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Understanding the structure of single neurons is critical for understanding how they function within neural
circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps
in labeling and microscopy, and the widely recognized need for openness and standardization to provide
a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.
Introduction
Although more than 100 years have

passed since Santiago Ramón y Cajal

was awarded the Nobel Prize for the

neuron doctrine, we still lack an accepted

catalog of neuron types and their names

(DeFelipe et al., 2013). This remains an

important challenge, as it is a major goal

of neuroscience to understand the rela-

tionship between the algorithms imple-

mented by the brain and the hardware

used to implement them (Marr and Pog-

gio, 1976; Koch 1999). The three-dimen-

sional (3D) shape of a neuron—including

its dendritic and axonal arbors—is central

to determining its identity (phenotype),

connectivity, synaptic integration, firing

properties, and ultimately its role in the

neural circuit. Characterizing and under-

standing the 3D morphology of individual

neurons is fundamentally important for

elucidating the breadth of neuronal diver-

sity. Recentmajor neuroscience initiatives

worldwide, such as the U.S. BRAIN Initia-

tive (http://braininitiative.nih.gov/) (Alivi-

satos et al., 2012), Europe’s Human Brain

Project (https://www.humanbrainproject.

eu/) (Kandel et al., 2013), and the Allen

Cell Types Database (http://celltypes.

brain-map.org/) are all based on the

importance of understanding the diver-

sity of cell types across multiple nervous

systems as a step toward elucidating the

relationship between the structure and

function in the nervous system.

Quantifying the morphology of neurons

and other tree-shaped biological struc-
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tures (e.g., glial cells, brain vasculature,

etc.) has been the focus of numerous

studies over the past 30 years (Peng

et al., 2015; Gillette et al., 2011). Yet the

systematic characterization of even sim-

ple brain circuits at the level of their

individual neurons is still limited by the

lack of a robust system for fast and accu-

rate reconstruction of neuronal branching

arbors. Although tens of thousands of

neurons have been digitized across multi-

ple species, brain regions, and labora-

tories worldwide, the variability intro-

duced through different animal species,

developmental stages, and brain loca-

tions as well as through distinct histologi-

cal, imaging, and reconstruction proto-

cols has made systematic analysis and

comparison challenging.

The BigNeuron project (http://bigneu

ron.org/) is a community effort to define

and advance the state of the art of sin-

gle-neuron reconstruction, develop a tool-

kit of standardized reconstruction proto-

cols, analyze neuron morphologies, and

establish a data resource for neurosci-

ence. The project, announced on March

31, 2015, is sponsored by 14 neurosci-

ence-related research organizations and

dozens of international research groups

and individuals.

The initial goal of BigNeuron is to bench

test a large set of open-source, automated

neuron reconstruction algorithms, using

community-contributed, openly available

3D neuron image datasets that were

acquired by a variety of light microscopy
Inc.
methods. Bench testing will be performed

on a common open software platform

running on supercomputers, and the re-

sults will be compared and validated

againstmanual segmentationsusingcare-

fully defined consensus criteria from the

computational and neuroscience commu-

nities. Ultimately, this will produce a large,

community-generated database of single-

neuron morphologies, open-source tools

for neuroscience, and community-driven

protocols intended to serve as the stan-

dard for digital reconstruction of single

neurons.

Why BigNeuron Is Needed
Since the birth of modern neuroscience,

the prevailing approach for understanding

neuronal morphology has been to spend

many hours, days, and weeks manually

delineating complicated neuronal shapes

visualized using a variety of staining tech-

niques. In the modern digital era, a typical

workflow has three major steps. Neurons

must first be labeled with a dye, antibody,

or transgenic tracer to reveal neuronal

structures. Next, one or more microscopy

approaches are applied to digitally cap-

ture images. Lastly, neurons can be

computationally traced or reconstructed,

extracting their geometry from imagepixel

data (Meijering, 2010; Parekh and Ascoli,

2013). Substantial advances have been

made in the last decade for both specimen

preparation (e.g., genetic labeling; Nern

et al., 2015), virus-based circuit tracing

(Oh et al., 2014), tissue clearing (Chung
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et al., 2013; etc.), and advanced image

capture (e.g., laser scanning microscopy;

high-speed, high-resolution digital cam-

eras; etc.). This has yielded hundreds of

thousands of cell images, yet it is still un-

clear which approaches are most condu-

cive to robust and accurate automated

image processing.

The neuron reconstruction step has re-

mained a key bottleneck in the workflow.

Accurate neuronal reconstruction is still

extremely resource intensive, relying on

human labor for drawing, curating, and

annotating neuron shape, even with the

help of powerful computers. Before

2014, less than 10,000 dendritic recon-

structions were available in the largest

public neuronal morphology database,

NeuroMorpho.Org (Halavi et al., 2012).

