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We present a new approach to genotyping based on multiplexed shotgun sequencing that can identify recombination
breakpoints in a large number of individuals simultaneously at a resolution sufficient for most mapping purposes, such as
quantitative trait locus (QTL) mapping and mapping of induced mutations. We first describe a simple library construction
protocol that uses just 10 ng of genomic DNA per individual and makes the approach accessible to any laboratory with
standard molecular biology equipment. Sequencing this library results in a large number of sequence reads widely dis-
tributed across the genomes of multiplexed bar-coded individuals. We develop a Hidden Markov Model to estimate
ancestry at all genomic locations in all individuals using these data. We demonstrate the utility of the approach by
mapping a dominant marker allele in D. simulans to within 105 kb of its true position using 96 F1-backcross individuals
genotyped in a single lane on an Illumina Genome Analyzer. We further demonstrate the utility of our method by
genetically mapping more than 400 previously unassembled D. simulans contigs to linkage groups and by evaluating the
quality of targeted introgression lines. At this level of multiplexing and divergence between strains, our method allows
estimation of recombination breakpoints to a median of 38-kb intervals. Our analysis suggests that higher levels of
multiplexing and/or use of strains with lower levels of divergence are practicable.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA025671 (SRS118670).]

Reductions in the cost of high-throughput sequencing have allowed

rapid advances in genotyping that promise unparalleled resolution

in studies of the genetic architecture of complex traits (Ding and Jin

2009; Edenberg and Liu 2009; Ragoussis 2009). For example, SNP-

based methods (e.g., RT–PCR, Sequenom MassARRAY, Illumina

GoldenGate) can provide efficient genotyping of a relatively small

number of markers in a large number of individuals. In contrast,

array-based genotyping methods (e.g., Affymetrix, Agilent, etc.) can

provide genotypes for a much larger number of markers (e.g., Coop

et al. 2008; Mancera et al. 2008), though genotyping a large number

of samples can be prohibitively expensive for many investigators. In

fact, an awkward gap in methods persists for studies that require

cost-effective typing of hundreds to thousands of markers in hun-

dreds to thousands of individuals. Multiplexed genotyping at this

intermediate scale would facilitate the construction of genetic maps,

the mapping of induced mutations, and the mapping of quantita-

tive trait loci (QTLs) both in model organisms and in non-model

systems. This ‘‘genotyping gap’’ has led to the recent refinement of

methods for bulk-segregant analysis (Lai et al. 2007; Baird et al.

2008; Ehrenreich et al. 2010; Wenger et al. 2010) that can provide

accurate information on QTL location, but at the expense of in-

dividual-genotype information that may be desired, for example, to

estimate allele effect sizes and epistasis.

Many genotyping methods involve a two-step process: First,

informative SNPs are identified and, second, genotypes for these

SNPs are scored in multiple individuals using any of a variety of

technologies. Two recently published approaches used next-gen-

eration sequencing to combine marker discovery and genotyping

in a single step (Baird et al. 2008; Huang et al. 2009). Both methods

can generate a large number of genome-wide markers and can ac-

commodate multiplexing of individuals. However, the restriction-

site associated DNA (RAD) approach of Baird et al. (2008) is labor

intensive, involving restriction enzyme digestion, mechanical

shearing of DNA and repair, two independent ligations of adaptors,

and two gel-purification steps. The ‘‘whole-genome resequencing’’

(WGR) approach of Huang et al.(2009) is simpler than RAD, but

still involves DNA shearing and repair prior to adaptor ligation.

Shearing and repair, a key feature of RAD, WGR, and other ap-

proaches based on the standard Illumina-library preparation pro-

tocols is expensive, labor intensive, and typically requires a large

quantity of starting genomic DNA (i.e., up to 1 mg) (Baird et al.

2008). This requirement makes such approaches difficult to apply

to nonclonal species that have small body sizes, such as Drosophila

and other insects.

