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SUMMARY

We present the Real-time Accurate Cell-shape
Extractor (RACE), a high-throughput image analysis
framework for automated three-dimensional cell
segmentation in large-scale images. RACE is 55–
330 times faster and 2–5 times more accurate than
state-of-the-art methods. We demonstrate the
generality of RACE by extracting cell-shape informa-
tion from entire Drosophila, zebrafish, and mouse
embryos imaged with confocal and light-sheet
microscopes. Using RACE, we automatically recon-
structed cellular-resolution tissue anisotropy maps
across developing Drosophila embryos and quanti-
fied differences in cell-shape dynamics in wild-type
and mutant embryos. We furthermore integrated
RACE with our framework for automated cell lineag-
ing and performed joint segmentation and cell
tracking in entire Drosophila embryos. RACE pro-
cessed these terabyte-sized datasets on a single
computer within 1.4 days. RACE is easy to use, as
it requires adjustment of only three parameters,
takes full advantage of state-of-the-art multi-core
processors and graphics cards, and is available as
open-source software for Windows, Linux, and
Mac OS.

INTRODUCTION

Fluorescence microscopy is an essential tool for live imaging in

developmental biology. Recent technological advances have

made it possible to follow the development of tissues, organs,

and entire embryos at the single-cell level andwith high temporal

resolution for up to several days. The large amounts of multi-

dimensional image data produced by such experiments demand

automated computational methods to accurately and rapidly

convert the raw images into biologically interpretable information

(Keller, 2013; Pantazis and Supatto, 2014). Quantitative analyses

of the shapes of cells captured in these recordings are crucial for
Developm
understanding cell-cell interactions, changes in cell morphology

during cell migration and differentiation, morphogenesis of tis-

sues and entire embryos, and phenotypic alterations in mutants

(Lecuit and Le Goff, 2007; Oates et al., 2009).

Several powerful methods for cell-shape reconstruction have

been developed (Fernandez et al., 2010; Khan et al., 2014; Mo-

saliganti et al., 2012). However, rapid advances in high-perfor-

mance light microscopy in recent years have outpaced the

development of computational methods required to interpret

the massive amounts of image data produced by these new

microscopes. Limited scalability, resource-intensive computa-

tions, and high processing time requirements of state-of-the-

art methods for cell-shape segmentation are prohibitive in the

analysis of datasets routinely produced by next-generation live

imaging methods: for example, processing the terabytes of

image data acquired in a single day by a typical light-sheet

microscope would take at least several months on a high-end

workstation, as shown below. Moreover, the most accurate ex-

isting computational approaches are also the slowest and

most memory demanding.

To overcome these limitations and greatly improve both speed

and accuracy, we developed a new image analysis framework

named RACE (Real-time Accurate Cell-shape Extractor), which

is capable of rapidly extracting cell shapes from large-scale im-

age data from a variety of fluorescence microscopes and biolog-

ical model organisms. Inspired by slice-based segmentation

approaches for large-scale electron microscopy used in the

field of connectomics (Funke et al., 2012; Liu et al., 2014), our

method extracts high-quality two-dimensional (2D) segments

from individual image slices first, then rapidly merges them to

complete three-dimensional (3D) cell shapes using discrete

combinatorial optimization techniques. Segmentation quality is

further improved using post-processing heuristics. We system-

atically optimized our computational framework for both speed

and accuracy by developing highly efficient algorithms for all

computation-intensive processing operators that take full

advantage of modern multi-core processors (CPUs) and

graphics processors (GPUs).

We demonstrate the high speed, high accuracy, and generality

of our method by segmenting cell shapes in fruit fly, zebrafish,

andmouse embryos recordedwith light-sheet and confocal fluo-

rescence microscopes. We showcase the importance of these
ental Cell 36, 225–240, January 25, 2016 ª2016 Elsevier Inc. 225
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Figure 1. RACE Framework for Fast and Ac-

curate Cell-Shape Segmentation

(A) The RACE framework performs 3D cell seg-

mentation in two main steps. In the first step

(top), raw 3D image data are processed slice by

slice, using efficient strategies for enhancing cell

membranes and closing remaining gaps in the

enhanced membrane signal, followed by the

extraction of the membrane outlines themselves.

This initial step yields a high-quality 2D seg-

mentation of cell shapes present within each

image slice. In the second step (bottom), these

2D cell segments are merged to form complete

3D cell shapes. Note that the second panel from

the left shows a cross-section of the 2D cell

segments (using a random color code that

avoids collisions between neighbors), i.e. each

row of pixels corresponds to the results of slice-

based watershed segmentation of one image

plane from the first processing step (see Fig-

ure S3). The merging of cell segments starts at

the sites of ‘‘seeds’’ marking the locations of

individual cells (see Figure 2). Further segments

are then added to these seed segments by

evaluating segment similarities in neighboring

image slices. Finally, two fusion heuristics are

utilized to correct mistakes and further improve

3D segmentation quality. Seed points for the

fusion of cell segments can be extracted either

directly from the membrane image data or from

additional nuclei image data (if available). RACE

furthermore provides options for taking advan-

tage of seed points obtained by cell tracking with

the TGMM framework (Amat et al., 2014) and for incorporating manual cell annotations created with the CATMAID framework (Saalfeld et al., 2009).

Scale bar, 20 mm.

(B) Compared with state-of-the-art membrane segmentation algorithms (Fernandez et al., 2010; Khan et al., 2014; Mosaliganti et al., 2012), RACE provides

improved segmentation quality while reducing computation time by up to two orders of magnitude. Average false discovery (left) and false negative rates

(middle) were calculated on multiple model organisms and microscopes using manually annotated ground truth images (Experimental Procedures). Pro-

cessing time (right) is shown for a time-lapse image dataset of Drosophila embryonic development, comprising 3,836 time points (830 gigabytes). RACE

processing time is based on the reconstruction of the complete dataset, whereas ACME, EDGE4D, and MARS benchmarks are based on extrapolation from

an early developmental time point, and represent underestimates of the required total processing time.
strengths by analyzing typical terabyte-sized light-sheet live im-

aging datasets. Using RACE, we reconstructed, for the first time,

cellular-resolution tissue anisotropymaps of fast tissue invagina-

tion processes in early Drosophila development at the whole-

embryo level. RACE also facilitated a fully automated, quantita-

tive comparison of cell-shape dynamics during Drosophila

gastrulation in wild-type and bicoid nanos torso-like (bnt) mutant

embryos (Blankenship and Wieschaus, 2001; Nüsslein-Volhard

et al., 1987). We furthermore integrated the RACE framework

for automated cell-shape segmentationwith our TGMM (tracking

with Gaussian mixture models) framework for automated cell-

lineage reconstruction (Amat et al., 2014) and demonstrate joint

3D cell-shape segmentation and cell tracking in Drosophila

whole-embryo image datasets. RACE is publicly available as

an open-source software package that includes computational

tools for efficient manual data curation, thus supporting applica-

tions that require fully validated, error-free image segmentation

results.

Design
Advances in state-of-the-art live imagingmethods, such as light-

sheet microscopy, have made it possible to capture the cellular
226 Developmental Cell 36, 225–240, January 25, 2016 ª2016 Elsevi
dynamics underlying the development of tissues and even entire

embryos at high spatiotemporal resolution and over extended

periods of time. Such experiments produce datasets of unprec-

edented complexity and size, and demand new computational

methods capable of extracting biologically relevant information

in a robust and automated manner. To efficiently extract 3D

cell-shape information from such fluorescence microscopy

images, we developed the RACE automated segmentation

framework (Figures 1 and S1). Our design goals included high

accuracy, high speed, ease of use, and scalability, ensuring

that the resulting framework is also suitable for large-scale appli-

cations, such as automated reconstruction of cell shapes in

whole-embryo image datasets acquired at high spatiotemporal

resolution and over long periods of time.

RACE uses two steps to extract 3D cell-shape information

from image data of fluorescently labeled cell membranes, and

can optionally take advantage of additional cell nuclei markers

to further improve segmentation accuracy.

