immediately after observing 
them, while keeping the last corrected system state unchanged as a reference for subsequent 
observations and corrections. Thereby, we do not affect the normal global correction cycle but at 
the same time correct defocus locally as quickly as possible. An important point is that these fast 
local corrections can only modify ܫଵ  and ܫଶ  but cannot be allowed to modify the values ܦଵ 
and	ܦଶ. This can be understood from the constraint graph (see for example Supplementary Fig. 
9a), in which the variables for ܫଵ and ܫଶ are ‘leaf nodes’ and can thus be optimized locally as a 
first approximation. 
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Part V | Analysis of Three-Dimensional Light-Sheet Geometry 

In Parts III and IV we discussed adjustments of non-angular degrees of freedoms (ܦ, ,ܫ ܻ) by 
means of sequential line searches. Here, we will explain how the two angular light-sheet degrees 
of freedom ߙ	and	ߚ  can be reliably determined. Line searches are inappropriate for ߙ	and	ߚ 
because changing the light-sheet angles also changes the section of the sample that is 
illuminated. In this scenario, it would then be necessary to compare the quality of images that 
originate from different underlying fluorophore distributions, which results in an ill-posed 
problem. In the following, we will provide details on the image analysis algorithm we developed 
for extracting light-sheet geometry parameters directly from a single focus stack – the same 
stacks used for optimizing ܦ and ܫ. This approach thus avoids changing the light-sheet angles for 
determining the 3D light-sheet geometry, thus overcoming the problem outlined above, and has 
the additional advantage of minimizing the number of images that need to be acquired to 
optimize the system state, thus minimizing the impact on the specimen’s photon budget. 
 
Light-sheet geometry alpha and beta angles 

As explained previously, one key feature of the implementation of our light-sheet microscope for 
spatiotemporally adaptive imaging is the ability to digitally control light-sheet geometry 
(translation along two axes and rotation around two axes) relative to the detection focal planes. 
As shown in Supplementary Fig. 8a there are thus four primary degrees of freedom for each 
light sheet: ሺܫ, ܻ, ,ߙ  ,ሻ. Fig. 5 illustrates in more detail the relationship between the two anglesߚ
the sample and the detection planes. 
 
Why optimize angles alpha and beta? 

Traditionally, the light-sheet angle alpha is adjusted during system alignment of a light sheet 
microscope (if this degree of freedom has been considered in the design of the microscope). 
While adjusting this degree of freedom needs to be done properly, the angle alpha is not 
expected to drift substantially over time nor to be primarily responsible for serious imaging 
artifacts during an experiment. However, for large specimens and/or complex specimen 
geometries (with refractive index distributions that differ from the mounting medium) we can 
expect to encounter aberrations and light refraction that – among other effects – lead to an 
angular mismatch of light-sheet plane and detection focal plane. In contrast to the angle alpha, 
there is usually a much stronger case for adjusting the angle beta in a depth-dependent manner. 
For example, for typical spherical or ellipsoidal samples (such as zebrafish or Drosophila 
embryos), the light-sheet incidence angle relative to the medium-to-sample-interface varies from 
−90 degrees to +90 degrees as we move the imaging plane from one end of the specimen to its 
other end. When entering the sample the light sheet is thus refracted by an amount that depends 
on the position of the image plane (see illustration on Fig. 5f). Because of this differential path 
deflection of the light-sheet plane different image planes in the sample require different angular 
focus adjustments to restore optimal image quality. This consideration shows that, in practice, 
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there is no substitute for an angular adjustment since no focus translation adjustment can fully 
correct for the inevitable refraction of the light sheet. 
 
Angle analysis algorithm 

Fig. 5d illustrates our algorithm used to determine light-sheet parameters ሺݖ, ,ߙ  ሻ, which includeߚ
the two light-sheet angles as well as the offset position z of best focus quality (thus fully defining 
the 3D geometry of the light-sheet plane). The value z considered here corresponds to the 
position of the light sheet relative to the current position of the detection focal plane (unlike I, 
which describes the absolute position of the light sheet). The input to the algorithm is the 
standard focus stack ܵ acquired for refocusing purposes. This stack consists of several images ܵ 
(9 or 11 images in practice). The first step is then to crop the images and divide the cropped stack 

into sub-stacks ܵ,. For each sub-stack ܵ,	we compute the DCTS of each image ܵܶܥܦ൫ܵ,,൯ 

and determine the optimal focus depth ݖ, for each sub-stack ሺ݅, ݆ሻ individually. For some sub-

stacks it may not be possible to determine reliable focus information because of statistically non-
significant fitting (e.g. as a result of lack of signal or poor image quality in a remote location of 
the stack with exceptionally long illumination and detection path lengths) – the corresponding 
data points are discarded. We also perform additional filtering of data points to remove outliers 
both in terms of their geometric isolation and in terms of their maximal DCTS value per sub-

stack. The next step is to use the data points collected ൫ݔ,, ,,ݕ  ,൯ to find the most likely planeݖ

passing through these points. This plane corresponds to the light-sheet plane itself and can in 
principle be found by applying a simple least square regression. However, since outliers can still 
remain among the data points even after careful filtering, we instead use a robust linear fit 
estimator capable of distinguishing inliers from outliers. The final result is a 2D plane fit of the 
form: 
 

ݖ ൌ ݔܽ  ݕܾ  ܿ (Eq. 72) 
 
We can then extract the two angles as follows: 
 

ߙ ൌ atanሺܾሻ (Eq. 73) 

ߚ ൌ atanሺܽሻ (Eq. 74) 
 
Robust light-sheet plane fitting 

Robust model estimation is a very well-studied problem in computer vision. We recommend in 
particular the review by Stewart26 for a wider exposition discussing available approaches to this 
end. In the following we will outline two approaches to robust estimation based on ideas from 
statistical hypothesis testing. The key feature of these approaches is that they are parameter-less, 
i.e. no parameter needs to be adjusted based on a noise or outlier model. This is an essential 
feature for any algorithm utilized for the decision-making process in a microscopy framework 
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for automated and robust adaptive imaging – once an experiment has started it is unlikely that the 
user will have time and sufficient information to further adjust parameters. 
 
Theory of robust model estimation 

The problem can be formulated as follows. We start with a set of n vectors ܺ which constitute 
our data points: 
 

ܲ ൌ ሼ ܺ|݅ ∈ ሾ0, ݊ሿሽ (Eq. 75) 
 
In addition, we have a function ݂:	 ܵ	

											
ሱۛ ሮۛ 	Թା  that defines the loss function of a model. For 

example if the model is a least-squares linear fit, the function ݂ applied on a subset ܵ of data 
points would return the sum of square deviations of the data points in ܵ to the best least-squares 
fit. Searching for the subset ܵ	that minimizes ݂ would not give any meaningful result: in the case 
of a 1D linear fit all pairs of points lead to a sum of square deviations of zero. Instead, we 
reformulate the problem from a statistical point of view: assuming that outliers follow a normal 
distribution, and given a subset ܵ, what is the p-value for observing the value ݂ሺܵሻ? In other 
words, what is the probability of observing a value of ݂ equally or more extreme than	݂ሺܵሻ? 
Computing these p-values can be done empirically, which can lead to very accurate estimates 
when appropriate randomization schemes are applied. However, the disadvantage of empirical 
methods is that they require expensive sampling that can negatively affect performance. Instead 
we rely on the fact that the sum of squared deviations for ݇ points of dimension ݀ follows the 

well-characterized Chi-squared distribution Ξିௗ
ଶ , where ݇ െ ݀  are the number of degrees of 

freedom of the distribution. The above assumes that the data points ܺ have been normalized so 
that their mean is 0 and their standard deviation is 1. For example, if we consider our original 
problem of fitting a 2D plane through ݇ points, then ݀ ൌ 3 since the points are embedded in Թଷ. 
For ݇ ൏ 3	the fit is undefined; for ݇ ൌ 3 there is exactly one fit and the distribution of sum of 
squared deviation is singular (Dirac at zero); for ݇ ൌ 4 we have one degree of freedom – the 
fourth point introduces one degree of freedom which corresponds to distribution ଵܺ

ଶ. We can 
compute the p-value with the following integral: 
 

௩ሺܵሻ ൌ න Ξିௗ
ଶ ሺߞሻ݀ߞ

ஶ

ሺௌሻ
 (Eq. 76) 

 
From this p-value we can compute the quantity ሺܵሻ ൌ 1 െ  ௩ሺܵሻ which we re-interpret as the
probability that the fit is not due to chance alone. In the following we will use this quantity as a 
score for comparing different inlier candidates ܵ  for model ݂ . The original problem can be 
formulated as the search for the inlier set ܫ that maximizes ሺܵሻ: 
 

ܫ ൌ argmax
ௌ

 ሺܵሻ (Eq. 77)
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Because there are exponentially many subsets, we need to use a heuristic sampling approach 
followed by move-based local refinements. First we initialize our seed set as ܵ ൌ ሼ ܺሽ with a 
single randomly chosen point. We then add points iteratively to ܵ: we pick a point in ܵ and add 
its closest neighboring point in ܲ. We repeat this until a minimal number of points ݉ have been 
added to ܵ . This heuristic favors the creation of seed sets that are clustered in space. The 
intuition behind this heuristic is that spatially clustered points are more likely to belong to the 
inlier set than a random subset. Next we refine this set by checking if single points can be added 
or removed to increase the value of ሺܵሻ. This local search leads to a local minimum and thus a 
candidate set ܵ . We repeat this procedure ݍ  times to obtain a collection of candidate sets 
ሼܵ|݇ ∈ ሾ1,  :ሿሽ. The final inlier set is found asݍ
 

ܫ ൌ argmax
ௌೖ

ሼሺܵሻ|݇ ∈ ሾ1,  ሿሽ (Eq. 78)ݍ

 
Multiple model fits can be found by repeatedly subtracting the inlier sets ܲ ∖  and applying the ܫ
above procedure until no further inliers sets are found above a certain probability threshold. 
 
Ensemble estimation for plane fitting 

An alternative approach is used if initial filtering is sufficiently accurate that we can assume that 
the data points are mostly inliers. In this case we can use a Thiel-Sen type estimator to fit a 2D 
plane through the data points in Թଷ. We repeatedly pick 6 points randomly from the set ܵ, fit a 
plane using least squares, and determine the median plane – obtained by computing the median 
parameters for all fitted planes. This rather simple approach is surprisingly competitive both in 
terms of speed and robustness.  
 
Angle analysis benchmark 

To validate our algorithm for computing the light sheet angles alpha and beta, we collected a 
benchmark dataset of focus stacks acquired at two depths in the embryo (50 µm relative to the 
surface facing detection arm 1 as well as 50 µm relative to the surface facing detection arm 2). 
For each depth several focus stacks were acquired while varying the angles alpha and beta: 
,ߙ ߚ ∈ ሼെ2,െ1,െ0.5, െ0.25, 0.25, 0.5, 1, 2ሽ . The angles were changed manually using the 
microscope control software. The sample used for collecting these stacks was a nuclear labeled 
D. melanogaster embryo. As shown in Supplementary Fig. 11a, the imposed and measured 
alpha angles are correlated and the average errors are below a quarter of a degree (0.14º for α and 
0.21º for β). Importantly, the linear fit is the same for the two planes indicating that there is no 
depth-dependent alpha deflection of the light sheet. This result is in good agreement with the 
expected behavior for a specimen with mirror-symmetrical shape along the axis defined by an 
alpha angle of 0. In contrast, Supplementary Fig. 11b shows that for two diametrically opposed 
planes within the embryo and an imposed beta angle of 0, measured beta angles exhibit identical 
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amplitudes but opposite signs for these two planes. Moreover, we observe the same linear 
relationship between imposed and observed angles for the beta degree of freedom. Overall, these 
results validate our algorithm for determining the effective 3D light sheet orientation within the 
sample and confirm that the sample itself influences the beta angle in good qualitative agreement 
with expectations arising from specimen geometry. 
 
Galvanometer scanner calibration 

We use two pairs of two-axis galvanometer scanners per illumination arm to control the 3D 
propagation of each light sheet in space (providing digital access to degrees of freedom A, B and 
I; the fourth degree of freedom, Y, is controlled by the piezo positioners the illumination 
objectives are mounted on). In the absence of prior calibration the imposed and measured angles 
are not necessarily identical but can be related by an affine transformation (see note on 
Supplementary Fig. 11a). An automated procedure can be devised to use the observed angle 
deflections and adjust the calibration parameters. 
 