Here we propose an approach that we call ‘‘multiplexed shot-

gun genotyping’’ (MSG), which is similar in spirit to RAD and WGR,

but combines the best aspects of both. Like RAD, our method is

based on restriction enzyme (RE) digestion of genomic DNA.

However, while RAD generally uses a rare-cutter RE, followed by

shearing into smaller fragments, we use a more frequent cutter that

allows us to ligate adapters to a large number of small genomic

fragments in a single step and reduce the number of gel-purifica-

tion steps from two to just one. In addition, the orientation of

fragments is random with respect to the direction of sequencing,

increasing their potential for revealing informative sequence dif-

ferences. Since our method does not require shearing and repair of

DNA prior to adapter ligation, this highly simplifies the library

5Corresponding author.
E-mail pandolfa@princeton.edu
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.115402.110.

21:000–000 � 2011 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/11; www.genome.org Genome Research 1
www.genome.org

 Cold Spring Harbor Laboratory Press on March 17, 2011 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


preparation protocol and allows us to start with very small amounts

of genomic DNA from each individual (i.e., 10 ng).

Sequencing this library results in a large number of sequences

widely distributed across the genome. We also developed a statis-

tical framework to assign ancestry to chromosomal segments and

detect recombination breakpoints based on a Hidden Markov Model.

As an alternative to making hard assignments of chromosomal

segments to one parent or the other (e.g., Xie et al. 2010), we use

‘‘soft’’ ancestry assignments in the form of a probability distribu-

tion on the ancestry, as proposed and implemented in a variety of

similar contexts (e.g., Falush et al. 2003). This approach is highly

suited to data in which the coverage, and thus the precision with

which breakpoints can be localized, varies among individuals in a

multiplexed genotyping experiment. We demonstrate efficient

multiplexing of 96 individuals in a single library and our results

indicate that even higher levels of multiplexing are practical.

Results

Multiplexed shotgun sequencing (MSG)

We developed a simple method to generate a large number of se-

quence reads widely scattered across the genome and to assign

ancestry to chromosomal segments based on this information. Our

approach starts from the premise that the strains under study

display shared synteny across the genome with an existing ge-

nome sequence, and that the sequences of the study strains and

the existing genome are sufficiently similar so that most short reads

can be mapped to the genome with high accuracy. The availability

of reference genome sequences obviates the need to pre-ascertain

SNPs or to score a particular set of SNPs with a high degree of

certainty. This is because a genome sequence provides abundant

physical linkage information that can be exploited to impute an-

cestry at most locations in the genome. Thus, there is no require-

ment to score all individuals at the same loci. Instead, each in-

dividual can be scored at a different constellation of loci, and

ancestry at all loci for all individuals can be imputed based on

known physical linkage relationships.

To evaluate the efficiency and accuracy of our approach, we

prepared a multiplexed shotgun library of 96 progeny (48 males

and 48 females) from an F1-backcross experiment. Specifically,

D. simulans w501 was crossed to D. sechellia w1. These closely related

species can be crossed to generate fertile F1 females and sterile F1

males (Lachaise et al. 1986). The F1 females were subsequently

backcrossed to males of the D. sechellia w1 parental strain. The ge-

nomes of the two parental species are ;2% divergent at the nucle-

otide level (Kliman et al. 2000). A total of 10 ng of genomic DNA

from each individual was digested with the restriction enzyme MseI

and 96 custom-designed adapters, each carrying a unique 6-bp

barcode, were ligated to the restriction fragments (Fig. 1). The liga-

tion reactions were combined, fragments were size-selected, and

standard Illumina flow-cell adaptors were added using PCR with

custom-designed primers. Sequencing this library produced ;22

million 101-bp reads in a single lane of an Illumina Genome Analyzer.