In the first step, RACE rapidly segments the 3D image data

slice by slice, thus producing a set of accurate but unconnected

2D cell segments (Figure 1A). This is achieved by first enhancing

the membrane signal in the images, such that membranes
er Inc.
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Figure 2. Seed Extraction from Membrane or Nuclei Image Data

Illustration of key processing steps for seed extraction from a membrane

channel (A–E) or a nuclear channel (F–J) of a fluorescently labeled Drosophila

embryo imaged with SiMView microscopy. The enhanced, inverted, and bi-

narized membrane image (B) or a binarized, filtered version of the nuclei image

(G, using a Laplacian-of-Gaussian filter) serve as initial cell markers. Errone-

ously connected objects in the binary images (B and G) can be efficiently

separated by calculating the distance of each foreground pixel to the closest

background pixel (C and H, using a squared Euclidean distance map) and by

extracting small binary regions at all local maxima of this distance map (D and

I). Labeling each connected component of (D and I) with a unique identifier

Developm
appear as smooth, bright structures, whereas intra- and extra-

cellular, non-membrane regions appear dark (Figures 1A and

S2). In some cases, however, holes can persist in the membrane

signal, e.g. due to limited image quality or inhomogeneity of

the fluorescent label. Therefore, RACE subsequently closes

such remaining membrane gaps iteratively, using gray-scale

morphology (Figures 1A and S2). The 2D cell segments them-

selves are then extracted from the enhanced images using a

fast and memory-efficient, slice-based implementation of the

watershed segmentation algorithm (Figures 1A and S2).

In the second step, RACE combines the 2D cell segments ex-

tracted in the first step to complete 3D cell shapes, based on the

similarity of segments across image slices (Figures 1A and S3).

The fusion of 2D segments is guided by ‘‘seeds,’’ i.e., small,

well-separated 3D markers inside each cell, which are automati-

cally computed from the membrane images themselves or, if

available, from additional nuclei image data (Figure 2 and Movie

S1). To maximize both speed and memory efficiency of the

RACE framework, we systematically analyzed the bottlenecks

of this processing workflow and developed highly efficient

CPU-optimized or GPU-accelerated code modules for all

computation-intensiveoperations (TableS1). Adetailed technical

description of the computational framework is provided in Exper-

imental ProceduresandSupplemental ExperimentalProcedures.

RESULTS

Fast and Accurate Cell Segmentation in Fruit Fly,
Zebrafish, and Mouse Embryos
To demonstrate the versatility of our method, we used RACE

for 3D cell segmentation in live imaging data from three widely

used model systems, namely fruit fly, zebrafish, and mouse

embryos, recorded with two different imaging modalities,

including a light-sheet microscope (Tomer et al., 2012) as

well as Carl Zeiss LSM 710 and LSM 510 confocal micro-

scopes. These six classes of image datasets (Figure 3 and

Movie S2) cover a wide range of image analyses challenges,

owing to heterogeneity in cell shape, cell size, and cell density

within and across biological model systems. Moreover, these

datasets exhibit substantial differences in image contrast,

signal-to-noise ratio, and optical aberrations, which result

from differences in sample preparation, microscope specifica-

tions, and changes in local optical properties across large

multi-cellular specimens. To quantitatively assess the perfor-

mance of our algorithm, we compared the automatic recon-

structions produced by RACE to manually annotated cell-

shape data (also referred to as ‘‘ground truth annotations’’

throughout this paper). Our comparison follows the standard

performance measures defined by Coelho et al. (2009) and

also includes side-by-side performance comparisons with three

state-of-the-art segmentation methods: ACME (Mosaliganti

et al., 2012), EDGE4D (Khan et al., 2014), and MARS (Fernan-

dez et al., 2010).
yields the final seeds that are used to initialize the 3D fusion of segments

illustrated in Figure 1A. The last row (E and J) shows the raw image with su-

perimposed seeds. See also Experimental Procedures and part 1 of Supple-

mental Experimental Procedures for algorithmic details of the seed detection.

Scale bar, 20 mm.
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Figure 3. Whole-Embryo Cell Segmentation

in Fruit Fly, Zebrafish, and Mouse

(A) Maximum-intensity projections of 3D image

datasets of fruit fly, zebrafish, and mouse embryos

expressing fluorescent markers labeling all mem-

branes. Image data were acquired with light-sheet

fluorescence microscopy (Tomer et al., 2012). The

fruit fly embryo was imaged at 3 hr after egg laying

(AEL), the zebrafish embryo at 6 hr post fertilization

(hpf), and the mouse embryo at E6.5 (Experimental

Procedures). Scale bar, 50 mm.

(B) Segmentation results, visualized as renderings

of sliced embryos. Cells in the exposed cross-

sections are shown in an orange/red color scheme,

and in a cyan/blue color scheme for the rest of the

embryo. Insets show enlarged views of the cell

segmentation results.

(C) As in (A), but for fruit fly, zebrafish, and mouse

embryos imaged with confocal fluorescence mi-

croscopy (Zeiss LSM 510 and LSM 710 micro-

scopes). The fruit fly embryo was imaged at 3 hr

AEL, the zebrafish embryo at 6 hpf, and the mouse

embryo at E7.5 (Experimental Procedures). Scale

bar, 50 mm.

(D) Segmentation results for the image data shown

in (C).
RACE provided the best performance across all algorithms,

yielding low false-discovery rates (Figure 1B), low false-negative

rates (Figure 1B) and high segmentation quality at the whole-em-

bryo level for all investigated model organisms and microscopes

(Figure 3 and Movie S2). Based on these measurements of

average processing time, false-discovery rates, and false-nega-
228 Developmental Cell 36, 225–240, January 25, 2016 ª2016 Elsevier Inc.
tive rates, RACE is 330 times faster and

two timesmore accurate than themost ac-

curate existing method (Khan et al., 2014);

compared with the fastest existing

approach (Fernandez et al., 2010), RACE

is 55 times faster and five times more

accurate (Figures 4 and S4, Tables S2

and S3, and parts 1 and 2 of Supplemental

Experimental Procedures). Our algorithm

scales linearly with dataset size and pro-

vides real-time capability by reaching pro-

cessing speeds exceeding the speed of

data acquisition in all datasets (Figures

S4C and S4D). For fruit fly, zebrafish, and

mouse embryos imaged with SiMView

light-sheet microscopy, image acquisition

took 40 s, 124 s, and 47 s, respectively,

whereas image processing was com-

pleted within only 20 s, 44 s, and 31 s,

respectively. For fruit fly, zebrafish, and

mouse embryos imaged with confocal mi-

croscopy, image acquisition took 29 s, 120

s, and 85 s, respectively, whereas image

processing was completed within only

9 s, 23 s, and 20 s, respectively. Thus,

RACE image processing was on average

3.2-fold faster than the image acquisition
process itself. At the same time, only three parameters of the

RACE framework needed to be adjusted across all datasets

analyzed in this study, which allows easy and effective applica-

tion of RACE to new image data (Figure S1 and Table S2).

To evaluate RACE processing speed in large time-lapse data-

sets recorded with light-sheet microscopy, we measured the
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Figure 4. Comparison of Cell-Segmentation

Quality in Drosophila

Comparison of segmentation quality obtained with

RACE, ACME, EDGE4D, and MARS, respectively,

in representative image regions of a Drosophila

embryo. The panels show xy, xz, and yz slices of

the raw images as well as the corresponding seg-

mentation label images. Superimposed symbols

highlight segmentation errors, including merged

(+), split (#), missing (o), and added (�) cells. RACE

and EDGE4D provided relatively high segmentation

quality. EDGE4D produced a few split cells and

some false-positive detections in background re-

gions. ACME and MARS results suffered from

leakage into background regions, merged cells,

and false-positive detections in background

regions. As the size of false-positive objects pro-

duced by ACME, MARS, and EDGE4D was

comparable with the size of actual cells, purely

size-based object filtering was not sufficient to

curate the data in these cases.

Scale bar, 20 mm.
total computation time required to process high-speed, long-

term recordings of Drosophila embryogenesis. RACE processed

typical terabyte-scale time-lapse datasets on a single computer

workstation within 1.4 days, whereas existing methods would

require 100–700 days for the same task (Figures 1B and Movies

S3, S4, and S5). This combination of high processing speed and

high segmentation quality opens the door to quantitative image

analysis of large developing embryos as demonstrated in the

following sections.

Capabilities and Limitations of Fully Automated Image
Segmentation with RACE
RACE is designed to extract cell-shape information from image

data obtained with various types of fluorescence microscopes

and from various biological model organisms in a completely

automated manner. As detailed above, this automated workflow

produces exceptionally low error rates and achieves data

throughput rates suitable for real-time application. To evaluate

the potential of RACE in directly providing accurate quantitative

information on derived cell-shape features without prior data

curation, we systematically compared such features obtained

from automated segmentation results with manual ground truth

annotations for a variety of cell-shape analyses and organisms.

