
This user guide contains basic instructions for installing and running the cell lineaging software

package “Tracking with Gaussian Mixture Models” (TGMM). The code provided here has been

tested with the 64-bit version of Windows 7 and with the 64-bit version of Ubuntu Linux 12.04

LTS, using a variety of CUDA-compatible NVIDIA GPUs.

Table	of	Contents	
	
1. Contents of the repository files .. 2

2. Installation and software requirements .. 3

2.1 Source code compilation in Linux ... 3

3. Running the TGMM software ... 5

3.1 Configuration file .. 5

3.2 Watershed segmentation with persistence-based agglomeration 5

3.3 Bayesian sequential tracking with Gaussian Mixture Models .. 7

4. Tracking and segmentation output data format ... 8

5. Troubleshooting common runtime errors .. 10

6. Description of the parameters in the configuration file ... 12

6.1 Key configuration parameters: intensity threshold and persistence agglomeration
threshold .. 12

6.2 Overview of advanced framework parameters .. 13

1. Contents	of	the	TGMM	package	
	

We assume that the user has uncompressed the file “TGMM_NM2013_paperRelease.zip” in a

folder of their choice, referred to here as $ROOT_TGMM. The subfolders in $ROOT_TGMM

contain the following components:

 src: All source code files. This folder also includes a CMakeList.txt file that can be used

to generate a Visual Studio solution (using CMake) and/or compile the source code. The

latest source code can be obtained from the sourceforge code repository using the

following git command: git clone git://git.code.sf.net/p/tgmm/code tgmm-code

 doc: Documentation of the TGMM software.

 build: A Visual Studio C++ 2010 project generated from src using CMake. This

subfolder also contains precompiled binaries, suitable for running the code without the

need for re-compiling the source code.

 data: Contains a three-dimensional time-lapse data set with 31 time points

(corresponding to a cropped sub-region of the Drosophila SiMView recording presented

in the main text of Amat et al., Nature Methods 2014), for testing the TGMM code and

ensuring that the software is running as expected. The test data set can also be download

separately from the sourceforge website.

Note: The Visual Studio project will not compile unless the folder “build” is copied to the same

absolute path as that used to generate the project. We provide the full project folder primarily as

a reference for the final structure of a successful Visual Studio solution.

2. Installation	and	software	requirements	
	

In order to run the precompiled binaries, the following auxiliary software package must be

installed as well:

 CUDA Toolkit 5.5: required to run algorithms on an NVIDIA GPU

Download: https://developer.nvidia.com/cuda-toolkit-archive

In Ubuntu Linux distribution you can just type from terminal:

sudo apt-get install nvidia-cuda-toolkit

We provide precompiled binaries for the 64-bit version of Windows 7. The folder with the

precompiled binaries also contains all required DLLs, and thus no external software packages

other than the CUDA drivers mentioned above need to be installed. The software can effectively

be run out-of-the-box, as detailed below in section 3.

For Linux, compilation of the source code is required (see detailed instructions in section 2.1).

For compiling the source code, any software version equal to or above the CUDA Toolkit

software version listed above should suffice.

For possible common runtime errors and solutions see section 5.

2.1	Source	code	compilation	in	Linux	
	

 Make sure CMake is installed (http://www.cmake.org/). For Ubuntu distributions, you

can simply use the following command:

sudo apt-get install cmake cmake-gui

 Go to the folder $ROOT_TGMM and create a new folder called “build”, where the

binaries will subsequently be generated:

cd $ROOT_TGMM

mkdir build

cd build

 In the build folder, execute the following commands:

cmake -D CMAKE_BUILD_TYPE=RELEASE ../src/

make

The first command locates all libraries (for example, from the CUDA Toolkit) and generates all

necessary makefiles to compile the code. The second command calls these makefiles. After

executing the second command, you should see messages in the terminal commenting on the

compilation progress. If the progress report reaches 100%, the program has compiled

successfully. After successful compilation, the following executables should be present:

$ROOT_TGMM/build/nucleiChSvWshedPBC/ProcessStack

$ROOT_TGMM/build/TGMM

You can use cmake-gui or cmake options to change different parameters in the makefiles (for

example, final destination folder or CUDA architecture level).