Sequences were parsed into 96 groups—representing the 96

backcross progeny—based on the barcode present at the beginning

of each read. Using the Burrows-Wheeler Alignment tool (Li and

Durbin 2009) with default settings, 52% and 69% of the reads

mapped uniquely (i.e., to one genomic location with high confi-

dence) to the D. simulans and D. sechellia parental reference ge-

nomes, respectively, and 29% of the reads mapped uniquely with

no suboptimal matches to both genomes. For each sequence read,

we considered only the first nucleotide difference distinguishing

parental strains as ‘‘informative.’’ Supplemental Figure S1 shows the

distribution of reads and informative markers among individuals.

The median number of informative markers per individual was

15,070, corresponding to a marker density of ;1 per 7 kb.

We developed a Hidden Markov Model (HMM) to assign an-

cestry to chromosomal segments in experiments that produce a

large number of informative sequence reads across the genome of

each individual (see Methods). An example of an HMM ancestry fit

for a representative individual is shown in Figure 2. Blue and red

vertical ticks along the top and bottom of each panel in Figure 2

represent individual informative SNP markers matching one par-

ent or the other. We use the HMM to compute a posterior proba-

bility that a genomic region is either homozygous for parent one,

homozygous for parent two, or heterozygous (Fig. 2). Supple-

mental Figure S1.3 shows the ancestry plot for the individual with

the fewest informative reads out of the 96 multiplexed individuals.

Since sequence reads for any particular individual are sparsely

distributed across the genome, few individuals are typed at many

of the same loci. We therefore used the HMM results to impute

ancestry for all individuals at all genomic locations that were typed

in at least one individual. Applying this procedure, we assigned

ancestry at 125,214 genomic locations, effectively increasing our

marker density to ;1/kilobase.

Localizing recombination breakpoints

Switches in the estimated ancestry state within a chromosome rep-

resent regions containing a recombination breakpoint (Fig. 2). We

estimated the precision of recombination breakpoint estimation by

calculating the genomic interval (in kilobases) over which the

posterior probability in favor of a given ancestry state switched

Figure 1. The experimental and bioinformatic pipeline for MSG. (1)
Genomic DNA is fragmented with a restriction enzyme (RE) that leaves
‘‘sticky ends.’’ (2) Individual bar-coded adaptors are ligated to these re-
striction fragments. (3) Samples are pooled and, (4) the ligation products
are size selected, PCR-amplified, and (5) sequenced on an Illumina Ge-
nome Analyzer. (6) Reads from the sequencing run are parsed based
by barcode. (7) Each read is mapped to each of two parental genomes
(indicated as red and blue, respectively). (8) Ancestry of chromosomal
segments (blue: homozygous for parent 1; red: homozygous for parent 2;
no color: heterozygous) is estimated using a Hidden Markov Model
(HMM). (9) Genotypes and recombination breakpoints are used in
downstream analyses, such as QTL mapping.
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from >95% to <5%. Figure 3A plots the distribution of the 373

inferred breakpoint intervals in our experiment and shows that

50% of breakpoints can be localized to within 38 kb. The four

breakpoints in Figure 3A that resolved to >200 kb belong to the

least-covered individual (Supplemental Fig. S1). This individual

had an informative marker density of ;1/220 kb, which is three-

fold lower than the next-best covered individual. In addition to the

density of informative markers, the resolution with which re-

combination breakpoints can be defined also depends on the se-

quencing error rate, e, and uncertainty in the parental genomes, g,

which together determine the genotyping error rate (see Methods).

Based on a separate experiment, in which we mapped parental

reads generated with the same library preparation protocol to the

parental genomes, we estimated the overall genotyping error rate

to be ;1%. The contribution of sequencing error (e) to this is

estimated from individual base qualities (see Methods). The

remaining genotyping error is difficult to estimate; however, we

found that varying g between 0.5% and 2% in the HMM had little

effect on the precision with which breakpoints could be resolved

(Supplemental Material S2).

The resolution with which breakpoints can be mapped also

depends on the level of multiplexing in the experiment and on the

level of divergence between the parental strains. We estimated the

effects of multiplexing and divergence between the strains by

subsampling our data. Figure 3B shows that increasing the number

of individuals genotyped in a single sequencing lane from 96 to

384 would allow 50% of breakpoints to be resolved to #92 kb.