The 22 cell-shape features considered in this comparison

include the most commonly used parameters in developmental

studies, including measurements of cell volume, centroid posi-

tion, shape eccentricity, spatial extent, perimeter length, solidity,

and cell-shape anisotropy (see Experimental Procedures for

feature descriptions). When comparing automatically extracted

features with ground truth annotations at the level of individual

cells, we obtained an average deviation of 9.8% ± 4.9% across

all shape features and model organisms (mean ± SD, n = 22 fea-

tures evaluated in three types of datasets; Figures 5 and S5, and

Table S3). When performing the same comparison at the level of

small, local groups of cells (combining data from on the order of

100 cells), the deviation of automatically extracted cell-shape

features and ground truth annotations was further reduced to

2.8% ± 2.1% (mean ± SD, n = 22 features evaluated in three
Developm
types of datasets; Figures 5B and S5, and Table S3). This anal-

ysis thus confirms that RACE is capable of accurate, automated

measurements of cell-shape properties at the single-cell level

and that accuracy and robustness of such measurements can

be further improved by combining statistics across small groups

of cells (Figures 5D and S5D, and Table S3). Importantly, the

magnitude of these statistical errors inherent to fully automated

analyses with RACE is significantly smaller than relative cell-

shape changes occurring during typical morphogenetic pro-

cesses in embryonic development. Thus, manual data curation

is usually not required to resolve cell-shape changes in the

course of developmental events or to reliably detect phenotypic

differences in corresponding anatomical domains of wild-type

and mutant embryos (see section ‘‘Reconstructing Cell-Shape

Dynamics during Drosophila Gastrulation’’). To demonstrate

these key capabilities of RACE, we systematically compared

RACE segmentation results with manual ground truth annota-

tions as a function of time throughout Drosophila gastrulation

as well as in corresponding blastoderm regions of gastrulating

wild-type and bnt mutant embryos (Figures S6 and S7). We

found that RACE and manual cell-shape annotations were in

good agreement not only with respect to average values of

typical cell-shape parameters; good correspondence was also

achieved for the width (or SD) of parameter distributions across

local cell populations (Figure S7).

Across all experiments and analyses, the largest deviation be-

tween automated segmentation results and ground truth were

observed for cell-shape features that rely on good axial segmen-

tation accuracy (e.g. cell volume, cell size along z axis, cell

perimeter length and shape anisotropy in xz or yz image cross

sections; see Table S3). In these cases, however, manual data

annotation itself was frequently problematic (and, in some

extreme cases, ambiguous) due to low axial resolution, low im-

age quality as a result of light scattering and aberrations in

deeper tissue regions, weak signals from en face membranes

in multi-layered tissues, and high background levels arising

from autofluorescence. Such limitations in image quality inevi-

tably constrain cell-shape quantifications, irrespective of the
ental Cell 36, 225–240, January 25, 2016 ª2016 Elsevier Inc. 229
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Figure 5. Accuracy of Cell-Shape Information Extracted from SiMView Drosophila Images

Comparison of cell-shape features extracted by RACE with results obtained by manual ground truth (GT) annotations in a Drosophila embryo. Features include cell

volume (numberof voxels), cell perimeter (numberof surface voxels inxy, xz, andyzplanesat the cell centroid location),mediolateral versusanteroposterior cell-shape

anisotropy (ML-AP anisotropy),mediolateral (ML) cell size, anteroposterior (AP) cell size, anddorsoventral (DV) cell size. As ameasure ofRACEaccuracy, the absolute

deviation of RACE and ground truth results was determined (‘‘RACE/GT deviation,’’ shown in percent) by matching segmented cells withR50% voxel overlap.

(A) Histogram of the absolute feature value deviation between automatic segmentation results and ground truth annotations, using a bin width of 5%. The

deviation of cell-shape feature values is on average below 12% (tab 4 of Table S3).

(B) Bar plots of mean feature values measured across multiple regions of interest for both ground truth and automated RACE cell segmentation results. Error bars

correspond to one SD across the analyzed group of cells.

(C) Frequency of topological errors in RACE cell segmentation results, categorized as split, merged, added, and missing cells.

(D) Deviation between RACE and GT annotations for six types of cell-shape parameters, shown as a function of sample size used for estimating average feature

values. The special cases n = 1 and n = 262 show mean deviation of cell-shape features at the single-cell level and averaged across all annotated cells,

respectively. For settings in between these cases (n = 10, n = 25, and n = 50), 1,000 groups of matching cell pairs were randomly selected and results were

averaged over all groups. Additional features and results are presented in numerical form in tab 4 of Table S3.
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performance of the image analysis methodology. We note that

recent advances in whole-embryo imaging techniques, such as

the development of light-sheet microscopy for isotropic multi-

view imaging (Chhetri et al., 2015), overcome previous limitations

in axial resolution and thus have the potential to further

strengthen manual as well as automated cell-shape analyses

at the whole-embryo level.

Finally, we note that the finite error rate of RACE can intro-

duce a need for manual correction in applications with particu-

larly stringent requirements. This concerns analyses in which (1)

single cells need to be faithfully tracked over long periods of

time while providing error-free information on 3D cell shape

along the time axis, or (2) 3D cell shapes of a large group of

cells need to be reconstructed at a single time point without er-

rors throughout the data pool. Such applications are currently

beyond the capabilities of fully automated computer vision

techniques. However, we provide tools for efficient data cura-

tion that complement the RACE core framework in such sce-

narios, as discussed in the section ‘‘Efficient Manual Data

Curation.’’

Reconstructing Cell-Shape Dynamics duringDrosophila

Gastrulation
Accurate information on cell-shape changes during large-scale

tissue reorganization is invaluable for the study of the biophysical

mechanisms underlying embryogenesis (Bosveld et al., 2012; He

et al., 2014; Osterfield et al., 2013; Pare et al., 2014; Tamada

et al., 2012; Wang et al., 2012). To evaluate the potential of

RACE to yield quantitative information on cell-shape dynamics

at the whole-embryo level automatically, we segmented cells

in time-lapse datasets of developing Drosophila embryos. In

our first demonstration, we applied our method to a time-lapse

recording of Drosophila gastrulation. In this imaging experiment,

multiple views of the Drosophila embryo were acquired at 3-min

intervals using light-sheet microscopy (Tomer et al., 2012). We

selected a 1-hr period covering the formation of the ventral

furrow, which gives rise to mesoderm and anterior endoderm

(Sweeton et al., 1991). Starting at 3 hr after egg laying (AEL),

the ventral furrow starts to form as a result of cell-shape changes

in a narrow band of cells along the ventral midline. In total,

approximately 800 cells are internalized through the ventral

furrow. At the same time, the apical surfaces of cells in more

lateral locations experience forces directed toward the site of

the ventral furrow, which leads to an increase in mediolateral-

versus-anteroposterior cell-shape anisotropy on the ventral

side of the embryo (Sweeton et al., 1991). We used RACE to

automatically segment cell shapes across the embryo during

this process and to generate cellular-resolution tissue anisotropy

maps as a function of time (Figure 6A and part 4 of Supplemental

Experimental Procedures). In addition, we performed a compu-

tational reconstruction of a second dataset covering early em-

bryonic development at high temporal resolution (from 3 to 6 hr

AEL at 15-s intervals), and include a video of the resulting

cellular-resolution tissue anisotropymaps inMovie S3. This tera-

byte-sized time-lapse dataset captures the dynamic behavior of

more than 5,000 cells over a period of 720 time points, which can

be processed by the GPU-accelerated version of RACE within

3.9 hr on a single computer workstation (Table S1), a task that

is not feasible with existing computational methods.
Developm
We used the resulting whole-embryo tissue anisotropy maps