3. Running	the	TGMM	software	
	

We provide a test data set that allows the user to test the code and familiarize themselves with

software configuration before applying the code to their own data sets. Currently, 2D + time and

3D + time datasets with 8-bit or 16-bit unsigned integer TIFF stacks are supported as the input

data format. The two-dimensional or three-dimensional image data recorded for each time point

should be provided as a single TIFF file.

3.1	Configuration	file	
	
The file “$ROOT_TGMM\data\TGMM_configFile.txt” serves as a template for the

configuration file and contains all parameters required to run the TGMM code. In principle (and

for all results presented in this study), only parameters listed under “main parameters” need to be

modified for each new experiment. Access to parameters listed under “advanced parameters” is

provided as well and is intended for experienced users who wish to experiment further with the

code.

Each parameter is accompanied by a description of its functionality (see section “Overview of

advanced framework parameters” below for more details). In order to process a new data set,

simply copy the configuration text file and adjust parameters as needed.

Important note: Before applying the TGMM software to the test data set, the variables

debugPathPrefix and imgFilePattern in the configuration file need to be adjusted, so the

software can locate the image stacks (imgFilePattern) and save the results (debugPathPrefix).

3.2	Watershed	segmentation	with	persistence‐based	agglomeration	
	
Windows

In order to generate the hierarchical segmentation for each time point, follow these three steps:

1. Open a Windows command line terminal (run “cmd.exe”).

2. Go to the folder “$ROOT_TGMM\build\nucleiChSvWshedPBC\Release”.

3. Execute the command:

ProcessStackBatchMulticore.exe $ROOT_TGMM\data\TGMM_configFile.txt 0 30 12

The program automatically detects how many processing cores are present in the workstation

and parallelizes the image segmentation task accordingly. The second and third arguments are

the first time point (0 in this case) and the last time point (30 in this case) of the time-lapse image

data set. The last argument is the number of cores to use. This is an optional argument and it is

set to the maximum number of cores available in the machine by default.

Once processing is complete, new files “$ROOT_TGMM\data\TM?????_timeFused_blending\

SPC0_CM0_CM1_CHN00_CHN01.fusedStack_?????_hierarchicalSegmentation_conn3D74_

medFilRad2.bin“ should have been generated (one for each time point). These binary files store

all information required to restore the hierarchical segmentation for each time point. If the binary

files were not created, an error occurred during execution of “ProcessStackBatchMulticore.exe”

and a corresponding error message is displayed in the terminal.

Linux

In order to generate the hierarchical segmentation for each time point, follow these three steps:

1. Open a terminal.

2. Go to the folder “$ROOT_TGMM/build/nucleiChSvWshedPBC”.

3. Execute the command:

parallel -j8 ./ProcessStack $ROOT_TGMM\data\TGMM_configFile_linux.txt -- {0..30}

The option -j8 indicates how many cores should be used in parallel (in this case 8). The last

option, {0..30}, indicates that the program ProcessStack should be executed for time points 0 to

30.

Important note: The command parallel is part of the GNU software (http://www.gnu.org/

software/parallel/). The program presents an easy interface to call programs in parallel. If this

software is not already installed, it can be downloaded from the GNU website or installed from

official repositories. For example, in Ubuntu you can simply use the following command: “sudo

apt-get install moreutils”.

Important note: Make sure to use the configuration file TGMM_configFile_linux.txt instead of

TGMM_configFile.txt, since the latter contains Windows end-of-line symbols that will lead to a

failure during code parsing in Linux. You can also use the tool dos2unix to ensure that any given

text file can be used as a config file.

3.3	Bayesian	sequential	tracking	with	Gaussian	Mixture	Models	
	
In order to track cell nuclei and reconstruct cell lineages, follow these three steps (the same

instructions are valid for Windows and Linux):

1. Open a Windows command line terminal (run “cmd.exe” in Windows).

2. Go to the folder “$ROOT_TGMM\build\Release”

3. Execute the command:

TGMM.exe $ROOT_TGMM\data\TGMM_configFile.txt 0 30

The command line will display notifications about the progress of the tracking and segmentation

algorithm. Since the hierarchical segmentation results from step 3.2 are saved separately in the

“.bin” files, different tracking parameter settings can be tested without the need for recalculating

or changing the segmentation data. The output data format of the tracking module is explained in

section 4.