Figure 3C shows that, at 96-plex, decreasing the level of divergence

between parental strains from 2% to 0.5% would allow 50% of

breakpoints to be resolved to #136 kb.

Utility in mapping a dominant phenotypic marker

To determine the utility of MSG for mapping studies, we previously

engineered the D. simulans strain used in our F1-backcross exper-

iment to carry a piggyBac transgene that drives Enhanced Yellow

Fluorescent Protein (EYFP) from a Pax6 promoter, resulting in the

dominant phenotype of fluorescent eyes.

This transgene is located at position

7,139,931 bp on the D. simulans X chro-

mosome (DL Stern, unpubl.). Of the 96

backcross progeny genotyped, 53 expressed

EYFP in the eyes and 43 did not. QTL

analysis using our method of genotyping

and ancestry assignment revealed a single

significant QTL peak on the X chromo-

some with a maximum LOD score at posi-

tion 7,131,433 and a one-LOD support

interval of 7,110,246–7,151,130 (Fig. 4).

The maximum LOD is just 8498 bp from

the marker’s true location and, based on

a more detailed analysis of inferred hap-

lotypes (Fig. 4, inset), we could define a

minimum interval of 104,069 bp con-

taining the dominant marker.

Mapping unassembled contigs of the
D. simulans genome assembly

One common result of genome projects is

the assembly of many sequences into

contigs that cannot be assembled into

larger scaffolds or placed on chromosomes (Pop and Salzberg

2008). This is true even when genomes are ‘‘assembled’’ by align-

ment to a known genome sequence. For example, the D. simulans

genome project involved placement of most contigs onto

Figure 2. Genome-wide ancestry assignment for a representative individual. (A) The ancestry states
are shown for all major chromosome arms for a representative (male) individual progeny from a (D.
sechellia/D. simulans) F1 X D. sechellia backcross experiment. The posterior probability that a region is
homozygous for D. simulans (red) or for D. sechellia (blue) ancestry is plotted along the y axis. A high
probability of heterozygous ancestry is indicated as a solid black line across the center of the plot. (B–D)
Closer examination of three breakpoints illustrates typical variation in breakpoint resolution. Gold
shading represents the 95% confidence bounds on the position of crossovers and the coordinates for
each of these bounds are shown at the bottom.

Figure 3. Resolution of recombination breakpoints. (A) A histogram of
373 inferred recombination breakpoint intervals (coordinates where
posterior probability of a given ancestry switches from $95% to #5%) for
our backcross experiment. The red asterisks indicate the median break-
point resolution in our experiment (96-plex, 2% divergence). (B,C ) Box
and whisker plots of the medians of 100 subsamples of the data to ex-
amine effects of (B) increased multiplexing and (C ) decreased divergence
between the strains being crossed.
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chromosomes by comparisons with the D. melanogaster genome

(Clark et al. 2007). Nonetheless, the six assembled major chro-

mosomal arm scaffolds of the D. simulans genome assembly com-

prise just 101 Mb of the ;120-Mb euchromatic genome and 9999

unassembled contigs contain an additional ;26 Mbp. Nine-hundred

and two (;10%) of these unassembled contigs of the D. simulans

genome assembly are $5 kb, and together these comprise ;50% of

the DNA content of the unassembled genome. We reasoned that it

should be possible to use our method to assign some of these larger

unassembled contigs to genetic map locations.

Using our backcross data, we were able to assign ancestry to

1029 (;10%) of the unassembled D. simulans contigs in at least six

backcross progeny. We identified a unique mapping location in the

genome with a maximum LOD score $2 for 404 of these unassem-

bled contigs (Supplemental Material S3). Two hundred and ninety-six

of these had already been assigned to one of six major chromosomal

arms based on homology searches by the original genome project

(Clark et al. 2007). We confirmed most of these assignments, but

found reasonably strong evidence for incorrect assignment for 16 of

these contigs. We are also able to assign 108 previously unassigned

contigs to linkage groups. In total, we were able to assign 8 Mb

(;30%) of the unassembled genome to linkage groups using map-

ping data resulting from a single lane of Illumina Genome Analyzer.