Measuring angular deflection in an embryo 

We measured the ߙ  and ߚ  angular deflections caused by the optical properties of a D. 
melanogaster embryo surrounded by water. The results presented in Supplementary Fig. 17 
show that while the ߙ-deflection is almost constant for each combination of light sheet and 
camera (with good agreement of results obtained by the two cameras for the same light sheet), 
the ߚ-deflection follows a considerably more complex pattern. On the one hand, as illustrated in 
Fig. 5, refraction of the light-sheet is the dominant effect necessitating compensatory ߚ -
deflections where the light-sheet incidence angle relative to the surface of the embryo is large. 
On the other hand, detection focal planes become increasingly curved with increasing depth of 
image planes inside the embryo. For intermediate depths (measured relative to the detection 
arm), both effects are relatively weak, which results in the smallest combined deflection 
observed across the embryo. In the following, we provide a simple ray optics model that 
quantifies these phenomena and yields theoretical estimates of optimal adaptive imaging settings 
that are in good agreement with experimental measurements. 
 
Ray optics model for interpreting experimentally observed ࢼ-deflections 

The depth-dependency of the ߚ-deflection observed in Supplementary Fig. 17 and illustrated in 
Fig. 5 can be modeled as the sum of two contributing effects. In the following we assume for 
simplicity a cylindrical geometry of the sample (using parameters x, z and ߠ  as defined in 
Supplementary Fig. 18a), which serves as a first-order approximation of the shape of the 
Drosophila embryo imaged in this experiment. 
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First, we need to consider refraction of the incident light sheet, which introduces an angular 
deviation of ߚ with respect to the original beam path (Supplementary Fig. 18a) that can be 
modeled using Snell’s law: 
 

ሻݖሺߚ ൌ sinିଵ
ݖߢ
ݎ
െ sinିଵ

ݖ
ݎ

 (Eq. 79) 

 
ݖ ∈ ሾെݎ, ݎሿ is the offset position of the incident light sheet along the detection axis (with ݖ = 0 
corresponding to the center of the embryo, ݖ	= r corresponding to the front surface of the 
embryo relative to the detection arm and ݖ = −r corresponding to the back surface of the embryo 

relative to the detection arm), ݎ is the radius of the cylinder, and ߢ ൌ 


 is the ratio of refractive 

indices of mounting matrix (݊ ) and sample (݊ ). Considering the geometry and optical 
properties of Drosophila embryos, let us then assume a radius ݎ ൌ 100	μm, a refractive index of 
݊ ൌ 1.339 for the mounting matrix27 (1% agarose) and a refractive index of ݊ ൌ 1.35 for the 
sample itself (using the typical refractive index of cytosol as an approximation28). We thus obtain 

a ratio ߢ ൌ ଵ.ଷଷଽ

ଵ.ଷହ
, which results in the following deflection curve ߚሺݖሻ: 

 

 
 
Second, we need to consider the bending of the detection focal plane deep inside the embryo 
(Supplementary Fig. 18b), which is also an effect that arises from the small difference between 
݊ and ݊. The geometrical length of the optical detection path, i.e. the distance between the 
plane defined by the objective’s front aperture and a point located on the detection focal plane, 
depends on the lateral offset x of the point relative to the center of the embryo, resulting in a 
curvature of the detection focal plane. 
Let us assume that the detection focal plane is positioned at ݖ ൌ  , using the mounting matrixݖ

surrounding the embryo as a reference location (Supplementary Fig. 18b). The optical path 
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length is invariant, i.e. it is identical for focus locations inside the embryo (0  ݔ   and focus (ݎ
locations outside the embryo (ݎ ൏  :(ݔ
 

݊൫ݎ െ ൯ݖ ൌ 	݊ ቀݎ െ ඥݎଶ െ ଶቁݔ  ݊ ቀඥݎଶ െ ଶݔ െ  ቁ (Eq. 80)′ݖ

 
It follows that: 
 

,ݔሺ′ݖ ሻݖ ൌ ݖߢ  ሺ1 െ ଶݎሻඥߢ െ  ଶ (Eq. 81)ݔ

 
The partial derivative of ݖᇱሺݔ,  :is ݔ ሻ alongݖ

 
′ݖ߲
ݔ߲

ൌ ሺߢ െ 1ሻ
ݔ

ଶݎ√ െ ଶݔ
 (Eq. 82) 

 
Note that ݖᇱ ൌ ݖ  at the coordinate where the focal plane intersects with the surface of the 

specimen (ݔଶ ൌ ଶݎ െ  ଶ). In this particular location the partial derivative has the followingݖ

value: 
 

′ݖ߲
ݔ߲
ቤ
௫మୀమି௭మ

ൌ ሺߢ െ 1ሻඨ
ଶݎ

ଶݖ
െ 1 (Eq. 83) 

 
Eq. 83 provides the slope of the tangent to the curved focal plane at the interface between sample 
and surrounding medium. The slope of the curved focal plane reaches its maximum at this point. 
This value thus represents an upper bound for the apparent deflection angle ߚௗ caused by the 
bending of the detection focal plane: 
 

ௗߚ ൏ tanିଵ ቌሺߢ െ 1ሻඨ
ଶݎ

ଶݖ
െ 1ቍ (Eq. 84) 
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Assuming the same refractive index ratio ߢ and same radius ݎ as above, we obtain: 
 

 
In practice, it is unlikely that this steep slope can manifest itself as an experimental observable, 
considering that it occurs in a theoretically infinitely small region within the sample. Instead, we 
can derive an experimentally more relevant prediction if we consider that each light sheet can 
only illuminate approximately half of the embryo21 and that high-resolution imaging is limited to 
approximately the first 1/8th of the embryo’s cross-section as a result of light scattering and 
absorption29. To this end, we can determine the slope of the line connecting the intersection point 

ଵܲ between the detection focal plane and the embryo’s surface (on the side of the embryo facing 
the light sheet) and the point ଶܲ on the detection focal plane located at an ݔ-depth corresponding 
to 1/8th of the ݔ-length of the embryo’s cross-section. The vectors pointing to these points ଵܲ and 

ଶܲ are as follows: 
 

ଵሬሬሬԦ ൌ ቌටݎ
ଶ െ ଶݖ

ݖ
ቍ (Eq. 85) 

 

ଶሬሬሬሬԦ ൌ

ۉ

ۈ
ۇ

3
4
ටݎଶ െ ଶݖ

ݖߢ  ሺ1 െ ሻඨߢ
7
16

ଶݎ 
9
16

ଶݖ
ی

ۋ
ۊ

 (Eq. 86) 

 
  

Nature Biotechnology: doi:10.1038/nbt.3708



 

50 

We can thus compute the slope of the line connecting these two points as an approximation of 
the angle ߚௗ: 
 

ௗߚ ≃ 	 tanିଵ

ۉ

ۈ
ۇ
ሺߢ െ 1ሻ

ቆ4ݖ െ ට7ݎଶ  ݖ9
ଶቇ

ඥݎଶ െ ଶݖ

ی

ۋ
ۊ

 (Eq. 87) 

 
Note that this formula is only valid for positive values of ݖ . Due to the mirror symmetry 

underlying the imaging arrangement, the sign of ߚௗ in Eq. 87 needs to be reversed for negative 
values of ݖ. 

Assuming again the same refractive index ratio ߢ and same radius ݎ as above, this yields the 
following spatial dependency of ߚௗ: 
 

 
 
If we combine the ߚ-deflection resulting from refraction in the illumination path with the ߚ-
deflection resulting from the lensing effect in the detection path, we obtain the following 
analytical result (assuming that ݖ ൌ ݖ ൌ  :(ݖ

 
ሻݖሺߚ ≃ ߚ	  ௗߚ

≃ sinିଵ
ݖߢ
ݎ
െ sinିଵ

ݖ
ݎ

 ሺsgn ሻݖ tanିଵ

ۉ

ۈ
ۇ
ሺߢ െ 1ሻ

ቆ4ݖ െ ට7ݎଶ  ݖ9
ଶቇ

ඥݎଶ െ ଶݖ

ی

ۋ
ۊ

 

(Eq. 88) 
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For ߢ ൌ ଵ.ଷଷଽ

ଵ.ଷହ
, this yields the following quantitative result: 

 

 
 
Note that the minimal absolute deflection is ߚ,௦ ൌ 0.82 . The minimal deflection angle 

represents a parameter that is straight-forward to measure experimentally and thus lends itself 
well to a comparison of theoretical model and experimental results. As shown in Supplementary 
Fig. 18, the predicted value of ߚ,௦ ൌ 0.82 is reasonably close to the minimal apparent 

deflection of roughly ߚ,௦ ≃ 0.5 observed in the experimental data. 

To conclude this section, let us consider two additional scenarios, in which the ratio of refractive 
indices of mounting matrix (݊) and sample (݊) is higher or lower, respectively, than the ratio 
considered in the data-driven example provided above. 

For ߢ ൌ ଵ.ଷଷଽ

ଵ.ଷ
, the theoretical spatial dependency of ߚ is as follows: 
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The minimal absolute deflection ߚ,௦ in this scenario is larger than 1.5 and thus substantially 

larger than the minimal ߚ-deflection observed in our experimental data. 

If we instead assume a value of ߢ ൌ ଵ.ଷଷଽ

ଵ.ଷସ
, we obtain: 

 

 
 
In this case, the minimal absolute deflection ߚ,௦ is smaller than 0.1 and thus substantially 

smaller than the deflection observed experimentally. The initial estimate of ߢ ൌ ଵ.ଷଷଽ

ଵ.ଷହ
 suggested 

by literature27, 28 thus leads to the best agreement between experiment and theoretical prediction 
of the minimal ߚ-deflection angle. Finally, we note that the relatively simple model described 
here, which approximates optical effects using ray optics (considering only the chief ray and 
assuming a cylindrical shape of the embryo) and assumes a uniform refractive index throughout 
the specimen, is already sufficient to explain the main features observed in the shape of the 
experimentally measured ߚሺݖሻ function. Independently of the value assigned to ߢ, the theoretical 
model is in good qualitative agreement with experimental data with respect to the sign of the 
second derivative and point symmetry of ߚሺݖሻ. 
 
Potential of AutoPilot measurements in informing geometrical corrections of image space 

Without the corrections applied by the AutoPilot framework, the geometry of image space is 
distorted owing to the specimen lensing effect and light-sheet refraction at the surface of the 
specimen, as discussed above; moreover, image quality is reduced owing to the loss of co-
planarity of light-sheet and detection planes. The AutoPilot framework addresses the second 
phenomenon by recovering co-planarity; the geometry of the image space remains slightly 
distorted. While we account for possible geometrical distortions to some extent in our multi-view 
fusion pipeline (by aligning and fusing multiple views such that data continuity between views is 
optimized within the constraints of an affine model), each specimen view itself suffers from a 
slight non-linear geometric distortion. The measurements performed by the AutoPilot framework 
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offer valuable information about these distortions. This knowledge could in theory be used to 
“straighten” the image stacks. 
We should note that distortions of the geometry of image space are on average on the order of 
0.4-1.0 µm across the specimens studied in this work and are thus likely smaller than the natural 
variance of the locations of biological structures across individuals. For most quantitative 
applications, these residual distortions are thus likely not of significant practical importance. 
However, if very precise geometrical measurements in living samples are required – for example 
when imaging and spatially registering very large (yet sufficiently transparent) samples such as  
chemically cleared mouse brains – a post-processing step that attempts to recover the true 
geometry of the sample as precisely as possible may be helpful.   

Nature Biotechnology: doi:10.1038/nbt.3708



 

54 

Part VI | Quantifying Improvements in Spatial Resolution and Image Quality  

In this section we will provide an overview of the methods used to quantify the improvements in 
image quality and spatial resolution achieved by spatiotemporally adaptive imaging. In the 
absence of fluorescent beads or other fiducials that serve as point sources, quantifying resolution 
is an ill-posed problem because both the local point spread function (PSF) and the true biological 
structure underlying the image are unknown. Introducing fluorescent beads into the sample – or 
for that matter any other structure of known size – reduces the indeterminacy and thus permits 
estimating the PSF. Unfortunately, it is usually not possible to introduce and distribute such 
fiducials systematically throughout the living specimen without affecting sample health, 
particular in long-term live imaging experiments. However, we do not need to measure absolute 
resolution in order to arrive at an estimate of the relative improvements achieved by 
spatiotemporally adaptive imaging; instead, we will focus on a strategy that allows us to compare 
two images of the same biological structure that were acquired in different microscope states, 
and quantify the relative improvement in spatial resolution in one image vs. the other. In general, 
such comparative estimates are necessarily lower bounds. When comparing two images of 
structures that exhibit only a restricted range of spatial frequencies, the potential resolution 
improvement made possible by spatiotemporally adaptive imaging cannot be fully observed and 
quantified. For example, fluorescently labeled cell nuclei are not sub-resolution-sized objects and 
their boundaries are not infinitely sharp. Yet, despite the fact that the estimates obtained with the 
methods described below represent lower bounds, we will see that the results suggest substantial 
improvements in spatial resolution by a factor of typically at least 2-5 in Drosophila and 
zebrafish embryos imaged with spatiotemporally adaptive microscopy. Finally, we discuss a 
strategy for measuring improvements in signal strength in adaptively corrected images. 
 