3.4	Verifying	successful	program	execution	
	
In order to simplify the verification of successful TGMM software execution, we provide the

output for the test data set in “$ROOT_TGMM\data\TGMMruns_testRunToCheckOutput”. The

output generated by your execution of the program should be very similar to the contents of this

folder.

 	

4. Tracking	and	segmentation	output	data	format	
	

The folder “debugPathPrefix\GMEMtracking3D_%date“ contains the output of the TGMM run.

The final result can be found in the subfolder “$debugPathPrefix\GMEMtracking3D_%date\

XML_finalResult_lht” or “$debugPathPrefix\GMEMtracking3D_%date\XML_finalResult_lht_

bckgRm”. The latter directory is used if the user applied the background classifier. The output

subfolder contains one XML file and one “.svb” file per time point.

The XML file contains the main tracking and segmentation information. Each object is stored

under the tag <GaussianMixtureModel> with the following attributes:

 id [integer]: unique id of the object in this particular time point.

 lineage [integer]: unique id of the cell lineage the object belongs to.

 parent [integer]: id of the linked object at the previous time point. Following the chain of

“parent” objects reconstructs the track. A value of -1 indicates the birth of a track.

 splitScore [float]: confidence level for the correct tracking of this particular object. A

value of 0 indicates very low confidence and a value of 5 indicates very high confidence.

Sorting elements by confidence level can guide the user in the data curation process and

facilitate more effective editing of the TGMM results (see main text and Fig. 4).

 scale [float[3]]: voxel scaling factors along the x-, y- and z-axis.

 nu, beta, alpha [float]: value of the hyper-parameters for the Bayesian GMM.

 m [float[3]]: mean of the Gaussian Mixture (object centroid, in pixels).

 W [float[3][3]]: precision matrix of the Gaussian Mixture (object shape).

 *Prior: same as before, but for prior values obtained from the previous time point. These

values are used during the inference procedure.

 svIdx [integer[]]: list of indices of the super-voxels clustered by this Gaussian. Together

with the “.svb” file, this information can be used to obtain precise segmentation regions

for each object.

The “.svb” file is a binary file in a custom format that can be read with the constructor

“supervoxel::supervoxel(istream& is)”. Briefly, it contains information about all super-voxels

generated at a particular time point. Thus, using the “svIdx” attribute, the precise segmentation

mask for each object can be recovered.

Users can download a set of Matlab scripts in the zip file “readTGMM_XMLoutput.zip” at

http://sourceforge.net/projects/tgmm/files/ in order to import the data to Matlab for

further analysis. The zip file also includes a README file explaining how to use these

scripts.

5. Troubleshooting	common	runtime	errors	
	

1. Program execution starts and one of the following error messages is displayed in the

terminal: “no CUDA- capable device is detected” or “CUDA driver version is insufficient

for CUDA runtime version”.

First, confirm that the workstation is equipped with an NVIDIA CUDA-capable graphics

card. This is a hardware requirement for running the software. If such a card is installed,

you most likely need to update the driver in order to be compatible with CUDA Toolkit

5.5. Go to https://developer.nvidia.com/cuda-downloads and download the current

toolkit. The toolkit will also install an updated NVIDIA driver.

2. When you try to run the program from the terminal, a Windows dialog pops up with the

following message “The program can't start because msvcp100.dll is missing from your

computer”.

For some reason, the provided DLL from the Microsoft Visual C++ 2010 SP1

Redistributable Package (x64) is not compatible with your windows version. Delete the

DLL from the TGMM software folder and go to http://www.microsoft.com/en-

us/download/confirmation.aspx?id=13523 to download and install the appropriate

version of the Microsoft Visual C++ 2010 SP1 Redistributable Package.

3. Note that the program needs to be called from a “cmd.exe” terminal in Windows. Cygwin

or MinGw terminals cause the program to fail.

4. “ProcessStackBatchMulticore.exe” requires paths to be provided using absolute path

names. The use of relative path names also causes the program to fail.