Utility in evaluating introgression lines

Introgression mapping is a powerful method for identifying the

genomic regions encoding phenotypic differences between strains

or between species (Iakoubova et al. 2001). One widespread diffi-

culty experienced in introgression experiments is ensuring that a

genomic region has been introgressed cleanly from one strain into

another without inadvertently introgressing other regions that

may alter the phenotype under consideration. In addition, de-

fining introgression breakpoints is time consuming and, therefore,

breakpoint ends are rarely estimated with much precision. Our

method provides a rapid and economical method for detecting and

delimiting introgressed regions. For example, in Figure 5, we show

the results of three experiments in which specific chromosome

regions were targeted for introgression through selection of a

dominant marker (indicated with a yellow arrow in Fig. 5). Tar-

geted introgression of a dominant marker at position 9.4 Mb on 3R

resulted in introgression of the surrounding region of 3R plus in-

advertent introgression of a region of chromosome X in one case

(Fig. 5A) and the telomere of chromosome 2L in another case (Fig.

5B). These small introgressions may have escaped detection if a

more traditional panel of markers had been screened. Figure 5C

demonstrates a clean introgression of a region on 2L through tar-

geted introgression of a marker at position 5.9 Mb on 2L.

Discussion
RAD (Baird et al. 2008), WGR (Huang et al. 2009), and the approach

outlined here, MSG, help fill an awkward gap between current

methods that allow efficient screening of many loci in a small

number of samples and other methods that provide efficient

screening of a small number of markers in a large number of in-

dividuals. Our approach provides three significant advantages over

existing methods. First, it involves a highly simplified protocol for

library preparation that requires ;2 d of lab work to process 96 in-

dividuals or more. The technique is inexpensive because it requires

only standard molecular laboratory equipment, uses only one set

of bar-coded adapters, and does not require shearing and repair of

genomic DNA nor the use of exotic enzymes or other reagents.

Second, because our method does not depend on manual shearing,

small amounts of DNA isolated from single individuals can be pro-

cessed, which makes our approach ideal for application to small and

nonclonal species, such as insects. Third, like Xie et al. (2010), our

method implements an HMM algorithm to assign ancestry states to

chromosomal segments. This has the advantage of providing a for-

mal statistical framework for estimating ancestry, thus avoiding

window-based approaches (e.g., Huang et al. 2009), and allows im-

putation of ancestry at genomic positions with missing data. An

advantage of our HMM framework is that we work with the posterior

probability distribution on ancestry states (‘‘soft’’ rather than ‘‘hard’’

ancestry assignments). Thus, our method correctly propagates the

uncertainties in individual ancestry assignments that necessarily

arise around recombination breakpoints, a property that is particu-

larly useful when dealing with highly multiplexed data where cov-

erage is low and varies considerably among individuals. Our HMM

can, of course, be applied to any other sources of genotyping data,

including the results of RAD and WGR experiments.

We have applied our approach with a high degree of multi-

plexing that provided accurate and precise mapping of a dominant

marker in the D. simulans genome by simultaneous genotyping of

96 backcrossed progeny. By subsampling from our experiment with

96 individuals, we found that higher levels of multiplexing, at least

up to 384 individuals, are likely to provide sufficient resolution for

most mapping studies. We have also demonstrated the utility of our

approach in identifying misassembled regions of the genome and in

assigning genetic map positions to misassembled and unassembled

contigs. Mapping experiments like these are a potentially useful tool

for verifying and improving de novo genome assemblies.