to quantitatively follow cell-shape dynamics in the vicinity of

the ventral midline, and evaluated the accuracy of results pro-

vided by RACE by quantitative comparison to manual ground

truth annotations. Figure 6B shows a quantitative analysis of

cell-shape dynamics in an 80-mm-wide corridor along the ventral

midline (region of interest labeled ROI 1 in Figure 6A), which

provides information on average anisotropy (left), average cell

volume (middle), and average cell size along dorsoventral, me-

diolateral, and anteroposterior axes (right) as a function of

time. Average mediolateral-versus-anteroposterior cell-shape

anisotropy rapidly increases for 6 min, starting at the onset of

gastrulation at 3.00 hr AEL, and remains at an elevated level of

0.476 ± 0.017 (mean ± SEM, n = 1,101 cells) for 12 min, before

returning to a baseline of 0.111 ± 0.011 (mean ± SEM, n = 959

cells) over the course of the next 15min. These changes in shape

anisotropy are the result of forces directed toward the ventral

furrow, and lead to an increase in average mediolateral cell

length from 11.07 ± 2.95 mm (mean ± SD, n = 1,169 cells) to

17.61 ± 5.62 mm (mean ± SD, n = 1,131 cells) from 3.00 to

3.25 hr AEL. Thereafter, average mediolateral cell length de-

creases and converges to the level of average anteroposterior

cell length. Average cell height (length along the apico-basal

axis) increases prior to the onset of gastrulation and reaches a

peak value of 21.04 ± 7.53 mm (mean ± SD, n = 1,169 cells) at

3.00 hr AEL. Together, these cell-shape changes lead to a steady

increase in average volume of cells located at the ventral surface

in the vicinity of the ventral furrow, from 534 ± 199 mm3 (mean ±

SD, n = 1,059 cells) at 2.75 hr AEL to 842 ± 413 mm3 (mean ± SD,

n = 854 cells) at 3.50 hr AEL.

To assess the precision of RACE in this fully automated anal-

ysis of cellular-resolution tissue anisotropy and to compare the

performance with state-of-the-art cell-shape segmentation

methods, we manually segmented a representative region of

the embryo (region of interest labeled ROI 2 in Figure 6A) at

3.25 hr AEL and processed this annotated region with RACE,

ACME, EDGE4D, and MARS. Both qualitatively and quantita-

tively, RACE provided the highest segmentation quality and the

most accurate measurements of tissue anisotropy, producing

results most similar to those obtained in our manual ground truth

segmentation (Figures 6C and S6). A side-by-side comparison of

cell-shape anisotropy profiles along the mediolateral axis of the

embryo shows that RACE reduces root-mean-square errors

relative to ground truth annotations by more than 2-fold (Fig-

ure 6C). Moreover, RACE provided themost accurate quantifica-

tion of the decrease in cell-shape anisotropy away from the

ventral furrow and toward the lateral sides of the embryo

(Figure 6C).

Next, we evaluated RACE’s potential in automatically quanti-

fying cell-shape-related phenotypes in mutant embryos. To

this end, we imaged and analyzed cell-shape changes during

Drosophila ventral fold formation side by side in wild-type and

bnt mutant embryos lacking anteroposterior patterning. Both

embryos were imaged with a SiMView light-sheet microscope

at 20-s (wild-type) and 30-s (bnt mutant) time intervals from

3.00 to 3.75 hr AEL (Movie S3). The image data and computa-

tional reconstructions are presented side by side as maximum-

intensity projections (Figure 7A) and maps of mediolateral-

versus-anteroposterior tissue anisotropy at the cellular level in
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Figure 6. Reconstructing Cell-Shape Anisotropy during Drosophila Gastrulation

(A) Cell-shape segmentation and visualization of tissue anisotropy on the ventral side of a Drosophila embryo during ventral furrow formation. The embryo ex-

pressed a fluorescent marker labeling all cell membranes and was imaged with a SiMView light-sheet microscope at 3-min intervals. The first image of the panel

shows a maximum-intensity projection of the image data from the ventral side of the embryo at t0 = 3 hr AEL. The other images show segmentation results over

time obtained with RACE. The color code indicates the level of mediolateral-versus-anteroposterior cell-shape anisotropy, and was chosen to highlight in

particular cell-shape changes in response to ventral furrow formation: cells elongated along the anteroposterior axis are shown in cyan; uniformly shaped cells are

shown in dark blue; and cells elongated along themediolateral axis are shown in bright magenta. The segmentation data and associated annotation of cell-shape

anisotropy reveal local changes in cell shape in the course of large-scale tissue reorganization and epithelial folding, including the formation of the ventral furrow,

(legend continued on next page)
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wild-type and bnt mutant embryos (Figure 7B; see also part 4 of

Supplemental Experimental Procedures). Manual inspection of

the image data shows that shortly after the onset of gastrulation

mediolateral-versus-anteroposterior cell-shape anisotropy near

the ventral midline rapidly approaches peak levels in wild-type

development, whereas corresponding blastoderm cells in the

bntmutant exhibit less pronounced mediolateral cell elongation.

Mediolateral-anteroposterior anisotropy relaxes very slowly to-

ward pre-furrow baseline levels after peak anisotropy levels

are reached in the bnt mutant embryo. In addition, blastoderm

cells have a larger total cell volume and a longer anteroposterior

axis in the bnt mutant compared with wild-type. These qualita-

tive observations are quantitatively confirmed and further refined

by the automated RACE analysis shown in Figure 7C. To assess

relative changes in local cell-shape dynamics, we selected a

503 50 3 60-mm3 region close to the ventral furrow (Figure 7B).

Mediolateral-versus-anteroposterior cell-shape anisotropy in

this region reaches a peak level of 1.00 ± 0.33 (mean ± SD, n =

26 cells) in the wild-type embryo at 3.31 hr AEL and a peak level

of 0.75 ± 0.39 (mean ± SD, n = 27 cells) in the bnt mutant at

3.25 hr AEL. Throughout the analyzed time span, blastoderm

cells in the bnt mutant are on average 43.0% ± 18.6% larger

with respect to their total cell volume and also exhibit a

34.0% ± 11.3% increased anteroposterior cell size compared

with blastoderm cells in the wild-type embryo (mean ± SD, n =

1,884 and 4,729 cells in bnt mutant and wild-type, respectively).

Average cell volume increases from 688 ± 303 mm3 (mean ± SD,

n = 25 cells) at 3.27 hr AEL to 1,461 ± 793 mm3 (mean ± SD, n = 24

cells) at 3.73 hr AEL in the bntmutant, whereas average cell vol-

ume in the wild-type embryo increases from 523 ± 234 mm3

(mean ± SD, n = 41 cells) at 3.24 hr AEL to only 817 ± 302 mm3

(mean ± SD, n = 33 cells) at 3.75 hr AEL. Similarly, anteroposte-

rior cell size increases from 10.5 ± 2.0 mm at 3.34 hr AEL (mean ±

SD, n = 24 cells) to 13.5 ± 3.7 mm at 3.75 hr AEL (mean ± SD, n =

24 cells) in the bnt embryo, and from 7.9 ± 2.0 mm at 3.32 hr AEL

(mean ± SD, n = 24 cells) to 10.5 ± 1.9 mm at 3.71 hr AEL (mean ±

SD, n = 33 cells) in the wild-type embryo (Figure 7C). By

contrast, dynamic changes in anteroposterior-versus-dorsoven-

tral cell-shape anisotropy appear relatively closely matched in

wild-type and bnt mutant embryos (Figure 7C). A side-by-side

visualization of the cellular-resolution tissue anisotropy maps

for wild-type and bntmutant development are included in Movie

S4. Importantly, these cell-shape changes as a function of time

and corresponding differences in wild-type and bnt mutant

cell-shape dynamics are quantitatively revealed by RACE in a

completely automated manner, without the need for manual

data curation. RACE segmentation errors and associated errors

in the estimation of these cell-shape features are considerably
the formation of the cephalic furrow, and germband extension. Computation and

Supplemental Experimental Procedures. Whole-embryo development and cell-sh

bar, 25 mm.

(B) Time course of the average anisotropy level (left), average cell volume (middl

axes (right) for cells in the area indicated by the vertically oriented green rectang

(C) Quantitative comparison of segmentation quality obtained with RACE, ACME

along the mediolateral axis in the annotated region of interest (horizontally oriente

segmented cells relative to the ventral furrow (0 mm). Ordinate values indicate m

using a bin width of 20 mm. Shaded areas show SEM. Root-mean-square dev

annotation is shown above each graph (lower values indicate better performanc

Developm
smaller compared not only with phenotypic differences at the

cellular level in wild-type and bnt mutant development but also

with relative changes in cell shape as a function of time: by

manually annotating 11 groups of cells and comparing nine

cell-shape features extracted by RACE to ground truth data (Fig-

ure S7), we found that relative changes in cell-shape features in

wild-type embryos were by a factor of 12.7 ± 6.9 larger than

RACE measurement errors, changes in cell-shape features in

bnt mutants were by a factor of 15.0 ± 10.2 larger than RACE

measurements errors, and relative differences in cell-shape fea-

tures between wild-type and bnt mutants were by a factor of

8.6 ± 3.0 larger than RACE measurement errors (mean ± SD,

n = 9 features).