Many of these digital morphologies, and

the majority of neuronal structure data

published to date, were collected using

different manual tracing protocols and im-

ages of widely different quality, often re-

sulting in incomplete and highly variable

reconstructions. The lack of standardized

imaging and reconstruction of neurons

from different investigators greatly limits

their future use in downstream analysis,

such as the computational reconstruction

of neural circuitry. It is thus highly desir-

able to apply automation to both accel-

erate and standardize this process.

In recent years, a number of efforts have

gone into improving the methods and

algorithms for morphological reconstruc-

tion of neurons. Effectively, individual or-

ganizations—working chiefly with their

owndatasets—have taken steps to screen

and document single-neuron morphol-

ogiesusing automatedneuron reconstruc-

tion. Several examples include Taiwan’s

FlyCircuit.Org (Chiang et al., 2011) and Ja-

nelia’s FlyLight project (Nern et al., 2015),

which focus on Drosophila CNS neurons;

the BlueBrain project’s rat somatosensory

neurondatabase (http://bluebrain.epfl.ch);

and the Allen Institute’s Cell Types Data-

base project (http://www.brain-map.org),

which studies mouse and human neocor-

tical neurons.

As a result of this heightened interest,

many new algorithms for neuron recon-

struction have emerged in the last five

years (e.g., Wang et al., 2011; Peng et al.,

2011). Some have vastly enhanced the

competitive performance of tracing accu-

racy compared to the independent, manu-
ally curated reconstructions in public data-

bases (Xiao and Peng, 2013; Chiang et al.,

2011).

Automated neuron reconstruction

methods developed for different applica-

tion scenarios typically have varying

performance, however, especially when

used on neuron images of variable quality

and different species. Because most of

these methods have not been directly

cross-tested thoroughly, it is unclear

which methods are best matched with

different imaging modalities or datasets.

Furthermore, there are significant differ-

ences in coding platforms and languages,

each requiring different image input para-

digms and generating different output

reconstruction formats. Thus, it is hard to

quantitatively compare these algorithms

objectively. Many existing methods have

been developed for very small images,

and their performance on much larger im-

ages is unknown (e.g., compare a single

Drosophila interneuron to a human Betz

cell).

Comparing different reconstruction

algorithms to ground truth requires

a substantial number of single-neuron

datasets acquired under different condi-

tions. Testing analysis methods thor-

oughly using the same core data will

help characterize the landscape of anal-

ysis approaches to establish which are

optimal for distinct image datasets cor-

responding to different species, brain

regions, neuron types, and experimental

conditions. Because community-contrib-

uted images used for BigNeuron were

collected using a variety of paradigms,

the analysis output will in turn provide

guidelines for optimizing neuron labeling

and sample preparation conditions and

matching them to the imaging methods

and parameters that yield the most valu-

able information.
What BigNeuron Will Bring to the
Community
BigNeuron is designed to benefit neuro-

science in several practical ways:

d First, at its completion, neurobiolo-

gists who are interested in under-

standing neuron morphology will

be able to access a toolkit for anal-

ysis written by a broad range of ex-

perts. This will allow them to benefit

from a community of ready-made
Neuron 87
collaborators, cutting down the

costs and time to generate recon-

struction data. Scientists who pro-

vide raw image data to the large-

scale bench testing of BigNeuron

will reduce the need to seek addi-

tional resources toquantify neuronal

morphological data at small scale.

Instead, they will have access to a

worldwide neuron reconstruction

method-developing community.

d Second, BigNeuron will provide a

common platform for neuron recon-

struction method developers to

compare and analyze algorithms.

In a series of ongoing and planned

hackathons worldwide, developers

are learning (from each other) the

relative pros and cons of various

methods and how to leverage ex-

isting resources to refine or develop

new algorithms. The BigNeuron

platform will also entail real-world

analysis of large data, thus serving

as a practical guideline in deter-

mining the suitability of specific

reconstruction methods for a vari-

ety of image datasets (as well as

providing feedback regarding the

utility of various sample preparation

and imaging protocols). Bringing

neuron reconstruction methods

and results together will also

encourage method developers to

collaborate, share, and reuse each

other’s software modules. To make

these reconstruction methods and

analysis approaches truly open,

input and output data formats need

to be standardized and imple-

mented in a common computational

infrastructure; hence the need for

the community to come together

and drive the BigNeuron project.