Since our method is based on restriction enzyme digestion, it

cannot catalog all polymorphisms that distinguish two parental

genomes. However, barring very dramatic improvements in se-

quencing throughput, the same limitation applies to multiplexed

WGR, since coverage per individual is expected to be low in highly

multiplexed samples. Like WGR, our approach will suffer when the

level of divergence between the parental strains is low, because more

Figure 4. QTL map of the location of a dominant marker segregating in
the reported backcross experiment. The inset illustrates below the esti-
mated ancestries for all individuals between genomic locations 5.5 Mb
and 8.5 Mb on the X chromosome and, above, the LOD profile. Individual
ancestry estimates are sorted into individuals without EYFP above and with
EYFP below. Regions with posterior probabilities close to 1 of homozygous
D. simulans are coded blue, and homozygous D. sechellia are coded red.
Posterior probabilities between 0 and 1 are coded with colors intermediate
between blue and red.
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coverage is needed per individual to recover a desired density of in-

formative markers. Nonetheless, by subsampling our 96-plex data

(101-bp reads), even divergence as low as 0.5% between parental

strains allowed resolution of half of the recombination breakpoints

to within 136 kb. This is sufficient resolution for QTL studies in-

volving genotyping of hundreds of individuals (Mackay 2001).

Clearly, there will always be a trade-off between marker density, read

length, and the degree of multiplexing. Continued reductions in the

cost of sequencing and increases in the length of sequence reads, and

reducing the biased representation of reads across individuals, will

provide further improvements in the performance of the method.

Drosophila species have small genomes relative to many eu-

karyotes; is our method applicable to much larger genomes? To

address this question, we carried out an MSG experiment on sim-

ulated human–chimpanzee F1-backcross individuals, generated by

creating 96 ‘‘recombinant F1-backcross individuals’’ using the

human and chimpanzee reference genomes (Supplemental Mate-

rial S4). These two species have ;20-fold larger genomes than

Drosophila but exhibit comparable levels of divergence (i.e., 1%) to

the D. simulans and D. sechellia strains used in our backcross ex-

periment. Using the same distribution of the number of reads per

individual observed in our Drosophila cross data, we detected all 96

simulated recombination breakpoints, and all true breakpoints fell

within the estimated breakpoint intervals. The resolution of these

recombination breakpoints (Supplemental Fig. S4.1) is lower than

observed in our Drosophila cross (the most appropriate compari-

son is Fig. 3C, 1% divergence). This is expected given that the

same number of reads is being applied to a ;20-fold larger genome,

and we see a strong relationship between the number of reads and

breakpoint resolution in our simulated data (Supplemental Fig. S4.3).

We conclude that, given forthcoming advances in sequencing tech-

nology (e.g., Illumina’s ‘‘HiSeq’’ technology, http://www.illumina.

com/systems/hiseq_2000.ilmn), genome size per se is unlikely to

limit the applicability of our approach.

Approaches like ours work best when crosses involve parental

strains with genomes that have been fully sequenced and properly

assembled. However, it should be noted that our approach requires

a genome assembly for only one of the two parental species to es-

tablish the order of markers across the genome. In fact, preliminary

data from our labs suggests that our approach works well with just

one reasonably well-assembled genome, Drosophila yakuba (Clark

et al. 2007), and a partial de novo assembly of a second genome, D.

santomea (unpublished data). In principal, it should be possible to

start with two partially assembled genomes and then infer marker

order from genetic linkage data. To some extent we have already

demonstrated this by genetically mapping unassembled contigs of

the D. simulans genome. In recent years, many genome projects

have been ‘‘completed’’, with assemblies resulting in a large number

of scaffolds and contigs. We suggest that, for at least some of these

organisms, our approach could allow placement of many of these

contigs along a genetic map. In addition, genetic linkage data for

contigs produced by a first-pass assembly of short reads may facili-

tate de novo assembly of large eukaryotic genomes.