Estimating a lower bound for the ratio of OTF support radii 

Let us assume that we have two registered images ܫ  and ܫ′ of the same biological structure, 
which were acquired with an adaptively corrected system and an uncorrected system, 
respectively. We can then comparatively analyze the Fourier spectra of these images in order to 
quantify differences in quality/resolution between the two images. Although we do not have 
experimental access to the optical transfer function (OTF) of the microscope in vivo without 
imaging fluorescent beads in situ, we can obtain a lower-bound estimate for the ratio of support 
radii of the OTFs by determining and comparing the effective cut-off frequencies characterizing 
the frequency content of each image, as described below. 
First we compute the Fourier power spectra of both images, ࣠ଶሺܫሻ  and ࣠ଶሺܫᇱሻ . Next, we 
compute the background power ࣜሺܫሻ, which is the base level of the power spectrum outside of 
the diffraction-limited band-pass of the microscope. This base level is often non-zero because 
microscopic images usually exhibit some level of noise. 
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ࣜሺܫሻ can be determined by computing the median value of the power spectrum outside the band 
pass of the microscope: 
 

ࣜሺܫሻ ൌ 	݉݁݀൛࣠ଶሺܫሻ௫,௬หݔଶ  ଶݕ   ଶൟ (Eq. 89)ߩ
 
In Eq. 89, ߩ is the cut-off frequency corresponding to the diffraction-limited resolution of the 
microscope. We then compute the radial projections ࣬ሺܫሻ  and ࣬ሺܫ′ሻ of the two-dimensional 
Fourier power spectra after removing the background power ࣜሺܫሻ: 
 

࣬ሺܫሻሺݎሻ ൌ 	න ሺ࣠ଶሺܫሻ െ ࣜሺܫሻሻሺ ୡ୭ୱఏ, ୱ୧୬ఏሻ

ଶగ



 (Eq. 90) ߠ݀

 
We define the cut-off radius as the radius at which the background-corrected, radially-projected 
power spectrum falls below a threshold corresponding to a fraction ߙ of the maximum function 
value: 
 

ࣝఈሺܫሻ ൌ 	max ቄݎቚ࣬ሺܫሻሺݎሻ  ቀߙ max

ሼ࣬ሺܫሻሺݎሻሽቁቅ (Eq. 91) 

 
We used a value of ߙ ൌ 0.01 for the quantifications presented in this study. In the next step, we 
can now determine the ratio of the cut-off radii ࣝఈሺܫሻ ࣝఈሺܫ′ሻ⁄  for our images ܫ and ܫ′. Assuming 
that ܫ  is the ‘better’ image obtained with the adaptively corrected system and that ܫ′  is the 
‘worse’ image obtained with the uncorrected system, we typically expect to find: 
 

ࣝఈሺܫሻ
ࣝఈሺܫ′ሻ

 1 (Eq. 92) 

 
The ratio defined in Eq. 92 is a lower-bound estimate of the ratio of OTF support radii for the 
adaptively corrected (image ܫ) and uncorrected (image ܫ′) systems. It should be noted that this 
lower-bound estimate is fairly conservative because it considers the image as a whole, including 
regions of the image that may only contain low-frequency structures and that are not relevant for 
estimating resolution limits. An estimate that better reflects the full improvement in spatial 
resolution would require manual selection of fine (i.e. high-frequency) structures in the image 
data and comparatively analyze only these sub-regions of the original images ܫ  and ܫ′. This 
approach is explained in more detail in the next section. 
 
Estimating a lower bound for the ratio of PSF sizes using the boundaries of cell nuclei 

Complementing the analysis described above, we sought to obtain more accurate estimates of the 
resolution improvement in images of heterogeneous biological structures obtained with adaptive 
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imaging. The results of this analysis are provided in Supplementary Figs. 14 and 15 for both 
Drosophila and zebrafish embryonic development. 
As discussed above, one would ideally want to use point sources to estimate resolution. In a 
biological context, this would require delivering fluorescent beads or other types of nanoparticles 
to the specimen using a technique that ensures systematic and uniform coverage of the specimen. 
This is usually not possible or advisable in long-term imaging experiments with living 
specimens, such as developing embryos. As an alternative strategy, however, we can avoid the 
introduction of such artificial fiducials and instead solve this problem computationally, by taking 
advantage of biological structures with high spatial frequencies, such as edges, in our fluorescent 
images. For example, the boundaries of fluorescently labeled cell nuclei are often sharply 
delimited and yield sharp edges in the image data. Intuitively, given two images ܫ and ܫ′ of the 
same sample region acquired with adaptively corrected and uncorrected systems, respectively, 
we can estimate a lower bound for the improvement in resolution by comparing the sharpness of 
these edges between the two images. Here, we quantify this improvement by computing the ratio 
of the two slopes at the inflection point of the edge measured along an intensity profile traversing 
the nucleus boundary (see examples in Supplementary Figs. 14 and 15). In the next section, we 
show that the ratio of these slopes is in fact equal to the inverse size ratio of point spread 
functions (PSFs) that would have been obtained by imaging point sources in the same specimen 
location. 
 
Estimating the ratio of PSF sizes using edge responses 

First, let us consider a 1D object consisting of a single Heaviside step function at ݔ ൌ 0. We 
represent this object with the function ݂: 
 

݂ሺݔሻ ൌ ሻݔሺܪ ൌ ቄ0 ݔ ൏ 0
1 ݔ  0

 (Eq. 93) 

 
Now let us consider normalized Gaussian blurring kernels of the form: 
 

݃ఙሺݔሻ ൌ
1

ߨ2√ߪ
݁ି

௫మ

ଶఙమ (Eq. 94) 

 
For simplicity we can think of these ݃ఙሺݔሻ	as our approximate 1D point spread functions. 
Imaging the object function ݂ leads to an image function ܫ obtained by convolving ݃ఙ with ݂: 
 

ሻݔሺܫ ൌ ሺ݃ఙ ∗ ݂ሻሺݔሻ (Eq. 95) 
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Let us now consider the slope of the image at position ݔ ൌ 0. The derivative of a convolution 
can be computed in two different ways: 
 

ܫ݀
ݔ݀

ൌ 	
݀݃ఙ
ݔ݀

∗ ݂ ൌ ݃ఙ ∗
݂݀
ݔ݀

 (Eq. 96) 

 
The derivative of the step function is simply Dirac’s delta function: 
 

݂݀
ݔ݀

ൌ  (Eq. 97) ߜ

 
Since the convolution with Dirac’s delta function is an identity operator on distributions 
(Schwartz distributions), we obtain: 
 

ܫ݀
ݔ݀

ൌ ݃ఙ ∗
݂݀
ݔ݀

ൌ ݃ఙ (Eq. 98) 

 
The slope of ܫ at ݔ ൌ 0 is therefore: 
 

ܫ݀
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 (Eq. 99) 

 
If we now consider two images, ܫ and ܫ′, which were created with two different values of sigma, 
ݔ the ratio of their slopes at the edge ,′ߪ and ߪ ൌ 0 is: 
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 (Eq. 100) 

 
Resolution estimates are often quantified as the FWHM of the PSF, which is proportional to 
sigma: 
 

ܯܹܪܨ ൌ 2√2 ln ߪ2 (Eq. 101) 
 
In conclusion, the ratio of FWHM PSF sizes typically computed by comparing point responses in 
the respective image data can hereby be estimated using edge responses instead. 
 
 
 
 

Nature Biotechnology: doi:10.1038/nbt.3708



 

58 

In fact, assuming identical imaging conditions, the slope ratio at an edge is equal to the inverse 
FWHM PSF size ratio associated with a point object: 
 

ܫ݀
ݔ݀ ሺ0ሻ

′ܫ݀
ݔ݀ ሺ0ሻ

ൌ
′ܯܹܪܨ
ܯܹܪܨ

 (Eq. 102) 

 
At a more abstract level, we can view this approach as a differential version of the point source 
approach for estimating and comparing image resolution.  
For additional robustness, one can take the maximum local slopes in ܫ  and ܫ′  in order to 
compensate for imperfect registration and, thus, translation of the images with respect to each 
other. As explained above, these ratios are lower bound estimates since cell boundaries and other 
biological edge-like structures are not necessarily infinitely sharp. In practice, the true ratios (and 
thus the true improvements in resolution) are slightly higher than those estimated with the 
conservative strategy outlined here. 
Finally, since the images suffer from shot noise and we would like to prevent this noise from 
adversely affecting the estimation of the profile derivatives, we filter the intensity profiles with a 
1D smoothing kernel [0.25, 0.5, 0.25]. This data treatment reduces sensor noise at a spatial scale 
below the effective PSF support diameter (which we estimate to be 3 pixels for the particular 
optical configuration used). Since the support of this smoothing kernel is the same as the PSF 
support, the smoothing operation only marginally affects the estimation of resolution 
improvements. Moreover, any possible bias arising from smoothing would manifest itself as an 
under-estimation of the resolution improvement and thus maintain the conservative character of 
our quantification. 
 
Comparing signal strength 

Using the same line profiles as those utilized for the computations described in the previous 
section (Supplementary Figs. 14 and 15), we can also measure signal strength in both 
adaptively corrected and uncorrected images and compute the corresponding signal strength 
ratios. Given two profiles (i.e. 1D images) ܫ and ܫ′, we compute the signal strength ratio (SSR) 
for signal amplitudes in corrected versus uncorrected images as follows: 
 

ܴܵܵ ൌ
ሺmax ሻܫ െ ܾ
ሺmax ሻ′ܫ െ ܾ

 (Eq. 103) 

 
In Eq. 103, ܾ ൌ minሺmin ܫ ,min  ሻ represents an estimate of the background level. Using the′ܫ
Drosophila data set shown in Supplementary Fig. 14 we obtain an average SSR of 1.57, a 
median SSR of 1.50, and a maximum SSR of 2.03. Similarly, for the zebrafish data set shown in 
Supplementary Fig. 15 we obtain an average SSR of 2.06, a median SSR of 1.50, and a 
maximum SSR of 4.78. 
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Reconstruction of uncorrected image data from AutoPilot logs 

In addition to the primary volumetric time-lapse image data, we typically also store “AutoPilot 
logs” in our experiments, which contain all images acquired during microscope system 
optimization. These images (and specifically the defocus image sequences) can be used to 
reconstruct an uncorrected version of the time-lapse image data at the location of each reference 
plane: since we save the parameters of the initial system state, all subsequent microscope state 
corrections and the defocus image sequences (i.e. the images recorded for a set of finely-sampled 
offsets between light sheets and detection focal planes), we can automatically retrieve the image 
from each of these sequences that corresponds to the respective non-optimized microscope state. 
We note that this procedure usually overestimates the quality of the uncorrected image data in 
late stages of a time-lapse experiment, since the magnitude of state corrections relative to the 
initial microscope state at time point zero will eventually exceed the local parameter search 
radius of the defocus stacks (typically 4 μm) in many specimen regions. The advantage of 
reconstructing uncorrected image data from AutoPilot logs is that an artificial reduction of 
temporal resolution of the imaging experiment is avoided. This represent a contrast to the 
alternative strategy of using an interleaved imaging protocol, for which time points with odd and 
even indices are acquired with and without AutoPilot corrections, respectively (see e.g. 
Supplementary Videos 6, 7 and 9).  
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Supplementary Figures 

Supplementary Figure 1 |  Light-sheet microscope design for spatiotemporally adaptive 
imaging 

Computer model of the multi-view microscope for spatiotemporally adaptive imaging. The 
microscope consists of two illumination arms for light-sheet illumination and two detection arms 
for wide-field fluorescence detection. These four arms follow an orthogonal SiMView-type 
arrangement and meet at the sample chamber located in the center of the microscope. Those 
components that are used to control certain types of degrees of freedom (DOFs) relevant for the 
adaptive imaging framework are shown in a color code that identifies the respective DOFs. Each 
illumination arm is equipped with galvanometer scanners for light-sheet formation, positioning 
and pivoting (DOFs: light-sheet offsets I1 and I2, light-sheet angles α1, α2, β1 and β2) shown in 
green and blue. Both illumination objectives are mounted on piezo positioners shown in red 
(DOFs: light-sheet axial positions Y1 and Y2) and both detection objectives are mounted on piezo 
positioners shown in yellow (DOFs: detection focal plane positions D1 and D2). Together, these 
ten digitally accessible DOFs enable full, automated control of three-dimensional positions and 
angular orientations of light-sheets and three-dimensional positions of detection focal planes in 
sample space. The microscope and the exposed DOFs are controlled by an automated software 
layer for spatiotemporally adaptive imaging, which monitors and constantly optimizes image 
quality in space and time. 