5. Note that the parameter “imgFilePattern” in the configuration file

“TGMM_configFile.txt” requires the use of forward slashes in path names (since the

image library used to read TIFF files follows the Unix convention), whereas the

parameter “debugPathPrefix” in the same file requires the use of double backslashes in

path names (since backslashes are special characters that are interpreted by the operating

system). On Linux systems, always use forward slashes in both parameters.

6. Program execution starts and one of the following error messages is displayed on the

terminal: “invalid device symbol in C:/ROOT_TGMM/src/nucle/iChSvWshedPBC/

CUDAmedianFilter2D/medianFilter2D.cu at line 230”

The provided binaries were compiled for CUDA compute capability 2.0 or higher. If your

NVIDIA GPU card has a lower CUDA compute capability (this information is available

from https://developer.nvidia.com/cuda-gpus), the provided binaries will not work.

However, you can recompile the source code, which should allow you to run the

software. Before compiling, you need to edit the CMakeLists.txt file and modify the line

at the top: set (SETBYUSER_CUDA_ARCH sm_20 CACHE STRING “CUDA

architecture”). Adjust the flag sm_20 to the appropriate CUDA compute capability of

your NVIDIA GPU (for example, sm_13 for CUDA compute capability 1.3).

6. Description	of	the	parameters	in	the	configuration	file	
	

6.1	Key	configuration	parameters:	intensity	threshold	and	persistence	
agglomeration	threshold	
	
Across all computational reconstructions and data sets presented in this study, two parameters

were modified: the threshold for persistence-based agglomeration of watershed regions

(persistenceSegmentationTau) and the intensity threshold for defining the background level in

each recording (backgroundThreshold). Both of them refer to image properties and are straight-

forward to determine by visual inspection of the image volume at a late time point of the time-

lapse recording. In general, inspecting late time points is more useful, since (depending on the

experiment) intensity levels are often slightly dimmer and cell densities higher. Measurements in

this scenario provide a lower bound constraint for both values.

To determine the background threshold, simply inspect a region in the image volume outside the

specimen (for example, by using the open-source software ImageJ) and determine the mean

intensity level in this background region. It is preferable to be conservative, i.e. to set a lower

value so as not to miss cell nuclei, since false negatives can alter the coherence between time

points. Moreover, we compute a local threshold for each super-voxel using Otsu’s and, thus,

even if background regions are included in the foreground estimate, this will not affect the final

shape of the super-voxels. The only drawback of a lower background threshold is a small

increase in computation time.

To determine the threshold for persistence-based agglomeration of watershed regions (τ), plot the

intensity profile across the line connecting two of the dimmest nuclei centroids in the image

stack (for example, by using the open-source software ImageJ). The profile should have two

peaks (nuclei centroids) and a valley (nuclei borders). The threshold τ should be set to a value

smaller than the difference between the intensity values of the peaks and the valley, such that the

corresponding nuclei are not merged into a single super-voxel (under-segmentation). In our

experience, a value of τ between 5 and 20 tends to be sufficient to compensate for the watershed

over-segmentation of noisy regions, without risking merging of dim cell nuclei.

We note that, although care should be taken to set these parameters appropriately, one can obtain

close-to-optimal results for a fairly wide range of parameter values. For images with lower

signal-to-noise ratio (SNR), such as confocal microscopy images, the value of τ is more critical

than the background intensity because watershed regions fragment the image into smaller

regions. In contrast, in images with high SNR, such as most light-sheet microscopy images, the

intensity background is more relevant because the watershed algorithm already produces super-

voxels that follow nucleus morphologies fairly well.

6.2	Overview	of	advanced	framework	parameters	
	
In this section, we provide an overview of all advanced framework parameters. Note that these

parameters were not changed across the computational reconstructions and data sets presented in

this study. To complement the descriptions below, we also provide the default parameter values

in the configuration file “$ROOT_TGMM\data\TGMM_configFile.txt”, which is included in

“Supplementary_Software_1.zip”.

betaPercentageOfN_k

Non-negative floating point scalar. betaPercentageOfN_k defines the prior probability for the

centroid position of a nucleus based on its position in the previous time point. No motion model

is used, unless the optical flow module is activated. Thus, if cells are moving fast this parameter

should be set close to zero. If cells are moving very little, and the position at time t is a good

prediction for the position at time t + 1, this parameter should be set to 1 or greater.