Joint Reconstruction of Cell Lineages and Cell
Morphology
The RACE framework is capable of segmenting cells but does

not track their identity as a function of time. By default, RACE as-

signs a unique identifier to each segmented cell in an image, but

these identifiers are not necessarily consistent over time. To

extend this functionality to the joint reconstruction of cell line-

ages (i.e. cell tracking through cell divisions) and cell-shape in-

formation, we integrated the RACE framework with our TGMM

algorithm for high-throughput cell lineaging (Amat et al., 2014)

(Experimental Procedures). We tested this combined methodo-

logical framework in a Drosophila whole-embryo time-lapse

recording. We imaged cell nuclei and cell membranes with a

SiMView light-sheet microscope (Figure 8A) and acquired multi-

ple views of the embryo at 20-s intervals over a period of 2 hr,

starting at 2.25 hr AEL. Following image acquisition and multi-

view image fusion (Amat et al., 2015), we performed cell tracking

with TGMM, which offers 97.3% linkage accuracy for fluores-

cently labeled cell nuclei (Amat et al., 2014). Information about

segmented nuclei and their temporal associations were then

propagated as seed points to the RACE framework. Finally, we

segmented cell shapes with RACE using the fluorescently

labeled cell membranes (Figure 8A and Table S3). In this work-

flow, the identifiers assigned to cell shapes extracted by RACE

match the identifiers obtained by TGMM, which facilitates not

only cell tracking but also the automated detection of cell divi-

sions and apoptotic events (or generally any factors that lead

to the disappearance of cells from the image data). This

approach thus enables the user to evaluate cell-shape changes

as a function of time at the single-cell level. A visualization of this

imaging experiment and the corresponding cell segmentation

and cell tracking results is provided in Movie S5.

The combined functionality of RACE and TGMM allowed us to

systematically follow cell-shape dynamics across the embryo
color mapping of anisotropy levels were performed as described in part 4 of

ape anisotropy are shown in high spatiotemporal resolution in Movie S3. Scale

e), and average cell size along dorsoventral, mediolateral, and anteroposterior

le ROI 1 in (A). Shaded areas show SD.

, EDGE4D, and MARS with respect to estimation of average tissue anisotropy

d green rectangle ROI 2 in A). Abscissa values indicate mediolateral position of

ean anisotropy estimated by binning cells according to mediolateral position,

iation of automatically reconstructed anisotropy profiles versus ground truth

e of the respective segmentation method).
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Figure 7. Comparative Analysis of Gastrulation in Drosophila Wild-Type and bnt Mutant Embryos

(A) Side-by-side comparison of gastrulation in Drosophila wild-type and bnt mutant embryos expressing fluorescent markers labeling all cell membranes. The

image panels showmaximum-intensity projections of the ventral half of the embryos, using 3D image data acquiredwith SiMView light-sheetmicroscopy.Whole-

embryo imagingwas performed at 20-s (wild-type) and 30-s (bntmutant) time intervals from 3.00 to 3.75 hr AEL. A video showingwhole-embryo development and

cell-shape anisotropy in the bnt mutant embryo is included in Movie S3. Scale bar, 50 mm.

(legend continued on next page)
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while keeping track of individual cell identities for up to several

hundred time points (Figures 8B and 8C). To illustrate these ca-

pabilities, we selected three groups of cells at time point 200

(3.36 hr AEL) of the time-lapse experiment: a population of cells

adjacent to the ventral furrow (group 1, n = 89 cells), a dorsal

group of cells located directly above the extending germband

(group 2, n = 110 cells), and a population of cells on the anterior

dorsal side (group 3, n = 77 cells) of the embryo (Figure 8A). As is

evident from the image data, cells in these regions undergo sub-

stantial changes in cell shape after the onset of gastrulation at

3 hr AEL (Movie S5): in particular, cells in groups 1 and 3 rapidly

stretch along the mediolateral axis during ventral furrow forma-

tion, whereas cell shapes in group 2 become elongated along

the anteroposterior axis as the extending germband approaches

their location. The computational reconstruction of cell tracks

and cell shapes by RACE/TGMM reveals the underlying cellular

dynamics with high spatiotemporal resolution and at the single-

cell level (Figure 8B). At the same time, RACE facilitates the

extraction of robust statistics on cell-shape changes at the pop-

ulation level: the fully automated computational analysis shown

here, which quantitatively follows cell-shape dynamics of in total

more than 5,000 cells over 350 time points, enables rapid quan-

tification of cell behavior underlying large-scale morphogenetic

events in early development (Figure 8C).

DISCUSSION

RACE Design and Performance
Cell segmentation and analysis of cell-shape changes are key re-

quirements for datamining and data interpretation inmany imag-

ing experiments following developmental processes. The RACE

segmentation framework presented here provides a solution for

fast and accurate reconstruction of cell-shape information from

large-scale image datasets. Compared to state-of-the-art

methods for cell-shape segmentation, RACE fundamentally im-

proves automated segmentation accuracy and speed while us-

ing an efficient algorithmic design that enables high-throughput,

large-scale image analysis on a single computer workstation in

real time. These advances aid investigations relying on informa-

tion about cell shape in general, but they also improve perfor-

mance beyond the critical threshold needed to effectively study

cell-shape dynamics at the scale of entire complex embryos. At

the same time, we designed RACE to be easy to use by mini-

mizing the need for parameter tuning.
(B) Cell-shape segmentation and visualization of tissue anisotropy on the ventral

formation. Starting at t0 = 3 hr AEL, segmentation results obtained with RACE are

color code indicates the level of mediolateral-versus-anteroposterior cell-shape

ventral furrow formation. Computation and color mapping of anisotropy levels we

Whole-embryo development and cell-shape anisotropy in both wild-type and b

Scale bar, 50 mm.

(C) Cell volume, anteroposterior cell length (AP length), mediolateral-versus-ant

versus-dorsoventral cell shapes (AP-DV anisotropy) as a function of time for a re

values and shaded areas indicate the SD across all cells in the region of interest (R

sampled at 20-s and 30-s intervals for wild-type and bnt mutant embryos, respe

(D) Evaluation of the accuracy of cell-shape features automatically extracted by R

(right) embryos for the period 3.00–3.75 hr AEL. At each time point a group of 20–3

(error bars) of cell-shape features across the groupwere extracted and visualized s

performed with RACE. Results for anteroposterior cell length (AP length) and med

shown here. The evaluation of a wider spectrum of cell-shape features is presen

Developm
In the following sections we briefly discuss the most important

considerations in applying RACE to new image data, provide

practical recommendations for optimizing segmentation quality

and speed, and assess methodological limitations and pitfalls

(see also the RACE user guide and video tutorial provided in

Software S1).

High-Throughput and Real-Time Capabilities of the
RACE Framework
A key design goal in our development of the RACE framework

was high computational efficiency, i.e. the realization of high

processing speeds while ensuring scalability and minimizing

memory consumption. These performance criteria are essential

when performing cell-shape segmentation in large multi-cellular

organisms consisting of up to tens of thousands of cells or

when following cell-shape dynamics in time-lapse image data-

sets at the terabyte scale. Moreover, the high computational ef-

ficiency of RACE essentially aids all applications as it delivers

fast and accurate cell segmentation performance at minimal

cost to the investigator: all reconstructions demonstrated in

this study were performed on a single computer, without the

need for expensive and complex computer cluster environ-

ments. In addition to a fast CPU-optimized implementation of

the RACE framework, we also developed a GPU-accelerated

version of our framework, which offers exceptionally high pro-

cessing speed using a standard, low-cost CUDA-enabled

graphics card.