We note that the galvanometer scanners for light-sheet positioning and scanning (LG1, LG2) 
were temporarily replaced by PI S-334 piezo tip/tilt mirrors for the perturbation experiment 
shown in Supplementary Video 1. The latter components offer the same functionality as the 
galvanometer scanners but provide additional analog offset inputs that simplify the introduction 
of “hidden” system perturbations such as those utilized in our perturbation experiment. In the 
absence of this particular requirement, however, we recommend the use of galvanometer 
scanners because of their better temperature stability and faster line repetition rates. 
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Supplementary Figure 2 | Digital control of three-dimensional light-sheet orientation 

Illustration of the optical design of the microscope sub-system responsible for controlling light-
sheet angle β in each illumination arm (only one arm is shown for simplicity). Please see 
Supplementary Methods 1 for a detailed discussion and the mathematical description of this 
degree of freedom. 

(a) Optical configuration: the pivot galvanometer scanner is positioned between two relay lenses, 
at a distance of one focal length to each lens, such that the combined system introduces a parallel 
displacement of the laser beam relative to the optical axis that is converted by downstream 
optical components into a pivot motion in sample space (light-sheet angle β). The pivoted beam, 
shown in red, is displaced laterally (along z) relative to the on-axis beam, shown in blue, after the 
light-sheet galvanometer scanner. While the pivot galvanometer scanner is responsible for 
controlling the light-sheet angle β, the light-sheet galvanometer scanner controls light-sheet 
angle α and light-sheet offset I. In order to reduce the footprint of the microscope, dual-axis 
galvanometer scanners are used in the design of the illumination arms. 

(b) Pivoted and on-axis beams shown in red and blue, respectively, at the front aperture of the 
2nd relay lens. The pivoted beam is displaced along X (θx) by the vertical tilting mirror (V) in the 
pivot galvanometer scanner, and displaced along Z (θz) by the lateral tilting mirror (L) in the 
pivot galvanometer scanner. Cumulatively, θx and θz result in the angular displacement of the 
pivot-beam by γ with respect to the on-axis beam at V. The orientation of the pivot-plane, 
illustrated in shaded red, flips by (90° − η) as it exits the dual-axis light-sheet galvanometer 
scanner, where η is the angle between the shafts of the two scanning mirrors in the light-sheet 
galvanometer scanner. Note that the drawing is not to scale. 

(c) The position of the rotation axis (in the context of both α and β) can be changed by translating 
the light sheet using the degree of freedom I. Here we illustrate this idea for a generic angle θ, 
but it naturally applies without loss of generality to both α and β.  
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Supplementary Figure 3 | Side-by-side comparison of focus metrics 

Normalized focus curves for the four classes of image quality metrics applied to the four 
noiseless focus stacks (Supplementary Fig. 4a). While most image quality metrics have a 
concave tent-like response, the following do not: Normalized Haar wavelet transform Shannon 
entropy (NHWTSE), Kurthosis (K), Kurtosis of differences (KD), Shannon entropy of histogram 
(EH). Some image quality metrics (e.g. NHWTSE, K, KD) have an inverted response on some 
focus stacks (see arrow marked “i”). Other image quality metrics (e.g. NHWTSE, K) have a non-
unimodal response, reminiscent of a second-order differential response (see arrows marked 
“2nd”). Finally, the focus curves produced by the EH metric are noisy, with many local maxima 
and minima (see arrow marked “n”). 
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Supplementary Figure 4 | Synthetic benchmarks for evaluating focus metrics 

(a) The synthetic benchmark is based on 24 focus stacks derived from 4 images “Lenna”, 
“Fingerprint”, “Barbara”, and “Embryo”. The last image (“Embryo”) is a light-sheet microscopy 
recording of Drosophila embryo. For each image we created one noiseless focus stack as well as 
five additional focus stacks with noise levels 10%, 20%, 30%, 40% and 50%. 

(b) Normalized focus curves produced by the four best measures (see Supplementary Table 1) 
for all six “Embryo”-based focus stacks. The plots are not mirror symmetrical with respect to 
r = 0 because image noise is applied independently for each computation and data point. The use 
of a mirrored axis for radius r is motivated by our intent to reproduce the familiar symmetrical 
appearance of focus curves for the purpose of this visualization. 

(c) Example images for three “Embryo”-based focus stacks (10%, 30% and 50% noise levels). 
Note that, at a noise level of 50%, it is difficult for the human observer to assess the difference in 
focus quality of these images. Yet, although the corresponding focus quality curves computed by 
the DCT-based focus metrics are very noisy, they have a distinct maximum. 
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Supplementary Figure 5 | Application of DCTS focus metric to light-sheet image data 

Demonstration of application of the DCTS focus metric to a focus stack acquired for an image 
plane recorded in a Drosophila embryo. The focus stack covers the defocus range −25 µm to 
+25 µm in steps of 1 µm. 

(a) Five example images (−20 µm, −10 µm, 0 µm, 10 µm and 20 µm defocus) taken from the 
focus stack. 

(b) Close-up of a small image region shown for multiple focus settings within +/- 7 µm of the 
optimal focus. 

(c) Corresponding focus curve produced by the DCTS image quality metric. 

Scale bars, 50 µm (a), 20 µm (b). 
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Supplementary Figure 6 |  Recovering focus information for image data with challenging 
properties 

Application of the DCTS focus metric to three difficult examples from the light-sheet focus stack 
benchmark. 

In example 1 (top, “strong light scattering”), the DCTS focus metric was applied to an image 
acquired deep inside a nuclei-labeled Drosophila embryo (depth of 100 µm, corresponding to the 
geometrical center of the embryo). In this scenario, image quality is severely degraded by light 
scattering both in the illumination and detection process. Only the left half of the image contains 
features the microscope is capable of resolving at reasonably high quality. The challenge in this 
particular scenario is that only a very small fraction of the signal in the image does not suffer 
from light scattering and that the vast majority of the collected signal thus does not carry 
information useful for assessing focus quality. Therefore the focus metric has very little usable 
signal to achieve perfect focusing and permit optimal imaging of those regions that are not 
strongly degraded by light scattering. Enlarged views of small regions in the image plane (green 
and magenta rectangles indicated on the full image shown to the left) are shown for several 
defocus settings (optimal focus setting, 1 µm defocus, 2 µm defocus and 3 µm defocus). A 
defocus of 1 µm is hardly noticeable by eye but is sufficient to blur the space between cells 
relative to the image representing the optimal focus setting (see arrows indicating either the 
existence or lack of a gap between neighboring cells). The focus curve for the entire image plane 
is shown to the right.  

In example 2 (middle, “low signal-to-noise ratio), the DCTS focus metric was applied to an 
image of a nuclei-labeled Drosophila embryo acquired with low laser power (resulting in high 
noise). Also in this case, a small amount of defocus is sufficient to blur nuclei boundaries (see 
arrows). 

In example 3 (bottom, “autofluorescence”), the DCTS focus metric was applied to an image of 
an unlabeled Drosophila embryo, which contains auto-fluorescence as the only signal source. 
Very few structures (primarily the vitelline membrane, see arrows) can be used for focusing. 
Nevertheless, the DCTS focus curve for this image is remarkably monotonous and noise-free. 

For clarity, the focus curves are normalized from their original range [min,max] to the 
normalized range [0,1]. 

Scale bars, 50 µm (full image, green enlarged views), 10 µm (magenta enlarged views). 
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Supplementary Figure 7 | Minimizing focus metric errors by using low-pass filtering 

Effect of low-pass filtering on the median error of the best spectral image quality metric 
(Normalized DCT Shannon entropy). 

(a) Median error as a function of low-pass filter diameter for the focus stacks included in the 
synthetic benchmark. The optimal low-pass filtering diameter is 6 pixels. 

(b) Median error as a function of low-pass filter diameter for the focus stacks included in the 
light-sheet microscopy benchmark. The optimal low-pass filtering diameter is 3 pixels. 
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Supplementary Figure 8 |  Degrees of freedom and workflow of spatiotemporally adaptive 
imaging 

(a) Schematic illustration of the ten state variables relevant for spatiotemporally adaptive 
imaging: D1, D2, I1, I2, Y1, Y2, α1, α2, β1, β2 (shown with their relative orientations). 

(b) The framework for spatiotemporally adaptive imaging monitors and optimizes image quality 
in reference planes distributed throughout the three-dimensional imaging volume (labeled z0 to z7 
in the example here). When imaging large, partially opaque specimens some of these reference 
planes are mainly relevant for the first detection arm (associated with D1), whereas others are 
mainly relevant for the second detection arm (associated with D2). A subset of reference planes 
typically located near the center of the specimen (also called “sync planes”, labeled zs-1 and zs in 
the example here) is associated with both detection arms and the related degrees of freedom are 
subject to a set of constraints that differs from those used in the rest of the volume. 
Measurements performed at these planes are used to ensure spatial continuity throughout the 
imaging volume. 

(c) Conceptual illustration of the process workflow in spatiotemporally adaptive imaging. In 
order to minimize photo-bleaching, photo-toxicity and impact on temporal resolution in the 
imaging experiment, image acquisition related to AutoPilot measurements is kept to a minimum 
and distributed in time, using the microscope’s idle time after acquiring the primary image data 
associated with each time point in a time-lapse experiment. When a full measurement cycle has 
been completed, the control framework computes and applies a global update to the microscope 
system state, thereby maintaining optimal image quality and adapting to spatiotemporal optical 
changes in time-lapse imaging. 
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Supplementary Figure 9 | General optimization theory for spatiotemporally adaptive imaging 

Illustration of key concepts underlying the general optimization theory for spatiotemporally 
adaptive imaging. For simplicity and readability, these illustrations consider only four (D1, D2, I1 
and I2) out of the in total ten degrees of freedom (D1, D2, I1, I2, Y1, Y2, α1, α2, β1 and β2) used in 
our framework for spatiotemporally adaptive imaging.  

(a) Constraint graph representation of the focusing constraints for D1, D2, I1 and I2 in a two-color 
(λ0 and λ1), three-plane (z0, z1 and z2) configuration. Variables representing light-sheet offset 
positions (I1 and I2) are linked via defocus measurements observed relative to the detection 
objective positions (D1 and D2). Since the piezo positioners attached to the detection objectives 
are the most precise spatial measurement devices in the microscope and thus serve as spatial 
references, the detection objectives are maintained at constant positions for all reference planes 
(z0, z1 and z2) in a given color channel (λ0 and λ1). The two color channels are linked by the 
requirement that the center of mass of the positions of the detection objectives (but not their 
individual, absolute positions) are the same for different color channels. 

(b) The focusing constraints can be compiled into a single matrix that describes the linear 
relationships between the state variable S and the defocus and constraint violation observations 
F. The values Fu,v are defocus measurements and the values Vk constraint violation correction 
terms. 

(c) Illustration of the system anchoring constraint (fixed center of mass of the positions of the 
detection objectives), which is required to prevent drift of the center of mass of the system. For 
clarity and simplicity, this constraint is omitted in panel (a). 

(d) If the fluorescence signal is weak or nonexistent in any reference plane and at any time 
during the experiment (e.g. in a sample region that does not or not yet express a genetically 
encoded fluorescence marker, or in a sample region that is not yet occupied by cells but will 
become populated later in the course of a large-scale cell movement event) the image quality 
metric responds below a pre-defined threshold and special substitution constraints are used to 
approximate the missing information. In the example shown here, light-sheet offset positions are 
set to the value at one neighboring plane. In practice, we set the value to the average values of 
the neighboring reference planes unless the plane considered is the first or last reference plane.
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Supplementary Figure 10 |  Online perturbation benchmark of adaptive imaging performance 

(a) Volumetric DCTS focus value shown as a function of time during an adaptive live imaging 
experiment of Drosophila embryogenesis, in which perturbations of detection objective positions 
and light-sheet offsets were introduced manually. Each of the 9 perturbations introduces a 
temporary dip in focus quality (blue bars), which is subsequently restored through appropriate 
countermeasures initiated by the automated framework for spatiotemporally adaptive imaging. 

(b) Four degrees of freedom of the microscope (D1, D2, I1, I2) shown as a function of time for 
reference plane z2. All corrections visualized in this plot are measured relative to the position 
value of D1. We note that D1 was set to a constant value in this experiment (serving as the 
“anchor” of the system, in contrast to D2, I1 and I2 which were allowed to undergo corrections) to 
simplify the interpretation of the system response without affecting the practical value of this 
benchmark experiment. 