nuPercentageOfN_k

Non-negative floating point scalar. Follows the same concept as betaPercentageOfN_k, but for

shape variation between consecutive time points. If objects change shape rapidly between two

consecutive time points this parameter should be set close to zero. If object shapes change very

little between time points this parameter should be set to 1 or greater.

alphaPercentage

Floating point scalar. alphaPercentage controls the prior probability of death for a track. The

more likely nuclei are to disappear from the image or undergo apoptosis, the lower the value of

this parameter should be.

maxIterEM

Integer positive number. maxIterEM defines the maximum number of iterations of variational

inference allowed each time a Gaussian mixture model is fitted. In general, very few rounds are

needed (less than 10), since the model is initialized with the solution from the previous time

point. Thus, this parameter is implemented as a precaution. The terminal output of TGMM.exe

can be used to obtain an estimate of the typical number of iterations needed and maxIterEM can

then be set accordingly.

tolLikelihood

Floating point positive number. tolLikelihood is used as a stopping criterion for variational

inference of the Gaussian mixture model. Optimization is stopped if the relative increase in

likelihood between two consecutive iterations is less than the value of this parameter. Thus, the

lower the value, the more iterations of variational inference are run.

regularizePrecisionMatrixConstants_lambdaMax

Floating point positive number. This parameter provides the maximum allowed value for any of

the eigenvalues (in pixels) of the covariance matrix defining each object in the Gaussian mixture

model. Thus, the larger the value of regularizePrecisionMatrixConstants_lambdaMax, the larger

the ellipsoids fitting each nucleus can grow. This parameter is used during regularization of the

variational inference results.

regularizePrecisionMatrixConstants_lambdaMin

Floating point positive number. This parameter provides the minimum allowed value for any of

the eigenvalues (in pixels) of the covariance matrix defining each object in the Gaussian mixture

model. Thus, the lower the value of regularizePrecisionMatrixConstants_lambdaMin, the

smaller the ellipsoids fitting each nucleus can shrink. This parameter is used during

regularization of the variational inference results.

regularizePrecisionMatrixConstants_maxExcentricity

Floating point positive number. This parameter provides the maximum eccentricity between any

two principal axes of the ellipsoid defining a nucleus. This parameter is used during

regularization of the variational inference results.

temporalWindowForLogicalRules

Positive integer number. This parameter provides the radius of the temporal window (total

window length is [2 × temporalWindowForLogicalRules + 1] time points) used to apply spatio-

temporal heuristic rules for fixing tracking errors. The larger the value, the more memory is

required, since the program will keep the image data of all concerned time points in memory to

be able to calculate the features needed to apply the various heuristics.

thrBackgroundDetectorHigh and thrBackgroundDetectorLow

Floating point non-negative numbers. These parameters provide the thresholds applied to the

results of the background track detector for removing trajectories representing non-nuclei

objects. They control the behavior of a hysteresis filter applied over time to the background

probability scores of multiple data points belonging to the same lineage. When the program

detects a data point with a background probability above thrBackgroundDetectorHigh it

proceeds with deleting its descendants until the probability falls below

thrBackgroundDetectorLow. Thus, the higher the value of thrBackgroundDetectorHigh, the

fewer objects are removed. If thrBackgroundDetectorHigh is above 1, then no background track

removal is applied.

SLD_lengthTMthr

Non-negative integer number. Any daughter branch that ends within less than SLD_lengthTMthr

time points after division is considered a spurious over-segmentation event and is deleted.

radiusMedianFilter

Positive integer number. This parameter provides the radius (in pixels) of the median filter

applied before the watershed hierarchical segmentation is performed. The noisier the images, the

larger this value should be.

minTau

Non-negative floating point value. This parameter provides the minimum value of τ used for the

hierarchical segmentation using persistence-based clustering of watershed regions. The higher

minTau, the larger the minimum super-voxel size that can be generated at the lower level of the

hierarchical segmentation. This value should be kept low so as not to compromise the

framework’s capability to recover from under-segmentation.

conn3D

Values allowed are 6, 28 and 74. This parameter defines the 3D local neighborhood used to run

watershed for generating super-voxels. Values of 6 and 28 define traditional 3D neighborhoods,

whereas a value of 74 generates cubes of 5 x 5 x 3 around each point to address the anisotropy of

the point-spread-function typically encountered in 3D microscopy images.

estimateOpticalFlow

Values allowed are 0, 1 and 2. This parameter activates/deactivates the use of optical flow

calculations between time points for the purpose of compensating for large object displacements.