The speed advances introduced in RACE open the door to

new types of experiments that require real-time manipulation

of individual cells in developing organisms during an ongoing

imaging experiment. For instance, RACE could be used to

rapidly and automatically classify cells based on shape param-

eters or cell-shape changes at any time during an imaging

experiment. These cells could then be automatically targeted

for laser ablation or other types of optical manipulation, such

as light-mediated manipulation of gene expression or photo-

activation of fluorescent markers. As a foundation for such ap-

plications, we confirmed that RACE segmentation speeds

exceed image acquisition speeds in all six imaging experi-

ments shown in Figure 3, which cover confocal microscopy

and light-sheet microscopy recordings performed with fruit

fly, zebrafish, and mouse embryos. Although a certain fraction

of cells would likely be incorrectly classified by RACE in

such an online setting (as expected based on the finite
side of wild-type (top) and bnt mutant (bottom) embryos during ventral furrow

shown for selected time points over a time span of 45 min. As in Figure 6, the

anisotropy and was chosen to highlight cell-shape changes in response to

re performed as described in part 4 of Supplemental Experimental Procedures.

nt mutant embryo are shown at high spatiotemporal resolution in Movie S4.

eroposterior cell-shape anisotropy (ML-AP anisotropy), and anteroposterior-

gion highlighted in (B) close to the ventral midline. Solid lines represent mean

OI). The first time point (t0) corresponds to 3.0 hr AEL. Cell-shape information is

ctively.

ACE, using segmentation data from Drosophila wild-type (left) and bnt mutant

0 cells wasmanually annotated, andmedian values (colored bars) as well as SD

ide by sidewith the respective results obtained from automatic reconstructions

iolateral-versus-anteroposterior cell-shape anisotropy (ML-AP anisotropy) are

ted in Figure S7.
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Figure 8. Combined Cell-Lineage Reconstruction and Cell-Shape Segmentation in Drosophila

(A) Maximum-intensity projections of a Drosophila embryo expressing fluorescent markers labeling nuclei (left) and cell membranes (middle). The embryo was

imaged every 20 s in both color channels with a SiMView light-sheetmicroscope, starting at 2.25 hr AEL. Using an integrated computational framework combining

RACE and TGMM functionality, cells were automatically segmented and tracked. In this workflow, each cell segmented by RACE is assigned a unique (and

temporally consistent) identifier corresponding to the identifier of the cell track reconstructed by TGMM. The images to the right show rendered ventral and dorsal

views of this computational reconstruction at time point 200, shortly after the onset of germband extension. The color code was assigned at the beginning of the

time-lapse dataset to mark the anteroposterior location of each cell, and was subsequently propagated in time using information about automatically re-

constructed cell tracks and cell divisions. Cell-shape dynamics in three groups of cells near the ventral furrow (group 1), above the germband (group 2), and in an

(legend continued on next page)
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segmentation error rate), our statistical analysis presented in

tabs 4–6 of Table S3 suggests that RACE extracts most cell-

shape parameters with high accuracy, and should thus be

fairly reliable in correctly identifying and designating cells as

targets for optical manipulation. The investigator could then

simply determine manually, after the experiment, which cells

were correctly targeted by RACE and select only those cells

for further analysis. Importantly, RACE’s ability to segment

3D cell shapes rapidly and with good accuracy would be

crucial to enable statistically meaningful real-time manipulation

of developing organisms in the first place: in contrast to a hu-

man observer who would be unable to rapidly assess 3D cell

shapes, e.g. for the tens of thousands of cells in a gastrulating

zebrafish embryo, RACE could facilitate the continuous moni-

toring and prediction of suitable manipulation targets at the

high speed required for imaging cellular dynamics at the scale

of entire embryos.

Limitations and Strategies for Efficient Manual Data
Curation
Our performance analyses show that automated segmentation

results obtained with RACE exhibit exceptionally low error rates

(Figures 1B, 4, 5, 6C, S4A, S4B, and S5–S7; Table S1; parts 1

and 2 of Supplemental Experimental Procedures). By comparing

automatically extracted cell-shape features with ground truth

annotations, we found that manual results and segmentation

data obtained byRACE at the single-cell level deviate on average

by 9.8% ± 4.9%. This average deviation can be further reduced

to 2.8% ± 2.1%when pooling data from small groups of cells (on

the order of 100). Although these percentages are usually signif-

icantly smaller than relative changes in cell shape occurring in

the course of developmental processes, this level of perfor-

mance may still not be sufficient for applications that demand

completely error-free results. An example of a particularly chal-

lenging analysis to this end is the faithful tracking and accurate

shape characterization of an individual cell in a developing em-

bryo over long periods of time. Depending on the desired time

period, the statistical error rate of RACE can certainly be prohib-

itive in this scenario.

Although time-consuming, manual data curation is a possible

solution to this limitation. To establish a convenient and intuitive

infrastructure for manual data curation that enables curation

even of relatively large datasets in a relatively time-efficient

manner, we developed a specialized interface to the open-

source software CATMAID, a Web-based manual data annota-

tion tool designed for large-scale microscopy datasets (Saalfeld

et al., 2009). Our data curation strategy takes advantage of the

fact that the most severe segmentation errors can be corrected

simply by providing an improved, manually defined seed to the
anterior dorsal patch (group 3) are quantified and visualized in more detail in (B) an

data side by side over a period of 2 hr (354 time points) is included in Movie S5.

(B) Four examples of automatically segmented and tracked cells (red and cyan) fro

of their neighboring cells (gray) at six time points. These examples include a di

(rows 2–4). Scale bar, 10 mm.

(C) Average length of cells along anteroposterior, dorsoventral, and mediolateral a

as a function of time. Solid lines represent mean values and SEM are indicated by s

time point (t0) corresponds to 2.25 hr AEL, and cell-shape data are sampled at 20-s

the time-lapse dataset.

AP, anteroposterior; DV, dorsoventral; ML, mediolateral.

Developm
automated segmentation framework. Instead of manually

tracing the entire 3D shape of a cell in a time-consuming

manner, the user only needs to provide a single 3D point inside

the cell to serve as a new seed. RACE then updates the recon-

struction results guided by the revised seeding information. The

CATMAID-based graphical user interface for data curation al-

lows rapid browsing of image data and segmentation results,

and provides the user with tools for editing and correcting

seed positions, which are then imported into the RACE segmen-

tation framework. This approach to data curation is especially

effective in cases where seeding is ambiguous, e.g. as a result

of low temporal sampling, low image quality, or high local cell

density. In addition to supporting such data curation efforts,

the RACE segmentation framework allows importing tracking

results from the TGMM algorithm for automated cell lineaging,

and directly links cell tracks and cell morphology data (Amat

et al., 2014).

Distribution and Ease of Use of the RACE Framework
RACE employs a user-friendly design, provides a graphical

interface, and does not require the user of the framework to

be an expert in image processing. We provide a detailed

step-by-step protocol, a troubleshooting guide, and a video

tutorial (Boxes 1 and 2 in the RACE user guide and folder

‘‘Video_Tutorial’’ in Software S1) to help new users familiarize

themselves with the RACE segmentation framework. Tuning

of framework parameters for optimizing processing results is

straightforward: only three parameters had to be adjusted

across all examples presented in this work; these parameters

have intuitive meaning and are easy to optimize with minimal

time investment in manual data inspection (Figures S1B–S1E

and Table S2). We furthermore provide interfaces to TGMM

(Amat et al., 2014) and CATMAID (Saalfeld et al., 2009), which

allow importing complementary information about cell tracks

and manual annotations, respectively. Our software is open-

source and compatible with Windows, Linux, and Mac OS X

operating systems (https://bitbucket.org/jstegmaier/race and

Software S1).

We envision that RACE will facilitate easy access to quantita-

tive information on cell morphology and cell-shape changes in a

wide variety of light microscopy image datasets. The ability to

perform rapid and accurate cell segmentation even in relatively

large image datasets will be invaluable for reconstructing the

developmental building plans of complex multi-cellular organ-

isms, quantitatively evaluating differences in wild-type and

mutant development, realizing strategies for real-time analysis

and manipulation of cell behavior in living biological specimens,

and designing and validating computational models of embry-

onic development.
d (C). A video showing microscopy images and cell segmentation and tracking

Scale bar, 25 mm.

m the dataset visualized in (A), shown in high resolution together with a subset

viding cell (row 1) as well as cells from the three populations indicated in (A)

xes, as well as average cell volume, for the tracked cell groups indicated in (A)

haded areas (which do not extend significantly beyond the solid lines). The first

intervals. Cell counts reflect theminimum number of cells in each group across
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EXPERIMENTAL PROCEDURES

Sample Preparation and Imaging of Zebrafish Embryos Using

SiMView Microscopy

Animal experiments described here and in the following sections were con-

ducted according to protocols approved by the Institutional Animal Care

andUseCommittee of the Howard HughesMedical Institute, Janelia Research

Campus.