Our approach may be particularly useful in mapping mutations

induced in genetic screens (Wang et al. 2010). In recent years, EMS-

induced mutagenesis screens have become less common, in part

because identifying the relevant mutation has, traditionally, been

time-consuming (Chen et al. 1998; Martin et al. 2001). Our approach

provides an extremely rapid and convenient means of mapping such

mutations to small genomic intervals. Whole-genome sequencing

alone may not result in direct identification of causal mutations,

because most mutagenesis protocols result in production of multiple

mutations per chromosome. However, combining whole-genome

sequencing with a genetic mapping approach like MSG should allow

rapid, direct identification of induced, causal mutations.

Methods

Fly lines and crosses
We generated recombinant hybrid progeny of D. simulans (strains:
w501 and wSu1) and D. sechellia (strains: w1 and 14021-0248.28) by

Figure 5. Three representative individuals from an experiment involving targeted introgression of D. simulans genomic regions into a D. sechellia
genomic background. The color scheme is the same as in Figure 2. Individuals in A and B carry an introgression of a genomic region on 3R that was targeted
with a dominant marker located at 9,390,800 bp on chromosome 3R (DL Stern, unpubl.), but also carry regions with D. simulans ancestry on the X and the
tip of 2L, respectively (arrows). (C ) Introgression of a region on 2L that was targeted with a dominant marker located at 5,926,416 bp on chromosome 2L
(DL Stern, unpubl.) with no residual regions of D. simulans ancestry.
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backcrossing F1 females to males from either of the parental spe-
cies (Supplemental Fig. S5). In one of these crosses (D. simulans
w501 X D. sechellia w1), the D. simulans strain was constructed by
injecting strain w501 with a modified version of pBAC[3xP3-EYFP]
(Horn and Wimmer 2000) and we mapped the position of the
insertion to X: 7139931 of the D. simulans reference genome (DL
Stern, unpubl.). Female F1 (D. simulans w501 X D. sechellia w1) were
backcrossed to males of D. sechellia (D. sechellia w1). We scored the
presence or absence of this dominant phenotypic marker in eyes of
adult flies and collected 53 EYFP+ and 43 EYFP� F1-backcross
progeny flies for genotyping. Strain D. simulans wSu1 carries an
allele of white induced with EMS in strain 14021-0251.006, which
was originally collected in Nueva, California (DL Stern, unpubl.).
For analyses of targeted introgressions, we crossed one of two
strains of D. simulans wSu1 carrying EYFP markers at positions
3R:9390800 and on 2L:5926416, respectively, to D. sechellia 14021-
0248.28 (DL Stern, unpubl.). Female progeny were backcrossed to
male D. sechellia 14021-0248.28 for three generations and were
selected each generation for the presence of the EYFP marker.

Bar-coded adapter design

The design of library linkers followed the standard Illumina
adapter design for single read libraries (http://www.illumina.com)
with several modifications. Three bases were removed from the
39 end of the FC2 oligonucleotide and replaced with a 6-base bar
code (ACACTCTTTCCCTACACGACGCTCTTCCGANNNNNN, where
n = a barcode base). The barcode is designed to give 5 degrees of
freedom (varying bases 2–6 allows 1024 distinct barcodes, see
Supplemental Material S6). The first position of the barcode com-
prises a unique identifying base that makes all barcodes at least two
steps away from the nearest barcode. In practice, we excluded
barcodes with mononucleotide runs >2, leaving 962 barcodes
(available on request). The phosphorylated FC1 oligonucleotide
is designed to partially complement the above FC2 oligonucleo-
tide, but also includes a 59 TA (p-TAnnnnnnTCGGAAGAGCTCG
TATGCCGTCTTCTGCTTG, where p = phosphate and nnnnnn =

the reverse complement of the FC2 barcode). When annealed, the
adapter has a 59 TA overhang designed to complement the ‘‘sticky
ends’’ produced by any restriction enzyme that leaves compatible
ends. In this application, we used MseI, which recognizes the motif
‘‘TTAA’’ and is expected to cut about once every 125 bp in the
Drosophila genome (assuming 40% GC content). Adapters were
prepared by combining 1 nmol of each of a pair of oligonucleotides
in 100 mL of reassociation buffer (10 mM Tris at pH 8, 50 mM NaCl,
1 mM EDTA), briefly heating the mixture to 95°C, and then allow-
ing them to anneal overnight at room temperature, resulting in
a 10-mM final concentration of annealed adapters.