d BigNeuron will also likely produce

one of the largest community-

derived phenotype databases for

single neurons, cataloguing neuron

shape and projection patterns

from different species and different

brain regions. Since all the neuron

image data will be processed us-

ing the same protocols, it will be

straightforward to compare the re-

constructions. The rich dataset will

not only attract more data analysts

to examine neuron morphology, but

also offer an opportunity to mine
, July 15, 2015 ª2015 Elsevier Inc. 253
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Figure 1. Bioimage Informatics Matchmaking
In neuroscience labs worldwide, neuronal morphology image stacks are acquired through multiple micro-
scopy modalities from a diverse array of experimental preparations. At the same time, a broad range of
reconstruction algorithms are continuously developed using various programming languages, computa-
tional platforms, and custom test beds. Harnessing powerful supercomputers and the open source com-
munity, BigNeuron brings together tens of thousands of state-of-the-art 3D neuronal images with all major
classes of automated tracing systems to generate an unprecedented number of digital morphological
reconstructions. Expert cross-analysis of the initial bench testing dataset against manually curated gold
standards will generate a unique toolbox of morphometric measurements aimed to stimulate further
development.
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and query the patterns of neurons

with distinct shapes. The database

could ultimately be expanded to

include functional data (e.g., physi-

ology, gene expression) for recon-

structed neurons.

d Finally, the analysis from BigNeuron

will provide an opportunity to

improve the accuracy and efficiency

in targeting, labeling, and acquiring
Neuron 87, July 15, 2015 ª2015 Elsevier Inc
images of single neurons, using

many of the powerful techniques

recently developed for neuron spec-

imen preparation and advanced im-

aging. As BigNeuron makes it easier

to reconstruct neuron shapes, ex-

perimentalists can use the technical

platformofBigNeuron in their exper-

imental design and will be able to

refine their protocols and improve
.

the raw image data quality at much

lower cost (Figure 1).
Approach
The first (ongoing) year of BigNeuron is

establishing the infrastructure, with a

plan for initial data release in 2016. This

first phase focuses on reconstructing

sparsely labeled neurons in 3D neuron

image stacks. Test data include samples

imaged using a variety of light microscopy

modalities, especially laser-scanning mi-

croscopy (confocal and two-photon) and

wide-field epifluorescence microscopy,

as well as bright-field microscopy. The

construction of a highly accessible data-

base will enable analysis of neuronal

morphology patterns acrossmultiple spe-

cies, with possible expansion to other

related issues, such as resolving individ-

ual neurons within densely labeled sam-

ples, identifying connectivity, and analysis

of multi-color images, time-lapse images,

electron microscopic images, etc.

The initial BigNeuron operation will

foster community involvement through

several workshops for annotation and

code development. First, BigNeuron is

supporting three algorithm-porting hack-

athons to help international developers

port their neuron reconstruction and

analysis methods onto a common soft-

ware platform. Second, we are organizing

data collection days to meet with neurobi-

ologists who will share raw image data.

Third, in June, the Allen Institute hosted

the first neuronal annotation workshop

designed to produce high-quality manual

reconstructions that could serve as a

‘‘gold standard’’ for evaluating the per-

formance of the neuronal reconstruction

algorithms. Finally, a data analysis hacka-

thon will be held after a large number of

reconstructions have been produced in

the bench-testing phase.

It is important to attract and enable the

contribution of a large variety of neuron

image datasets for bench testing. Data

collected to date include neuron image

stacks from several species (e.g., fruitfly,

dragonfly, silk moth, zebrafish, Xenopus,

chick, mouse, rat, and human) and

anatomical regions (e.g., cortical and

subcortical areas, retina, and peripheral

nervous system). These neurons have

been labeled using different methods

(e.g., transgenic fluorescent proteins
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introduced in a variety of ways as well as

dyes introduced by intracellular injection)

and will span a broad range of neuronal

types (i.e., morphological and functional

classes). Many of these neurons have

been contributed from large-scale neuro-

informatics projects, such as the Allen In-

stitute’s Mouse and Human Cell Types

projects, Taiwan’s FlyCircuit.Org (Chiang

et al., 2011), and Janelia’s FlyLight project

(Nern et al., 2015). In addition, a number

of datasets are also being contributed

directly by neuroscientists from a growing

number of organizations. Several image

datasets have already been recon-

structed, manually curated, and/or proof-

read at the source laboratories. To ensure

usability for bench testing, contributed im-

age data will be pre-processed, including

standardizing formats, adding essential

metadata, and providing important infor-

mation such as cell body position. Image

data will then be archived for future bench

testing.

Bench tests will employ an array of

morphological metrics (e.g., individual

neurite diameter, length, branching an-

gles), summary statistics (average, SD,

minimum, maximum, and total dendritic

length), as well as histogram distributions

or the dependency of one metric on

another (e.g., Sholl analysis of number of

branches versus distance from soma).