SiMView imaging of zebrafish embryos was performedwith a transgenic line

homozygous for the nuclear label H2B-eGFP and membrane label lyn-

tdTomato under the control of the b-actin promoter. Embryos were fixed with

4% paraformaldehyde (PFA) at 6 hr post fertilization (hpf; shield stage) over-

night before imaging. Fixed samples were embedded in 2.0-mm glass capil-

laries (inner diameter) filled with 1% low-melting-temperature agarose pre-

pared in PBS and mounted vertically in the imaging chamber containing E3

buffer. Animal and vegetal poles of the embryo were facing the microscope’s

two detection arms. EGFP was excited at 488 nm and fluorescence was de-

tected using 525-/50-nm band-pass filters (Semrock). tdTomato was excited

at 561 nm and fluorescence was detected using 561-nm long-pass filters

(Semrock). ImagingwasperformedusingNikon163/0.8NAobjectives andHa-

mamatsuOrca Flash 4.0 sCMOScameras. Image stacks of 410 planes encom-

passing the entire embryowith anaxial step sizeof 2.03mmand lateral pixel size

of 0.41 mm were acquired from four complementary (SiMView-type) views.

Sample Preparation and Imaging of Mouse Embryos Using SiMView

Microscopy

SiMView imaging of mouse embryos was performed with CAG-TAG1-positive

embryos collected from CD-1 females crossed to CAG-TAG1 males (Trichas

et al., 2008), which were maintained on a C57BL/6J background through nat-

ural mating. Embryos were dissected at E6.5 in PBS with 10% fetal bovine

serum and mounted inside Teflon FEP tubes with 50-mm wall thickness filled

with PBS. Nuclear GFP was exited at 488 nm and membrane-localized

tdTomato at 561 nm. Image stacks of 149 planes encompassing the entire em-

bryo were acquired with a step size of 2.03 mm. SiMView optics were config-

ured as described above.

Sample Preparation and Imaging of Fruit Fly Embryos Using SiMView

Microscopy

SiMView imaging of Drosophila embryos was performed with embryos homo-

zygous for membrane label spider-GFP (a gift from Eric Wieschaus) and nu-

clear label His2Av-mRFP1 (Bloomington stock #23560). SiMView imaging

was also performed with bnt triple mutants lacking functional copies of mater-

nally expressed genes bicoid, nanos, and torso-like, which specify the ex-

tremes of the embryonic anterior-posterior axis (Blankenship and Wieschaus,

2001). One-fourth of the females in a population of w;+;bnt, resille-GFP/TM3

flies (a gift from Eric Wieschaus) produce embryos with no anterior-posterior

patterning and with fluorescently labeled membranes. Wild-type and bnt

mutant embryos were collected by placing female flies on grape-juice agar

plates for 1 hr, dechorionating the embryos with 50% bleach solution, and

rinsing the dechorionated embryos in tap water.

Embryos were embedded in 1% low-melting-temperature agarose in a

1.5-mm glass capillary (inner diameter). Imaging began during blastoderm

stages, about 2 hr AEL. GFP was excited at 488 nm and fluorescence was de-

tected using 525-/50-nm band-pass filters (Semrock). mRFP1 was excited at

594 nm and fluorescence was detected using 594-nm long-pass filters (Sem-

rock). Imaging was performed using Zeiss 203/1.0 NA objectives and Hama-

matsu Orca Flash 4.0 sCMOS cameras. Four complementary (SiMView-type)

views of the embryo were recorded. The Drosophila embryo used in the visu-

alizations in Figures 3, 5, 6, S2, and S6, and in part 1 of Movie S1 was imaged

using 0.65-mm z steps and a lateral pixel size of 0.33 mm. Due to availability of

ground truth annotations, the performance assessments shown in Figures 1, 2,

and S4, Movie S2, and tab 1 of Table S3 were performed on another embryo

that was imaged using 0.81-mm z steps. In both recordings, complete two-co-

lor volumetric imageswere acquired at 3-min intervals. The bicoid nanos torso-

like (bnt) mutant embryo shown in Figures 7 and S7, Movie S4, and part 2 of

Movie S3 was imaged for 531 time points using 2.03-mm z steps and 30-s

time intervals. The wild-type embryos shown in Figures 7, 8, and S7, Movies

S4, S5, and part 1 of Movie S3 were imaged for 1,400–4,000 time points using
238 Developmental Cell 36, 225–240, January 25, 2016 ª2016 Elsevi
1.62-mm z steps. Single-color (membrane-only) volumetric images were ac-

quired at 15-s intervals for Movie S4 and part 1 of Movie S3, and two-color

volumetric images were acquired at 20-s intervals for Movie S5.

Sample Preparation and Imaging of Zebrafish Embryos Using

Confocal Microscopy

Confocal imaging of zebrafish embryos was performed with embryos

collected from an in-cross of the same transgenic line as above. The embryos

were dechorionated at 6 hpf and embedded on a coverslip-bottom dish with

1% low-melting-point type VII agarose (Sigma) in filtered system water, with

the animal pole facing the coverslip/objective. Imaging was performed with

a Zeiss 510 inverted laser-scanning confocal microscope using a Zeiss 203/

0.8 NA air objective. H2B-eGFP was excited at 488 nm and lyn-tdTomato at

561 nm. 152 images (1,024 3 1,024 pixels each) were acquired with

0.90-mm z steps and at a lateral pixel size of 0.62 mm. The z stack encom-

passed approximately half of the embryo, disregarding the yolk cell.

Sample Preparation and Imaging of Mouse Embryos Using Confocal

Microscopy

Confocal imaging of mouse embryos was performed with CAG-TAG1-positive

embryos collected as described above. Embryoswere dissected at E7.5, fixed

for 10 min with 4% PFA, washed with cold PBS, and imaged in a coverglass-

bottom dish in PBS on a Zeiss 510 inverted laser-scanning confocal micro-

scope using a Zeiss 203/0.8 NA air objective. The nuclear marker was excited

at 488 nm and the membrane marker at 561 nm. An image stack of 148 planes

(1,024 3 1,024 pixels each) was acquired with a step size of 0.79 mm and at a

lateral pixel size of 0.52 mm. The stack encompassed approximately half of the

embryo.

Sample Preparation and Imaging of Fruit Fly Embryos Using

Confocal Microscopy

Confocal imaging of Drosophila embryos was performed with embryos homo-

zygous for spider-GFP and His2Av-RFP, which were collected and prepared

as described above. Dechorionated embryos were embedded in a thin layer

of low-melting-temperature agarose in a deep-well microscope slide. The dis-

tance between the slide and the coverslip was 225 mm, which placed the sur-

face of the embryo in contact with the coverglass. The embryo was imaged

with a Zeiss 710 laser-scanning microscope using a Zeiss 203/0.8 NA air

objective. Membrane-GFP was excited at 488 nm and nuclear-RFP at

594 nm. Sixty images (1,024 3 1,024 pixels each) were acquired with 0.81-

mm z steps and at a lateral pixel size of 0.38 mm, using a zoom of 0.8. This pro-

duced a z stack encompassing approximately 21% of the embryo.

Algorithmic Design of the RACE Segmentation Framework

To facilitate rapid and accurate cell-shape segmentation in terabyte-scale

3D + time image data, we developed the RACE segmentation framework.

The RACE algorithm can be divided into three main parts: (1) slice-based

extraction of high-quality 2D segments of cells, (2) detection of seeds located

inside the cells, and (3) seed-based fusion of 2D segments to final 3D cell

shapes.

In the first step, each 3D image stack containing image data of fluorescently

labeled cell membranes (Figures S2A and S2B) is filtered slice by slice with a

5 3 5 2D median filter to reduce Poisson noise in the images. To enhance the

membrane signal and further reduce undesired noise in the images, locally

plane-like structures are enhanced using a so-called objectness filter (Antiga,

2007; Frangi et al., 1998). Based on specific properties of the ordered eigen-

values of the Hessian matrix at each pixel location, the filter can be tuned to

obtain high responses on plane-like structures, such as cell membranes,

and to efficiently suppress undesired structures as well as background noise

(Figures 1A and S2C).