(c) Maximum-intensity projection (left) and time series of an enlarged view of a small region of 
the embryo directly before and shortly after the fourth perturbation (right). The image sequence 
highlights the quadrant of the sample illuminated by objective O4 and imaged with objective O2. 
Optimal focus quality is restored within 0.5 min for the shown quadrant and within 2 min for the 
entire volume (see (a)). 

(d) As in panel (c) but for the fifth perturbation. The image sequence highlights the quadrant of 
the sample illuminated by objective O4 and imaged with objective O2. Optimal focus quality is 
restored within 1 min for the shown quadrant and within 4 min for the entire volume (see (a)). 

(e) As in panel (c) but for the ninth perturbation, which is the most severe system perturbation 
included in this benchmark. The two image sequences highlight regions in the quadrant of the 
sample illuminated by objective O4 (right) and O3 (left) and imaged with objective O1. 

Image sequences for quadrants illuminated by objective O4 (right) and O3 (left) and imaged from 
objective O1. The simultaneous shifts of D1 and I2 by 8 μm each in the same direction cancel 
each other out for the quadrant illuminated by O3 and imaged by O1. Recovery from the fairly 
dramatic loss of focus quality seen in the image data for the quadrant illuminated by O4 and 
imaged by O1 takes 16 time points locally and 22 time points for the entire volume (see (a)). 

Scale bars, 50 µm (full images in c-e), 20 µm (enlarged views in c-e). 
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Supplementary Figure 11 | Analysis and system calibration of light-sheet angles alpha and beta 

In order to calibrate our system and evaluate the accuracy of our methodological framework in 
determining the three-dimensional geometry of the light-sheet in vivo (measuring light-sheet 
angles alpha and beta), we (1) systematically imposed various light-sheet angles alpha and beta 
while imaging a Drosophila melanogaster embryo and (2) measured these angles from the 
acquired image data using our algorithm for robust image-based estimation of three-dimensional 
light-sheet geometry. The two graphs provided in this figure show the relationship between 
imposed and measured alpha and beta angles as a function of imaging depth in the sample 
(considering the two depths indicated in the cartoon to the bottom right). 

Left: As expected from the ellipsoidal symmetry of the specimen, the light-sheet angle α does 
not depend on imaging depth (or, in other words, on the geometrical location where the light 
sheet enters the specimen). For simplicity, data points are plotted without a depth-dependent 
color code in this case. The average absolute residual error for the linear regression is 0.14º (R2 = 
0.954). Right: By contrast, the effective light-sheet angle β depends on imaging depth, leading to 
a ~2-degree difference in measured beta angles for the two diametrically opposed reference 
locations in the specimen. This behavior matches theoretical expectations (as discussed in detail 
in Supplementary Methods 5), specifically it is quantitatively and qualitatively in good 
agreement with the combined effects of (i) the difference in refraction angle of the incident light 
sheet at the two respective entry points to the specimen and (ii) the difference in bending angle 
of the detection focal plane at the respective depths in the specimen. The average absolute 
residual error for the linear regression is 0.21º (R2 = 0.958 and 0.908 for data sets shown in 
orange and green, respectively). Overall, we observe an affine relationship between imposed and 
measured angles, which can be used to calibrate the system. 
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Supplementary Figure 12 |  Whole-brain functional imaging using the adaptive imaging 
framework 

(a) Rapid spatial adaptation of the microscope to the brain of a larval zebrafish just before the 
onset of a whole-brain functional imaging experiment using calcium indicators. Illustration of 
the time line of system optimization: three rounds of system optimization are performed with 
successively finer system parameter resolution, starting with 4 μm steps, followed by 2.4 μm 
steps, and finally using 0.8 μm steps. Each optimization round is performed globally for all 
degrees of freedoms and all reference planes inside the fish brain. 

(b) Example curves showing the focus-dependency of the image quality metric for light sheet 2 
at reference plane z4 during consecutive rounds of microscope system state optimization. 

(c) Example images demonstrating improvement in image quality in the course of microscope 
system state optimization. Starting with a microscope in a state of misalignment, the automated 
adaptive imaging framework fully recovers high spatial resolution throughout the specimen 
volume within 40 seconds, as demonstrated at the example of the optic tectum region shown in 
the enlarged view to the right (before = image quality prior to the first iteration of system 
optimization, after = image quality after the third iteration of system optimization). 

(d) Experimental analysis of optimal microscope parameter settings during whole-brain 
functional imaging using the AutoPilot framework. Left: optimal spatiotemporal adaptation of 
the offset of light sheet 2 in five different spatial reference locations, using one full system 
update every 10 min. Right: optimal light-sheet angles α and β determined as a function of depth 
at the beginning of the functional imaging experiment. In order to minimize time spent on 
AutoPilot measurements and maximize the effectiveness of AutoPilot corrections, only the core 
set of AutoPilot system parameters (Di, Ii) are optimized during high-speed functional imaging. 
This approach corrects for the most important perturbations of the optical conditions (focusing 
on spatiotemporally adaptive light-sheet offset corrections) and reserves 98% of instrument time 
for sustained high-speed, whole-brain image acquisition. 

Scale bars, 50 µm (magenta panels in c), 20 µm (green panels in c). 
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Supplementary Figure 13 |  Spatiotemporally adaptive imaging of Drosophila embryonic 
development 

Time-course of whole-volume DCTS focus metric and microscope system parameters during 
spatiotemporally adaptive imaging of Drosophila embryonic development. 

(a) Volumetric (whole-animal) DCTS focus value as a function of time, annotated with 
developmental phases during D. melanogaster embryonic development. Note that in contrast to 
the systematic DCTS measurements performed locally on focus stacks to optimize the system 
state, the whole-volume DCTS values reported here inform about changes in image content 
caused by the progression of embryonic development rather than about the quality of the system 
alignment itself. 

(b) Temporal corrections of the degrees of freedom D1, D2, I1 and I2 at the reference planes z0 to 
z5. Note that corrections required for maintaining optimal image quality throughout the embryo 
vary both in time and space. No changes are applied to D1, since this degree of freedom is used 
to anchor the system and prevent parameter drift over time. 
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Supplementary Figure 14 | Improved resolution and signal strength in Drosophila embryos  

In order to quantify improvements in spatial resolution and signal strength obtained with 
adaptive imaging, we comparatively analyzed images recorded in adaptively corrected (first 
column) and uncorrected (second column) microscope states, respectively, in a Drosophila 
embryo at 21 hours after egg laying. Since the biological specimen does not contain true point 
sources of fluorescence, we determined differences in resolution from line profiles crossing 
boundaries of fluorescently labeled cell nuclei (third column). These nuclei boundaries represent 
relatively sharp edges in the images (in particular compared to the theoretical, diffraction-limited 
resolution the microscope is capable of in a best-case scenario) and can be used to obtain lower-
bound estimates of the ratios of point-spread function sizes in corrected and uncorrected 
microscope states (quantitative results shown in fourth column, see Supplementary Methods 6 
for methodological details and a mathematical derivation). Since this computation yields lower-
bound estimates, the improvements in spatial resolution achieved by adaptive imaging are at 
least as large as the factors shown in the fourth column of this figure. 

We provide three representative examples each at three different imaging depths (see schematic 
illustrations to the left showing a top view of the Drosophila embryo and indicating the 
respective locations of the image planes in dark green). The panels next to the images acquired in 
adaptively corrected and uncorrected microscope states (first and second columns) show 
intensity profiles and derivatives of the intensity profiles (third and fourth columns) 
corresponding to the light green lines on the image panels. The resolution improvements 
observed in the image data are confirmed by the sharper edges and higher derivatives measured 
along the respective intensity profiles. The average increase in resolution across all imaging 
depths and data points is 2.36, the median increase is 2.11, and the maximum increase is 3.75 
(fourth column). As a direct result of microscope adaptation to the optical properties of the 
specimen, signal strength is improved as well. The average increase in signal strength is 1.57, 
the median increase is 1.50, and the maximum increase is 2.03 (third column). We note that the 
profiles were chosen to intersect cell nuclei boundaries at a right angle because the estimation of 
the improvement in spatial resolution is most accurate when analyzing features with sharp 
boundaries in the image data (Supplementary Methods 6). 

Scale bars, 5 µm. 
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Supplementary Figure 15 | Improving resolution and signal strength in zebrafish embryos  

Similar to the analysis shown in Supplementary Fig. 14, we quantified improvements in spatial 
resolution and signal strength obtained with adaptive imaging also for our live imaging 
experiments in developing zebrafish embryos. We comparatively analyzed images recorded in 
adaptively corrected (first column) and uncorrected (second column) microscope states, 
respectively, in a zebrafish embryo at the end of epiboly. Please see Supplementary Fig. 14 and 
Supplementary Methods 6 for a description of this analysis and for details on the computation 
of increases in spatial resolution from the ratio of maxima in the first derivatives of line profiles 
across sharp edges in the image data. 

We provide two representative examples each at five different imaging depths (see schematic 
illustrations to the left showing a side view of the zebrafish embryo and indicating the respective 
locations of the image planes in dark green). The panels next to the images acquired in 
adaptively corrected and uncorrected microscope states (first and second columns) show 
intensity profiles and derivatives of the intensity profiles (third and fourth columns) 
corresponding to the light green lines on the image panels. The resolution improvements 
observed in the image data are confirmed by the sharper edges and higher derivatives measured 
along the respective intensity profiles. The average increase in resolution across all imaging 
depths and data points is 3.03, the median increase is 2.83, and the maximum increase is 5.86 
(fourth column). As a direct result of microscope adaptation to the optical properties of the 
specimen, signal strength is improved as well. The average increase in signal strength is 2. 06, 
the median increase is 1.50, and the maximum increase is 4. 78 (third column). We note that the 
profiles were chosen to intersect cell nuclei boundaries at a right angle because the estimation of 
the improvement in spatial resolution is most accurate if the true boundary is as sharp as possible 
(Supplementary Methods 6). 

Scale bars, 5 µm. 
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Supplementary Figure 16 | Adaptive axial positioning of the light-sheet waist 

The framework for spatiotemporally adaptive imaging digitally controls the degrees of freedom 
Y1 and Y2, which enable adaptation of the axial position of the light-sheet waist to local 
geometrical and optical properties of the sample. 

By adjusting the axial position of the light sheet to the geometry and fluorescence signal 
distribution of the sample, the waist of the light sheet can be positioned to optimize axial 
resolution across the optical section. This is demonstrated in this figure at the example of a 
nuclei-labeled Drosophila melanogaster embryo with a diameter of 200 μm (a). Each of the 
microscope’s two light sheets is responsible for imaging one lateral half of the embryo in high 
quality and is thus engineered with a Rayleigh length of 50 μm (resulting in an effective field-of-
view of 100 μm per light sheet; for simplicity only the light sheet from one illumination arm is 
shown in panel (a). The optimal axial position of the light-sheet waist varies with the location of 
image plane (b) and is estimated by determining the position at which the DCTS metric is 
highest. Example DCTS curves are shown for three different depths in the embryo (c, d, e). 
Image contrast and spatial resolution are substantially improved by optimizing the axial position 
of the light-sheet waist (f), restoring cellular resolution in many regions of the embryo (g). The 
comparison of image quality for an optimized waist position vs. a sub-optimal waist position 
shown in panel (f) considers a microscope design that is not capable of adapting light-sheet waist 
positions as a function of imaging depth (resulting in deviations up to 50 μm from the optimal 
position across the Drosophila embryo).  

Scale bars, 10 µm (f). 
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Supplementary Figure 17 |  Spatial dependency of light-sheet angle beta in a Drosophila 
embryo 

Light-sheet angles α and β measured as a function of depth in a live Drosophila melanogaster 
embryo. Angle measurements are provided separately for each of the two light sheets (light sheet 
1 and 2) and relative to each of the two detection systems (camera 1 and 2). Three-dimensional 
light-sheet orientation was determined at 18 different depths, using 18 reference planes with a 
pair-wise spacing of 10 µm. The total size of the embryo along the dimension defined by the 
detection axes is 200 µm. 

As expected from the ellipsoidal symmetry of the embryo, the deflection angle α is effectively 
constant in space for each pairwise combination of light sheet and detection arm. The graphs also 
show that the initial (manual) α setting of light sheet 2 deviated by 0.4° from an optimal 
alignment. This mismatch was automatically detected and corrected by the framework for 
spatiotemporally adaptive imaging. In contrast to the angle α, the light-sheet angle β strongly 
depends on imaging depth and exhibits mirror-symmetrical behavior along the two detection 
paths. Considering the mismatch in average refractive index between embryo and surrounding 
medium, the depth-dependency of β observed in these graphs can be qualitatively and 
quantitatively understood with a ray optics model of the light path through specimen and 
medium (see Supplementary Methods 5 for details on this model and the two main optical 
effects that modulate β). 
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Supplementary Figure 18 | Modeling spatial variance of light-sheet angle beta in a Drosophila 
embryo 

A simple ray optics model qualitatively and quantitatively recapitulates the main features of the 
experimentally measured β-deflection curves shown in Supplementary Fig. 17. The illustrations 
and modeling results shown here accompany the section “Ray optics model for interpreting 
experimentally observed β-deflections” in Supplementary Methods 5 describing the ray optics 
model and related optical effects relevant for light-sheet microscopy in detail. 