These morphological metrics will be used

to compare reconstructions from various

automated reconstruction methods to

gold-standard reconstructions obtained

by expert manual reconstruction, with the

most valuable metrics to be determined

during the course of the project. These

gold-standard reconstructions will also

help characterize and quantify the

types of errors in the automated neuron

reconstructions.

The total numberofpotentialbench tests

equals the number of possible combina-

tions of neuron images, reconstructions

methods, and parameter configurations

needed to obtain quality reconstructions.

BigNeuron will bench test more than

20,000 single-neuron image stacks, for

about 20 reconstruction methods, each

trying one to four parameter configurations

to optimize the result. Therefore, over one

million neuron reconstructions will be pro-

duced during bench testing. To assess

the practical usability of an individual

algorithm, the maximum running time of
such an algorithm method will be con-

strained. Nevertheless, computational

bench testing on this scale will still

require several powerful supercom-

puters. BigNeuron has been granted ac-

cess to supercomputing facilities run by

the Oak Ridge National Laboratory, the

Lawrence Berkeley National Laboratory,

and the European Human Brain Project,

along with other facilities. We expect

that multiple bench testing on different

supercomputers will ensure better repro-

ducibility, foster interest and collabo-

ration between participants, and reduce

cost. These bench tests will be moni-

tored to validate true performance of

the various methods. The source code

needed to generate the supercomputing

job scripts will also be publicly shared, al-

lowing anyone to run smaller or similar-

scale bench tests using their own ma-

chines. Ultimately, BigNeuron’s platform

will encourage development of accurate

and computationally efficient algorithms.

Another important aspect of the proj-

ect is the sharing of neuron reconstruc-

tions. We expect this bench test to

generate a large number of reconstruc-

tions, roughly 20+ for each image dataset.

The consensus reconstruction, as well as

alternative ways to look at the population

of reconstructions, such as the principal

components, will be provided. All these

data will be freely shared on a new public

web-based database. The conditions

associated with the generation of the

data will also be documented and shared

in the database. These metadata will also

enable widespread use of the data,

including mirroring by multiple sites such

as NeuroMorpho.Org and other data-

bases. The neuroscience community will

be invited to analyze the reconstructions

openly.

A common software platform is crucial

to make BigNeuron a success. BigNeuron

will employ the open source, cross-plat-

form package Vaa3D (http://vaa3d.org)

as the bench-test infrastructure. Vaa3D

(Peng et al., 2010, 2014) is a visualization

and analysis software suite created and

maintained by Janelia Research Campus

(HHMI) and the Allen Institute for Brain

Science. This software performs 3D and

higher-dimensional dynamic reconstruc-

tion and rendering of very large image

datasets and associated 3D surface ob-

jects, particularly those generated using
Neuron
a variety of modern microscopy methods.

Vaa3D has a rich set of functions and

plugins for neuron quantification and is

compatible with well-established neuron

analysis tools such as L-Measure (Scor-

cioni et al., 2008). Vaa3D is suitable for

manual, semi-automatic, and completely

automated digital tracing. This software

has been used in several large neurosci-

ence initiatives and a number of applica-

tions in other domains. For the BigNeuron

project, 15 neuron-tracing algorithms

have already beenported toVaa3Dasplu-

gins. The software is also used for visuali-

zation, bench testing, and data analysis.

Given the increasing focus on Big Data,

the grand challenge of understanding cir-

cuitry of the human brain in health and dis-

ease, and the importance of understand-

ing the diverse morphological patterns of

neurons—the brain’s most fundamental

units—the time is right for a project like

BigNeuron to move the field toward a

consensus on how to reconstruct and

interpret neuronal morphology. Success-

ful hackathons in Asia, Europe, and the

U.S. have already ported several new

algorithms to the BigNeuron platform. A

workshop in June 2015 already generated

some expert consensus on gold-standard

reconstructions and annotation and

further highlighted the importance of us-

ing distinct paradigms for labeling and im-

age capture to yield the most interpret-

able 3D images. Bringing investigators

together from the frontline of computa-

tional analysis and cellular neuroanatomy

and morphology to establish open-

source, automated neuron reconstruction

algorithms using community-contributed,

3D neuronal image datasets will enable

the development of key benchmarks for

future studies of neural circuitry, form,

and function in the coming years.

BigNeuron offers an opportunity to take

a much-needed step toward informing

the evolution of accepted standards for

reconstruction of highly complex neurons

and contributes critically to the mission of

open and reproducible science that will

be crucial to understand brains of all

kinds—not least of all the brains working

together to achieve its goals.
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