To further improve the membrane signal and close remaining gaps caused

by inhomogeneous marker expression or other signal disruptions, we used a

viscous watershed transform (Fernandez et al., 2010; Vachier and Meyer,

2005). This approach simulates the flooding of the grayscale images with a

viscous fluid and is accomplished by using a morphological closing operation

with successively increasing radii (Figures 1A and S2D). The maximum radius

is determined by the smallest structures that still need to be individually

resolved.
er Inc.



The segmentation of the enhanced image stacks is subsequently performed

in a slice-by-slice manner, by processing each of the slices of the stack inde-

pendently and in parallel using a morphological watershed segmentation algo-

rithm (Figures 1A, S2E, and S2F).

In the second step, a set of initial seed points marking the inside of potential

candidate cells is identified. These seed points serve the purpose of facilitating

subsequent merging of 2D segments to 3D cell shapes. We provide multiple

options for seed detection. First, seeds can be directly obtained from the

enhanced membrane signal (Figure 2A) by generating a pseudo-nuclear chan-

nel from the binarized inverted membrane signal image (Figure 2B). Second,

additional image data of fluorescently labeled cell nuclei (if available, Figure 2F)

can be used to detect seed points based on a binarized version of the Lapla-

cian-of-Gaussian filtered image data (Figure 2G). Irrespective of the choice of

source data, H-maxima of the Euclidean distance map (Maurer et al., 2003) of

the binary images are then extracted to separate touching binary regions (Fig-

ures 2C–2E, 2H–2J). Each of the extracted regions is assigned a unique integer

label that is used to initialize the fusion of 2D cell segments generated by the

slice-based watershed transform. Instead of taking advantage of only the cen-

troids of the detected seeds (Stegmaier et al., 2014), we use the entire 3D seed

morphology such that multiple slices can be initialized at once with a single

seed, thereby accelerating segment fusion. For compatibility with existing

software tools, the seed points used for segment fusion can also be imported

from other sources using a comma-separated values-based (CSV) table

format. For instance, we provide interfaces to the TGMM tracking framework

(Amat et al., 2014) and CATMAID databases (Saalfeld et al., 2009) containing

manually annotated or corrected seed points.

In the third and final step, we use discrete combinatorial optimization

techniques to combine high-quality 2D segments to actual 3D cell shapes

(Figures 1A and S3). Using the identified seed points as initial cell markers,

2D segments that intersect with a seed point are assigned the same seed

label. Based on the Jaccard index of touching 2D segments in neighboring

slices, we then calculate a seeded minimum spanning tree, in which 3D

segments are iteratively assembled from intersecting 2D regions. This fusion

is performed by starting with the largest regional overlap, i.e. the most

similar regions are fused first, and fusion is stopped as soon as the Jaccard

index of intersecting segments drops below an intersection threshold. To

further improve segmentation results, we implemented two post-processing

heuristics that exploit both intersection- and volume-based criteria to miti-

gate oversegmentation errors that may be caused, for instance, by redun-

dant seed points (part 1 of Supplemental Experimental Procedures, Figures

S3C–S3E).

In total only three intensity-dependent parameters need to be adjusted

throughout the pipeline: the binarization threshold for the seed detection

stage, the height of H-maxima extracted from the Euclidean distance map,

and the starting level of the slice-based watershed segmentation algorithm

(Figure S1 and Table S2).

We systematically identified all major performance bottlenecks of the

RACE prototype we initially developed using ITK libraries, and replaced all

performance-critical components with CPU-optimized or GPU-accelerated

custom code. In particular, we wrote CUDA-based GPU implementations

of the 2D median filter, the eigenvalue-based objectness filter, and the

morphological closing operation (Figures S4C and S4D and Table S1). We

furthermore developed custom high-performance CPU-optimized imple-

mentations of the watershed transform and the H-maxima filter, which are

based on OpenCV and form part of the C++ library Nscale (Teodoro

et al., 2013).

An explanation of acronyms used to refer to the different versions of the

RACE algorithm is provided in tab 7 of Table S3. Further information, a more

detailed description of all processing steps, guidance for parameter adjust-

ments, implementation details, and general instructions on how to use the

RACE segmentation framework are provided in Supplemental Experimental

Procedures.

Segmentation Performance Evaluation

To quantitatively assess RACE segmentation quality, we manually

segmented representative image regions in SiMView light-sheet micro-

scopy recordings of Drosophila and mouse embryos as well as image

data from a Drosophila embryo recorded with commercial confocal micro-
Developm
scopy. Ground truth annotations of 2D slices were performed with the Fiji

plugin TrackEM2 (Cardona et al., 2012) and combined to complete 3D cell

shapes using a custom graphical user interface in MATLAB. We compared

RACE with three state-of-the-art cell-shape-segmentation algorithms (Fer-

nandez et al., 2010; Khan et al., 2014; Mosaliganti et al., 2012) using the

segmentation quality measures proposed by Coelho et al. (2009). Further-

more, topological errors such as added, missing, split, and merged seg-

ments were used to calculate precision, recall, and F-scores (Figure S4A

and S4B, tabs 1–3 of Table S3, and part 2 of Supplemental Experimental

Procedures). As high data throughput is crucial when analyzing terabyte-

scale datasets, we also performed a detailed assessment of computation

time for all algorithms. Performance was measured both in seconds, to

reflect the actual computation time needed in practice, and in voxels per

second, to ensure a fair comparison that also considers image size in

those cases where images needed to be re-scaled to obtain isotropic sam-

pling (Figures 1B, S4C, and S4D, and part 2 of Supplemental Experimental

Procedures).

Based on the segmentation data provided by RACE, we extracted a variety

of cell-shape features to quantitatively characterize cell morphology and cell-

shape changes. These features include cell volume (number of voxels),

centroid location, eccentricity (defining an ellipse with the same second

moments as the extracted cell segment), extent (ratio of segment area and

bounding box area), perimeter (number of boundary pixels in a reference

plane), solidity (fraction of pixels that are part of the convex hull), and cell-

shape anisotropy (measure of relative cell size along two orthogonal direc-

tions). We compared the features obtained from automatic reconstructions

to ground truth annotations for those cells that exhibited at least 50% overlap

across automatic and manual annotations. Feature values of matching cell

pairs were then used to calculate relative deviations at the single-cell level

as well as the level of mean values obtained by averaging over groups of cells

(Figures 5, 7C, and S5, and tabs 4–6 of Table S3).

A detailed description of the various algorithms and segmentation quality

measures as well as the in-depth side-by-side performance comparison itself

are provided in parts 1 and 2 of Supplemental Experimental Procedures, Fig-

ures 4, 5, S1B–S1E, and S4–S7, and Tables S1, S2, and S3.

Joint Reconstruction of Cell Morphology and Cell Lineages

To investigate cell-shape changes over time at the single-cell level, we com-

bined the RACE cell segmentation framework with our TGMM algorithm for

cell tracking (Amat et al., 2014). In the first step of this combined computa-

tional framework, cell tracking is performed using image data of labeled cell

nuclei. For this purpose, TGMM performs a low-level image oversegmenta-

tion using a watershed transform and hierarchical agglomeration with persis-

tence-based clustering (PBC) that partitions the image into super-voxels.

These super-voxels are subsequently combined to form complete cell nuclei

tracks using parametric contour evolution with a sequential Gaussian mixture

model. A post-processing step using machine-learning classifiers improves

cell tracks in difficult cases, for instance to correctly identify and handle

cell division events. As previously described, the TGMM framework has

two primary open parameters (Amat et al., 2014), a background intensity

threshold and a threshold for PBC agglomeration, which were set to 50

and 12, respectively.

To incorporate the cell tracking information obtained with TGMM into the

RACE cell-shape segmentation framework, we skipped the seed detection

step offered by the RACE algorithm and directly used cell centroids and

cell identities identified by the TGMM algorithm for RACE seeding. This

approach thus maintains cell tracks and cell lineages reconstructed by

TGMM, and utilizes RACE to annotate these cell tracks with cell-shape infor-

mation. For data visualization (Figure 8 and Movie S5), all cells were assigned

a color code that identifies anteroposterior cell position at the first time point

of the time-lapse recording. This color code was subsequently propagated

forward in time using the automatically reconstructed cell tracks and cell

divisions.

Visualizations of individual cells by high-resolution surface rendering were

automatically created by extracting iso-surfaces from the segmentation

masks generated by RACE, using custom code written inMATLAB. Each trian-

gular mesh was smoothed with a 7 3 7 3 3 kernel to avoid surface edges

arising from the anisotropic spatial resolution of the microscope.
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