Briefly, the model (applied here to a Drosophila embryo) considers the refraction of the light 
sheets at the interface between medium/matrix and embryo (a) as well as the curvature of the 
detection focal plane caused by differences in refractive indices of embryo and surrounding 
medium/matrix (resulting in the embryo acting as a lens in the detection path) (b). The effects of 
light-sheet refraction (c) and focal plane curvature (d) are quantitatively modeled assuming 
average refractive indices of ne = 1.35 for the embryo28 and nm = 1.339 for the mounting 
matrix27. When considering both effects and the resulting spatially-varying β-deflection of light 
sheets relative to detection focal planes (e), we obtain a theoretical β-deflection curve that is in 
good qualitative and quantitative agreement with our experimental measurements (f) reported in 
Supplementary Fig. 17. 
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Supplementary Figure 19 |  Physiology controls for adaptive imaging of zebrafish 
embryogenesis 

Physiology controls for spatiotemporally adaptive long-term imaging of zebrafish embryonic 
development, showing the specimen used for the imaging experiment (a) side-by-side with a 
control specimen that was not exposed to laser light (b). Both zebrafish larvae were imaged two 
days after the live imaging experiment performed with the primary specimen, using an Olympus 
MVX10 microscope for monitoring specimen physiology and normal development. 
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Supplementary Tables 

Supplementary Table 1 | Synthetic performance benchmarks for evaluating focus metrics 

Benchmark evaluation of 30 image quality metrics on 24 synthetic focus stacks, which were 
derived from 4 test images using noise levels of 0%, 10%, 20%, 30%, 40% and 50% of the 
average pixel intensity. The error is defined as the distance between the plane index io in the 
stack corresponding to optimal focus quality (io = 50) and the plane index im at which the image 
quality metric attains its maximum. The distance is measured in standard deviations of the blur 
kernel in pixels. Half of the image quality metrics achieve an error below half a pixel. The low-
pass filtering radius was set to rp = 1.5 pixels. R-score and DLE are defined in Supplementary 
Methods 2. 

Class Image quality metric 
Median 

error 
Mean 
error

Max 
error

Median 
R-score 

Median 
DLE 

Median 
processing

time 
(ns / p) 

Spectral Normalized DCT Shannon entropy 0 0.16 1 21.83 38% 10 

Spectral 
Normalized DCT generalized 
Bayesian entropy (e = 4) 

0 0.16 1 16.4 39% 12 

Spectral 
Normalized DCT generalized 
Bayesian entropy (e = 6) 

0 0.16 1 16.4 39% 13 

Spectral Normalized DCT Bayesian entropy 0 0.16 1 15.2 39% 9 

Spectral Lp sparsity of DCT 0 0.16 2 28.66 53% 10 

Differential Brenner measure 0 0.20 3 29.66 47% 4 

Differential Total variation 0 0.20 3 29.16 53% 4 

Spectral High/low freq. DFT power ratio 0 0.20 2 30.25 53% 19 

Differential Block total variation 0 0.20 3 28.83 53% 5 

Spectral Logarithmic moment spectral power 0 0.33 5 29 43% 22 

Spectral Normalized DFT Shannon entropy 0 0.37 5 25.5 43% 21 

Differential Tenengrad 0 0.41 5 27.83 50% 4 

Correlative Symmetric Vollath F4 0 0.45 3 30.5 54% 4 

Differential Squared Laplacian 0 0.5 11 30 50% 4 

Spectral 
Normalized DCT Shannon entropy 
(downscaled) 

0 0.66 5 30 52% 7 

Statistic Lp sparsity 0 0.75 4 27.16 55% 17 

Differential Absolute Laplacian 0 1 16 32 55% 4 

Spectral 
Normalized DCT Shannon entropy 
(median filtered) 

0 1.04 17 24 45% 26 

Correlative Vollath F4 0 1.04 9 26.83 60% 4 
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Class Image quality metric 
Median 

error 
Mean 
error

Max 
error

Median 
R-score 

Median 
DLE 

Median 
processing

time 
(ns / p) 

Spectral High/low freq. DCT power ratio 0 1.62 33 24.83 56% 11 

Statistic Shannon Entropy of histogram 0 1.70 32 28.5 61% 4 

Statistic Variance 0 1.83 32 26.83 56% 4 

Statistic Normalized variance 0 1.83 32 26.83 56% 4 

Correlative Vollath F5 0 1.91 23 16.46 59% 4 

Spectral 
Kristan's 8x8 DCT Bayes spectral 
entropy 

0 6 44 36.75 61% 4 

Statistic Mean 1 13.5 49 24.5 64% 4 

Statistic Kurtosis 3 14 49 25.5 63% 4 

Statistic Kurtosis of differences 3.5 9.45 49 31.5 61% 4 

Statistic Maximum 9.5 16.75 48 38.5 63% 4 

Spectral 
Normalized Haar wavelet transform 
Shannon entropy 

37.5 31.70 49 25.9 64% 69 
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Supplementary Table 2 |  Dependency of synthetic focus metric performance on low-pass 
filtering 

Performance dependence of the best spectral image quality metric (Normalized DCT Shannon 
entropy) on low-pass filter settings, evaluated using the synthetic benchmark data. The optimal 
radius of the low-pass filter is ݎ ൌ 1.5 pixels. 

Low-pass 
filter 

diameter 

Median 
error 

Mean 
error 

Max 
error 

Median 
R-score

Median 
DLE 

1 0.00 1.67 19.00 45.75 61% 

2 0.00 0.58 10.00 46.00 51% 

3 0.00 0.46 10.00 46.50 47% 

4 0.00 0.29 5.00 23.96 48% 

5 0.00 0.33 5.00 23.00 44% 

6 0.00 0.17 1.00 21.83 38% 

7 0.00 0.29 2.00 16.10 46% 

8 0.00 0.33 2.00 15.80 46% 

9 0.00 0.42 2.00 15.60 49% 

10 0.00 0.50 2.00 14.67 53% 

11 0.50 0.67 3.00 12.29 55% 

12 0.00 0.71 3.00 13.15 58% 

13 0.00 0.88 4.00 14.08 58% 

14 1.00 1.17 8.00 14.42 60% 

15 1.00 0.96 4.00 13.07 59% 

16 1.00 0.96 4.00 14.83 61% 
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Supplementary Table 3 |  Real-data performance benchmarks for evaluating focus metrics 

Benchmark evaluation of 30 image quality metrics on 66 light-sheet focus stacks. The table is 
sorted by descending median, then descending mean, and then ascending median R-score. The 
low-pass filtering radius is set to ݎ ൌ 1.5  pixels. See Supplementary Table 1 and 

Supplementary Methods 2 for parameter definitions. 

Class Image quality metric 
Median 

error 
Mean 
error

Max 
error

Median 
R-score 

Median 
DLE 

Median 
processing

time 
(ns / p) 

Spectral Normalized DCT Shannon entropy 0.00 0.32 5.00 7.35 19% 27 

Spectral 
Normalized DCT generalized 
Bayesian entropy (e = 6) 

0.00 0.33 5.00 6.24 16% 39 

Spectral 
Normalized DCT generalized 
Bayesian entropy (e = 4) 

0.00 0.33 5.00 6.19 17% 38 

Spectral Normalized DCT Bayesian entropy  0.00 0.33 5.00 5.11 16% 24 

Spectral 
Normalized DCT Shannon entropy 
(median filtered) 

0.06 0.59 6.15 7.36 24% 45 

Spectral Normalized DFT Shannon entropy 0.16 0.53 5.00 7.50 26% 33 

Differential Tenengrad 0.25 0.61 4.80 7.00 16% 5 

Correlative Vollath F4 0.31 1.01 10.00 7.88 37% 4 

Spectral Logarithmic moment spectral power 0.31 1.27 7.75 8.00 17% 35 

Spectral Lp sparsity of DCT 0.38 0.77 10.54 6.17 29% 27 

Correlative Symmetric Vollath F4 0.43 1.02 7.90 7.50 32% 5 

Differential Brenner measure 0.49 0.94 9.66 7.38 28% 5 

Spectral 
Normalized DCT Shannon entropy 
(downscaled) 

0.50 0.82 9.66 6.69 20% 15 

Differential Squared Laplacian 0.50 0.98 14.93 7.17 38% 5 

Differential Total variation 0.50 1.17 9.66 6.68 28% 5 

Differential Block total variation 0.50 1.26 9.66 6.64 24% 8 

Differential Absolute Laplacian 0.81 1.53 18.50 9.30 48% 5 

Statistic Lp sparsity 0.99 2.13 12.00 7.06 35% 57 

Spectral High/low freq. DFT power ratio 1.10 9.30 42.45 10.25 53% 27 

Spectral High/low freq. DCT power ratio 1.33 9.23 42.45 9.25 55% 26 

Correlative Vollath F5 1.63 2.43 12.00 6.89 36% 5 

Statistic Variance 1.69 2.78 16.50 7.17 40% 4 

Nature Biotechnology: doi:10.1038/nbt.3708



Supplementary Table 3 (Continued) 

 

102 

Class Image quality metric 
Median 

error 
Mean 
error

Max 
error

Median 
R-score 

Median 
DLE 

Median 
processing

time 
(ns / p) 

Statistic Normalized variance 1.69 2.78 16.50 7.17 40% 4 

Spectral 
Kristan's 8x8 DCT Bayes spectral 
entropy 

1.88 7.22 42.45 12.00 54% 5 

Statistic Maximum 2.00 3.64 21.07 8.00 47% 4 

Statistic Kurtosis of differences 3.88 7.45 50.59 10.00 51% 5 

Statistic Mean 7.50 9.74 50.59 11.39 54% 4 

Spectral 
Normalized Haar wavelet transform 
Shannon entropy 

8.63 12.08 42.45 9.90 54% 116 

Statistic Kurtosis 9.33 11.57 52.22 9.33 47% 5 

Statistic Shannon entropy of histogram 10.00 12.21 42.45 8.39 49% 5 
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Supplementary Table 4 |  Dependency of real-data focus metric performance on low-pass 
filtering 

Performance dependence of the best spectral image quality metric (Normalized DCT Shannon 
entropy) on low-pass filter settings, evaluated using the light-sheet benchmark data. The optimal 
low-pass filtering radius is ݎ ൌ 1.5 pixels. 

Low-pass 
filter 

diameter 

Median 
error 

Mean 
error 

Max 
error

Median 
R-score

Median 
DLE 

1 0.50 0.94 5.00 9.00 36% 

2 0.06 0.42 5.00 8.00 24% 

3 0.00 0.32 5.00 7.35 19% 

4 0.00 0.52 9.66 6.40 16% 

5 0.00 0.53 9.66 6.00 15% 

6 0.25 0.58 7.02 5.92 14% 

7 0.25 0.62 7.90 5.57 14% 

8 0.25 0.55 4.39 5.46 16% 

9 0.37 0.69 7.90 5.00 15% 

10 0.50 0.84 7.90 5.00 17% 

11 0.88 1.10 7.90 4.58 17% 

12 0.88 1.12 7.90 4.59 17% 

13 0.88 1.35 7.90 4.36 18% 

14 1.00 1.51 7.90 4.58 19% 

15 1.38 1.79 6.25 4.52 22% 

16 1.17 1.87 6.25 4.37 24% 
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Supplementary Table 5 |  Protocol for adaptive imaging in the system perturbation benchmark 

Overview of experiment settings and parameter configuration used for spatiotemporally adaptive 
imaging in the system perturbation benchmark visualized in Supplementary Video 1 and 
Supplementary Fig. 10. 

Parameter Setting 

Specimen Drosophila embryo 

Genotype w; His2Av-mRFP1; + 

Embedding 1.0% SeaPlaque agarose in water 

Illumination 561 nm, Olympus 4x/0.28 objectives 

Detection 561 nm long-pass filters, Nikon 16x/0.8 objectives 

Temporal resolution 30 seconds 

Time-lapse duration 4 hours 

Lateral pixel size 0.406 μm 

Z-step size 2.031 μm 

Number of reference planes 4 

Spacing of reference planes 40 μm, 40 μm, 40 μm 

Correction mode Special optimization theory 

Image quality metric DCTS 

Min. focus value -∞ 

Max. D2 correction ∞ 

Max. I1, I2 correction ∞  

Search radius 4 μm 

Number of samples 7  
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Supplementary Table 6 |  Protocol for adaptive imaging of Drosophila embryonic development 

Overview of experiment settings and parameter configuration used for spatiotemporally adaptive 
imaging of D. melanogaster embryonic development (Supplementary Videos 2-4, Fig. 2 and 
Supplementary Figs. 13 and 14). 