A value of 0 deactivates optical flow calculations. A value of 1 indicates that pre-calculated

optical flow files are available and can be used to apply local motion displacements between

time points. A value of 2 indicates that the program will calculate optical flow on-the-fly, using a

routine provided by the user.

maxDistPartitionNeigh

Floating point positive number. It is only used if estimateOpticalFlow is equal to 2 and the

routine called is the one described in F. Amat et al., “Fast and robust optical flow for time-lapse

microscopy using super-voxels” (Bioinformatics, 2013). The parameter provides the maximum

allowed distance (in pixels) between super-voxels for them to be considered neighbors in the

calculation of the optical flow (coherence constraint).

deathThrOpticalFlow

Integer number. If positive, the optical flow module will be activated automatically when the

number of deaths at a specific time point is larger than the value of this parameter. Usually, when

large motions occur (larger than one nucleus diameter from one time point to the next), many

Gaussians in the model disappear, since the solution from the previous time point is not well-

suited for initialization of the current time point. Thus, monitoring deaths can be used as a trigger

to activate optical flow only when needed.

minNucleiSize

Positive integer number. If the number of voxels belonging to a super-voxel is less than

minNucleiSize the super-voxel is deleted. This parameter is useful to delete spurious super-

voxels representing background intensity.

maxNucleiSize

Positive integer number. This parameter defines the maximum allowed size (in voxels) of a

super-voxel after applying Otsu's threshold. If Otsu's threshold generates an object larger than

maxNucleiSize the threshold is increased until the objet size falls below maxNucleiSize.

maxPercentileTrimSV

Floating point number between 0 and 1. This parameter defines the maximum allowed

percentage of voxels in a super-voxel belonging to foreground. If Otsu's threshold generates an

object larger than maxPercentileTrimSV the threshold is increased until the percentage of

foreground voxels falls below below maxPercentileTrimSV.

conn3DsvTrim

Values allowed are 6, 28 and 74. The final super-voxel generated after trimming the initial super-

voxel partition to detect foreground and background is guaranteed to have this connectivity.

maxNumKNNsupervoxel

Positive integer number. This parameter defines the maximum number of nearest neighbors to

consider for each super-voxel when building the spatio-temporal graph for tracking. The shorter

the nuclear displacement between time points, the lower the parameter value can be.

maxDistKNNsupervoxel

Floating point positive number. This parameter defines the maximum distance (in pixels) to

consider for each super-voxel when building the spatio-temporal graph for tracking. The shorter

the nuclear displacement between time points, the lower the parameter value can be.

thrSplitScore

Floating point number. If 3D Haar features are used for cell division classification, this

parameter sets the threshold for the machine learning classifier to decide whether a cell is

dividing or not. The higher the threshold, the fewer divisions are going to be called by the

classifier. In order to activate 3D Haar features, the code needs to be recompiled with

preprocessor directive CELL_DIVISION_WITH_GPU_3DHAAR.

thrCellDivisionPlaneDistance

Floating point positive number, defining the threshold of a feature for disregarding cell division

false positives. The feature calculates the distance (in pixels) between mother cell and the

midplane defined by the two daughter cells. If the value is above thrCellDivisionPlaneDistance,

the cell division is considered a false positive and the linkage between mother and furthest

daughter is removed. The default value of 3.2 was determined empirically from a small training

set to maximize precision while maintaining a high recall of true cell divisions. The lower the

value, the lower the recall of cell divisions and the higher the precision.

thrCellDivisionWithTemporalWindow

Floating point number between 0 and 1. In order to improve cell division detection accuracy the

3D Haar features have been combined across the temporal window. This parameter sets the

threshold for the machine learning classifier to decide whether a cell is dividing or not based on

these new set of features. The higher the threshold, the fewer divisions are going to be called by

the classifier.