Parameter Setting 

Specimen Drosophila embryo 

Genotype w; His2Av-mRFP1; + 

Embedding 1.0% SeaPlaque agarose in water 

Illumination 561 nm, Nikon 10x/0.3 objectives 

Detection 561 nm long-pass filters, Nikon 16x/0.8 objectives 

Temporal resolution 30 seconds 

Time-lapse duration 21 hours 

Lateral pixel size 0.406 μm 

Z-step size 2.031 μm 

Number of reference planes 6 

Spacing of reference planes 30 μm, 30 μm, 40 μm, 30 μm, 30 μm 

Correction mode Special optimization theory 

Image quality metric DCTS 

Min. focus value 3×10-4 

Max. D2 correction 0.5 μm 

Max. I1, I2 correction 1.5 μm 

Search radius 4 μm 

Number of samples 7  
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Supplementary Table 7 |  Protocol for adaptive imaging of zebrafish embryonic development 

Overview of experiment settings and parameter configuration used for spatiotemporally adaptive 
imaging of zebrafish embryonic development (Supplementary Video 5 and Fig. 3a-d). 

Parameter Setting 

Specimen Zebrafish embryo 

Genotype Tg(β-actin:H2B-eGFP) 

Embedding 
0.3% agarose in 0.3x Danieau's solution 

Teflon tube supported by 3 mm glass capillary 

Illumination 488 nm, Olympus 5x/0.1 objectives 

Detection 525/50 nm band-pass filters, Nikon 16x/0.8 objectives

Temporal resolution 100 seconds 

Time-lapse duration 12 hours 

Lateral pixel size 0.406 μm 

Z-step size 3.250 μm 

Number of reference planes 7 

Spacing of reference planes 80 μm, 90 μm, 140 μm, 140 μm, 110 μm, 80 μm 

Correction mode Special optimization theory 

Image quality metric DCTS 

Min. focus value 2.146×10-5 

Max. D2 correction 0.4 μm 

Max. I1, I2 correction 0.7 μm 

Search radius 6 μm 

Number of samples 9 
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Supplementary Table 8 |  Protocol for interleaved imaging of zebrafish embryonic development 

Overview of experiment settings and parameter configuration used for spatiotemporally adaptive 
imaging of zebrafish embryonic development with interleaved acquisition of adaptively 
corrected and uncorrected image stacks (Supplementary Videos 6 and 7, Fig. 3e and 
Supplementary Fig. 15). 

Parameter Setting 

Specimen Zebrafish embryo 

Genotype Tg(β-actin:H2B-eGFP) 

Embedding 
0.3% agarose in 0.3x Danieau's solution 

Teflon tube supported by 3 mm glass capillary 

Illumination 488 nm, Olympus 5x/0.1 objectives 

Detection 525/50 nm band-pass filters, Nikon 16x/0.8 objectives

Temporal resolution 180 seconds 

Time-lapse duration 6.1 hours 

Lateral pixel size 0.406 μm 

Z-step size 3.250 μm 

Number of reference planes 7 

Spacing of reference planes 80 μm, 100 μm, 120 μm, 120 μm, 100 μm, 80 μm 

Correction mode General optimization theory 

Image quality metric DCTS 

Min. focus value 2.146×10-5 

Max. D2 correction 0.5 μm 

Max. I1, I2 correction 1.5 μm 

Search radius 4 μm 

Number of samples 9 
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Supplementary Table 9 |  Protocol for adaptive two-color imaging of nervous system 
development 

Overview of experiment settings and parameter configuration used for spatiotemporally adaptive 
two-color imaging of nervous system development (Supplementary Video 8 and Fig. 4). 

Parameter Setting 

Specimen Drosophila embryo 

Genotype 
w; His2Av-mRFP1; deadpanEE-Gal4 ×  

w/y; His2Av-mRFP1; 10XUAS-IVS-myr::GFP 

Embedding 1.0% SeaPlaque agarose, 2 mm glass capillary 

Illumination 488 nm, 561 nm; Nikon 10x/0.3 objectives 

Detection 
525/50 nm band-pass and 561 nm long-pass filters 

Nikon 16x/0.8 objectives 

Temporal resolution 60 seconds 

Time-lapse duration 20 hours 

Lateral pixel size 0.406 μm 

Z-step size 2.031 μm 

Number of reference planes 7 

Spacing of reference planes 10 μm, 20 μm, 30 μm, 40 μm, 30 μm, 20 μm, 10 μm 

Correction mode General optimization theory 

Image quality metric DCTS 

Min. argmax probability 0.60 

Max. D2 correction 0.5 μm 

Max. I1, I2 correction 1.5 μm 

Search radius 4 μm 

Number of samples 7 
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Supplementary Table 10 |  Protocol for adaptive whole-brain functional imaging 

Overview of experiment settings and parameter configuration used for adaptive zebrafish whole-
brain functional imaging (Supplementary Video 9 and Fig. 6). 

Parameter Setting 

Specimen Zebrafish larva 

Genotype Tg(elavl3:GCaMP6f) 

Embedding 1.0% Sigma Type VII agarose, 2 mm glass capillary 

Illumination 488 nm, Nikon 10x/0.3 objectives 

Detection 525/50 nm band-pass filters, Nikon 16x/0.8 objectives 

Temporal resolution 
0.75 seconds 

(includes acquisition of corrected and uncorrected image data,
i.e. one whole-brain volume was acquired every 0.375 s) 

Time-lapse duration 20 hours 

Lateral pixel size 0.406 μm 

Z-step size 7 μm 

Number of reference planes 7 

Spacing of reference planes 20 μm, 30 μm, 30 μm, 30 μm, 30 μm, 20 μm 

Correction mode General optimization theory 

Image quality metric DCTS 

Min. focus value 8×10-5 

Min. argmax probability 0.80 

Max. I1, I2 correction 2 μm 

Search radius 6 μm 

Number of samples 11 
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Supplementary Table 11 |  Light-sheet microscope for spatiotemporally adaptive imaging 

Overview of optical and mechanical parts, electronics, computational hardware and software 
modules used to build the custom light-sheet microscope for spatiotemporally adaptive imaging. 

Module Component Product(s) Manufacturer

Optical table and 
breadboard 

Optical table 

ST-UT2-48-8 optical table 
(4' × 8' × 8") 

S-2000 series 28" isolators with 
automatic leveling S-2000A-428 

(4×) 

IQ-200-UG-8 damper upgrade 

Newport 

Breadboard 
Custom RG breadboard 04SI69108 

(2.0' × 5.0' × 2.4") 
Newport 

Rail system 
SYS 40 and SYS 65 rail and slide 

system components  
OWIS 

Lasers 

(shared modules) 

SOLE-3 engine 
with dual-fiber head 

Solid-state lasers: 
488 nm, 561 nm, 594 nm 

Omicron 
Laserage 

Illumination 
sub-systems 

(two modules) 

High-speed laser shutter
VS14S2ZM1-100 

with AlMgF2 coating 

VMM-D3 three-channel driver 

Uniblitz 

Illumination filter wheel

96A351 filter wheel 

MAC6000 DC servo controller 
Ludl 

NDQ neutral density filters Melles Griot 

Laser cleanup notch filters: 
488/10, 561/10, 594/10 

Chroma 

Relay lens pair 
49-361-INK 

(2×) 
Edmund 
Optics 

Dual-axis laser scanner
(2×) 

6215HSM40B galvanometer 
scanner 

MicroMax 673XX dual-axis 
integrating servo driver amplifier 

6 mm XY mirror set, mount and 
interconnect cables 

Cambridge 
Technology 

MK320S-24 power supply Astrodyne 
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Module Component Product(s) Manufacturer 

Illumination 
sub-systems 

(two modules) 

F-theta lens 66-S80-30T-488-1100nm 
Custom design 

(built by Special 
Optics) 

Tube lens 49-360-INK Edmund Optics

Piezo objective 
positioner 

P-622.1CD PIHera piezo linear 
stage 

E-665 piezo amplifier 
and servo controller 

Physik 
Instrumente 

Illumination objective Plan Fluor 10×/0.30W Nikon 

Detection 
sub-systems 

(two modules) 

Detection filter wheel 

96A354 filter wheel 

MAC6000 DC servo controller 
Ludl 

RazorEdge and EdgeBasic 
long-pass filters: 

488 nm, 561 nm, 594 nm 

BrightLine band-pass filters: 
525/50 nm 

Semrock 

Tube lens module 
CFI second lens unit Nikon 

AxioImager 130 mm ISD 
tube lens 

Carl Zeiss 

Piezo objective 
positioner 

P-628.1CD PIHera piezo linear 
stage 

E-665 piezo amplifier 
and servo controller 

Physik 
Instrumente 

Detection objective 

CFI60/75 LWD 
water-dipping series 

Nikon 

Apochromat/Plan-Apochromat 
water-dipping series 

Carl Zeiss 

Camera 
Orca Flash 4.0 v2 camera 

JULABO water chiller 
Hamamatsu 
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Module Component Product(s) Manufacturer 

Specimen 
chamber 

Four-view specimen 
chamber 

Chamber manufactured from 
black Delrin 

Custom design 

Specimen holder 

Plastic sample holder cup 

Cup holder manufactured from 
medical-grade stainless steel 

Adapter for multi-stage 
positioning system 

Custom design 

Specimen 
positioning 

system 

Translation stages 
(3×) 

M-111K046 
Physik 

Instrumente 

Rotary stage M-116.2DG 
Physik 

Instrumente 

Motion I/O interface 
and amplifier 

C-809.40 4-channel 
servo-amplifier 

Physik 
Instrumente 

Motion controller 
PXI-7354 4-axis 

stepper/servo motion controller 
National 

Instruments 

Real-time 
electronics 

Real-time controller 
with LabVIEW Real-

Time OS 
PXI-8110 Core 2 Quad 2.2 GHz 

National 
Instruments 

I/O interface boards 
(4×) 

PXI-6733 high-speed 
analog output 8-channel board 

National 
Instruments 

BNC connector boxes 
(4×) 

BNC-2110 shielded connector 
block 

National 
Instruments 

Serial interface board PXI-8432/2 
National 

Instruments 

Control software 

Real-time modules 32-bit LabVIEW code 
Custom 
software 

Host modules 64-bit LabVIEW code 
Custom 
software 

AutoPilot modules 
Java 8 code 

C interface library code 

Third-party libraries* 

Custom 
software 

and third-party 
libraries 
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Module Component Product(s) Manufacturer 

Microscope 
control 

workstation 

SX6750 microscope 
control and data 

acquisition workstation 

Intel Xeon E5-2687W CPUs 
(2×) 

16 GB DDR-3 RAM modules 
(16×) 

16-channel Intel RS2WG160 
RAID controller 

Intel 520 Series 480GB SSDs 
(2×) 

Western Digital 2.5 XE 900GB 
HDDs (14×) 

Firebird CameraLink frame 
grabbers (2×) 

Intel AXXRSBBU8 battery 
backup 

Intel X520-SR1 SFP+ SR LC 
fiber network adapter 

PNY nVidia Quadro 2000D 
graphics card 

Colfax 
International 

 

* Third-party libraries used in the AutoPilot framework include the following code modules: 

com.googlecode.efficient-java-matrix-library:ejml:0.24 com.github.rwl:jtransforms:2.4.0 
org.apache.commons:commons-collections4:4.+ commons-io:commons-io:2.+ 
org.apache.commons:commons-lang3:3.1 net.sf.trove4j:trove4j:3.0.3 
org.apache.commons:commons-math3:3.2 org.jzy3d:jzy3d-api:0.9.1 
commons-beanutils:commons-beanutils:1.7.0' javassist:javassist:3.0 
commons-digester:commons-digester:1.8' jdepend:jdepend:2.9.1 
commons-logging:commons-logging:1.1.1' java3d:vecmath:1.3.1 
net.sourceforge.csparsej:csparsej:1.1.1 args4j:args4j:2.0.29 
org.codehaus.groovy:groovy-all:2.2.2  
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Supplementary Videos 

Supplementary Video 1 |  Perturbation benchmark of spatiotemporally adaptive imaging 
performance 

Spatiotemporally adaptive imaging of Drosophila embryonic development (using a His2Av-
mRFP1 embryo with fluorescently labeled cell nuclei), demonstrating the framework’s ability to 
compensate not only for specimen-induced dynamic changes but also for manual perturbations of 
the microscope state (such as rapid misalignment of the positions of tip/tilt mirrors used for light-
sheet illumination or of piezo actuators used for positioning the detection objectives). Following 
each manual perturbation of the system (see annotations in the time line shown to the top right), 
the adaptive imaging framework rapidly detects the perturbation through real-time analysis of the 
image data, determines the appropriate countermeasures (resulting in adjustments of the digitally 
accessible degrees of freedom of the microscope; see red, green and magenta plots to the right) 
and restores optimal image quality during time-lapse imaging of the developing Drosophila 
embryo. 

Left: dorsal and ventral maximum-intensity projections of the three-dimensional image data, 
shown together with a small anterior-view projection inset indicating the locations of the four 
reference planes used for adaptive imaging (labeled 0, 1, 2 and 3). Right: time course of the 
experiment and manual perturbations of the microscope (top), whole-volume DCTS image 
quality metric (second from top) and corrections for D2, I1 and I2 for all four reference planes 
(third to fifth panel). Image quality is temporarily degraded by the instantaneous (red arrows) or 
continuous (red gradients) system perturbations but quickly recovers as corrections are being 
applied by the AutoPilot framework. 
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Supplementary Video 2 |  Spatiotemporally adaptive imaging of Drosophila embryogenesis 

Spatiotemporally adaptive imaging of Drosophila embryonic development (using a His2Av-
mRFP1 embryo with fluorescently labeled cell nuclei). 

Left: dorsal and ventral maximum-intensity projections of the three-dimensional image data, 
shown together with a small anterior-view projection inset indicating the locations of the six 
reference planes used for adaptive imaging (labeled 0, 1, 2, 3, 4 and 5). Right: time course of the 
imaging experiment (top), whole-volume DCTS image quality metric as function of time (second 
from top) and corrections for D2, I1 and I2 as a function of time for all six reference planes (third 
to fifth panels). 
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Supplementary Video 3 |  Recovery of high spatial resolution in Drosophila adaptive imaging 

Quality comparison of corrected and uncorrected time-lapse image data for the spatiotemporally 
adaptive imaging experiment shown in Supplementary Video 2, demonstrating the degradation 
of image contrast and spatial resolution in the absence of system corrections. The left panel 
shows a maximum-intensity projection of the embryo and indicates the locations of the four 
regions shown to the right, which cover a wide range of lateral locations and depths in the 
sample. For each region, image quality with and without adaptive imaging are shown (center 
columns). Image quality in the absence of corrections can be reconstructed from focus stacks and 
parameter protocols, which are routinely logged during adaptive imaging (Supplementary 
Methods 6). These diagnostics allow us to ascertain that image quality at a given location and 
time point was indeed optimal (within the microscope’s abilities), given sample properties and 
imaging conditions. Loss of image quality without adaptive imaging is quantified as the 
difference in DCTS (image quality metric) values for the image data obtained for corrected and 
uncorrected system states (right). Importantly, corrected and uncorrected systems states are 
initially identical, i.e. a full system optimization was performed at the beginning of the 
experiment and was used to acquire all images labeled “Not corrected”. 
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Supplementary Video 4 |  Recovery of cellular resolution in deep tissue layers by adaptive 
imaging 

Quality comparison of corrected and uncorrected time-lapse image data in deep tissue regions of 
a developing Drosophila embryo for the spatiotemporally adaptive imaging experiment shown in 
Supplementary Video 2. The side-by-side comparison demonstrates the degradation of image 
contrast and spatial resolution in the absence of system corrections in three different regions of 
the developing nervous system. The left panel shows a lateral view of the Drosophila embryonic 
nervous system (deadpanEE-Gal4, UAS-myr::GFP) and indicates the anatomical locations of the 
three regions shown to the right (brain lobe, suboesophageal ganglion [SOG] and ventral nerve 
cord). For each region, image quality with and without adaptive imaging are shown using a 
ubiquitous nuclear fluorescent label (His2Av-mRFP1, center columns). As is evident from these 
data, adaptive imaging recovers cellular resolution in many deep-tissue regions that cannot be 
resolved with non-adaptive microscopy. Uncorrected images were reconstructed as described in 
section “Reconstruction of uncorrected image data from AutoPilot logs“ of Supplementary 
Methods 6 and are shown here next to corrected images in 6 min intervals. The full temporal 
resolution of the underlying time-lapse imaging experiment is 1 min. Loss of image quality 
without adaptive imaging is quantified as the difference in DCTS (image quality metric, grey 
line corresponds to ∆DCTS = 0) values for the image data obtained for corrected and uncorrected 
system states (right). Importantly, corrected and uncorrected systems states are initially identical, 
i.e. a full system optimization was performed at the beginning of the experiment and was used to 
acquire all images labeled “Not corrected”. 
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Supplementary Video 5 |  Spatiotemporally adaptive imaging of zebrafish embryogenesis 

Spatiotemporally adaptive imaging of zebrafish embryonic development (using a β-actin:H2B-
eGFP embryo with fluorescently labeled cell nuclei). 

Top: animal, vegetal and lateral views (maximum-intensity projections) of the three-dimensional 
image data. Bottom: time course of the imaging experiment (first panel below image data), 
whole-volume DCTS image quality metric as a function of time (second panel below image data) 
and corrections for D2, I1 and I2 as a function of time for all seven reference planes used in this 
experiment (third to fifth panels below image data). Note that the adaptive imaging framework 
automatically detects emerging fluorescence signal in previously unpopulated regions of the 
imaging volume (ventral hemisphere) and thus adapts on-demand to the large-scale cell 
movements observed in the course of zebrafish epiboly. 
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Supplementary Video 6 |  Recovery of high spatial resolution in zebrafish adaptive imaging 

Quality comparison (part 1, see next video for part 2) of corrected and uncorrected time-lapse 
image data for spatiotemporally adaptive imaging of a developing zebrafish embryo, 
demonstrating adaptation to rapid, large-scale cell movements during epiboly. The left panel 
shows animal- and lateral-view maximum-intensity projections of the image data, highlighting 
four regions at different lateral positions and depths. The center columns show image quality in 
these four regions with and without system corrections. In contrast to Supplementary Videos 3 
and 4, two versions (corrected, uncorrected) of the image data were acquired by interleaving the 
time-lapse experiment. Version 1 of the data (time points with even indices) was recorded using 
adaptive imaging with all degrees of freedom of the microscope, whereas version 2 (time points 
with odd indices) was recorded with non-adaptive SiMView microscopy. Importantly, both 
versions of the experiment start with the same initial (optimized) microscope state, i.e. all 
microscope parameters are identical at time point 0. Regions that are populated by cells at the 
end of the time-lapse but not in the beginning (ventral hemisphere), suffer the most from a lack 
of online system corrections (regions marked orange or yellow). Loss of image quality without 
adaptive imaging is quantified as the difference in DCTS values for the image data obtained for 
corrected and uncorrected system states. The corresponding plots (right) show that image quality 
in the absence of system corrections is consistently worse. Red lines indicate lack of local signal. 
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Supplementary Video 7 |  Quantification of resolution improvements in zebrafish adaptive 
imaging 

Quality comparison (part 2, see previous video for part 1) of corrected and uncorrected time-
lapse image data for the spatiotemporally adaptive imaging experiment shown in 
Supplementary Video 6. Complementing the visualizations and DCTS quantifications provided 
in Supplementary Video 6, this video additionally shows a side-by-side comparison and 
quantification of the frequency content of corrected and uncorrected image data. The first two 
columns show image data for four image regions and associated differences in DCTS values 
between corrected and uncorrected data, as presented also in Supplementary Video 6. The third 
column shows the same image data in Fourier space and indicates the cut-off radius in frequency 
space for corrected and uncorrected image data. The ratio of these radii for corrected and 
uncorrected image data is shown in the fourth column. Note that this measurement is performed 
in vivo and is thus bandwidth-limited as a result of the particular frequency characteristics of the 
fluorophore distribution in the embryo. 
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Supplementary Video 8 |  Spatiotemporally adaptive two-color imaging of nervous system 
development 

Spatiotemporally adaptive two-color imaging of Drosophila embryonic development, using a 
ubiquitous nuclear fluorescent label (His2Av-mRFP1) as well as a fluorescent marker for the 
developing nervous system (deadpanEE-Gal4, UAS-myr::GFP). The video demonstrates how the 
imaging framework detects spatiotemporal changes in the expression pattern underlying the 
marker for the developing nervous system, starting with a red color channel that is initially 
completely devoid of signal. The top panel shows a two-color ventral-view maximum-intensity 
projection of the developing embryo (blue: ubiquitous nuclear RFP, orange: panneural 
membrane GFP). The two panels below show anterior-view maximum-intensity projections 
together with occupancy graphs that visualize the automated detection of signal by the adaptive 
imaging framework. 
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Supplementary Video 9 |  Spatiotemporally adaptive whole-brain functional imaging in larval 
zebrafish 

Quality comparison of corrected and uncorrected time-lapse image data for a spatiotemporally 
adaptive whole-brain functional imaging experiment in Tg(elavl3:GCaMP6f) larval zebrafish 
(Supplementary Table 10). This side-by-side comparison demonstrates the recovery of single-
cell resolution in multiple brain regions as well as substantial improvements in the fidelity of 
single-neuron activity traces by adaptive imaging. The left panel shows a dorsal-view maximum-
intensity projection of one half of the brain and indicates the anatomical locations of the three 
regions shown to the right. For each region, image quality with and without adaptive imaging are 
shown for single planes (2nd and 3rd center columns), including a representation of ∆F/F for the 
corrected image data to highlight neuronal activity (1st center column). The two versions of the 
image data (corrected, uncorrected) were acquired by interleaving the time-lapse experiment, 
acquiring one complete brain volume every 375 ms and alternating between corrected and 
uncorrected microscope states in subsequent volumetric scans. Importantly, both versions of the 
experiment start with the same initial (optimized) microscope state, i.e. all microscope 
parameters are identical at time point 0. Adaptive imaging was performed for a total period of 
20 hours, of which two high-speed sequences are shown at the 1-hour (first part of video) and 
11-hour mark (second part of video), respectively. Loss of image quality without adaptive 
imaging is quantified as the difference in DCTS values of image data obtained for corrected and 
uncorrected system states (top right panel, grey line corresponds to ∆DCTS = 0). Activity traces 
are provided below the ∆DCTS panel for single neurons at locations indicated by green and red 
circles in the image panels to the left. In the early phase of the functional imaging experiment 
(1 h), image quality is comparable in midbrain regions but already substantially degraded 
without microscope adaptation in the forebrain. In the late phase of the experiment (11 h), all 
three brain regions are substantially degraded in the absence of microscope state corrections. 
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Supplementary Video 10 | Example of system drift during non-adaptive long-term imaging 

Example of a failed time-lapse imaging experiment of Drosophila embryogenesis (His2Av-
mRFP1 embryo with fluorescently labeled cell nuclei) performed without adaptive imaging. The 
experiment failed because of system drift, specifically with respect to light-sheet offset positions 
controlled by PI S-334 tip/tilt mirrors21, which degraded image quality substantially over time. In 
the absence of continuous, automated adaptation of the microscope to specimen- or system-
induced dynamic changes, optimal positioning, orientation and co-planarity of light-sheets and 
detection focal planes can easily be compromised, leading to substantial degradation in image 
quality, in particular during long-term live imaging experiments. In the example shown here, the 
total acquisition period is dictated by the duration of embryonic development in Drosophila (22 
hours). During the first two hours of imaging, the second light-sheet drifted out of focus due to 
thermal fluctuations that affected the positional stability of the tip/tilt mirrors. A human operator 
eventually intervened and corrected the microscope state. This correction was based on the 
observation of an obvious degradation in image quality, i.e. such manual corrections are only 
possible in extreme cases and require the operator to constantly screen the acquired image data. 
Moreover, such manual corrections are inevitably applied post-hoc, i.e. the quality of the 
experimental data has essentially already been compromised for an extended period of time, 
which precludes the use of data for quantitative image analysis and any form of advanced data 
mining, such as cell segmentation or cell tracking. After 2 hours, the second light-sheet drifted 
again and the human operator eventually applied another manual correction. However, as in the 
first correction step before, this correction occurs post-hoc, at a time when it is already too late to 
rescue this recording. In practice, without the use of an automated, spatiotemporally adaptive 
imaging system, a successful long-term recording can thus require several attempts and 
inevitably requires the investigator to accept some amount of system drift and reduction in 
spatial resolution due to lack of compensation for specimen-induced dynamic changes in optimal 
system parameters. 
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