Genomic DNA extraction

We modified the Puregene genomic DNA isolation kit for single
Drosophila (Qiagen). Single flies were placed in individual wells of a
96-well round bottom polystyrene plate (Costar, #3788), with 100
mL of lysis buffer. We added a 5/32 inch stainless-steel ball (part#
GBSS 156-5000-01, OPS Diagnostics) to each well, sealed the plate
with PCR tape (Thermoscientific), and homogenized the flies for 7
min in a Talboys High Throughput homogenizer (Troemer). The
plate was then spun at 800g for 8 min to precipitate fly cuticle.
Eighty microliters of the homogenate from each well were trans-
ferred to a 0.2-mL 96-well PCR plate (Fisher, catalog # 14230237)
and the solution was incubated at 65°C for 15 min. A total of 2 mg of
RNaseA in a volume of 4 mL was added to each sample. The sealed
plate was inverted 25 times and incubated at 37°C for 3 h. We then
added 26.4 mL of the Puregene protein precipitation solution to each

sample, and the plate was sealed with PCR tape. After mixing the
sealed plate by gentle vortexing for 45 sec, the samples were
centrifuged at 3200g for 35 min. Genomic DNA was precipitated by
adding 80 mL of the resulting supernatant to 80 mL of isopropanol in
a fresh 0.2-mL 96-well PCR plate. The sealed plate was mixed by
inversion and incubated at �20°C for 15 min. The DNA was pre-
cipitated by centrifugation at 3200g for 35 min. We washed the
DNA pellets with 80 mL of 70% EtOH, resuspended dried pellets in
20 mL of DNA hydration solution, and incubated at 65°C for 30
min. DNA was quantified using a Qubit flourimeter (Invitrogen).
Alternatively, we quantified DNA in 96-well format using a Ty-
phoon 9400 biomolecular imager (GE healthcare) with a modified
version of a protocol described in the Amersham Biosciences
Fluorescent Imaging Protocol Handbook (Amersham Biosciences).

Production of the bar-coded library

Using the calculated concentrations of DNA from the quantifica-
tion step, we diluted genomic DNA to 1–10 ng/mL and transferred
10 ng of each sample to a clean 0.2-mL PCR plate. We digested ge-
nomic DNA in a volume of 20 mL with 3.3 U of MseI (New England
Biolabs) for 3 h at 37°C, followed by heat inactivation at 65°C for 20
min. To attach bar-coded adapters, we added 5 nmol of unique bar-
coded adapters into individual wells, along with a ligation solution
containing 1 U of T4 DNA ligase (New England Biolabs) in a total
volume of 50 mL. The sealed plate was mixed by gentle vortexing,
spun briefly, and incubated at 16°C for 1 h. We next pooled the
contents of each ligation reaction into a single tube, and the ligated
products were concentrated by isopropanol precipitation (10% 3M
NaOAc at pH 5.2, 1 mL glycogen, and 1 vol of 100% isopropanol).
The library was resuspended in 100 mL of 1X Tris-EDTA (pH 8.0),
extracted with Tris-EDTA (pH 8) saturated phenolchloroform, and
once again with chloroform. We removed ligated linker-dimers us-
ing AMPure beads (Agencourt) at a bead-mixture:volume ratio of 1.5
and size-separated the library on a 2% GTG agarose gel (NuSieve).
We then stained the gel with SYBR green (Invitrogen) and cut
out a gel slice between 250 and 300 bp on a long-wavelength
transilluminator. We extracted DNA from the gel slice using a Qia-
gen gel extraction kit and resuspended the library in 30 mL of elution
buffer. To increasethe precision of the size selection, we added 2 mL
of GeneRuler 50 bp DNA Ladder (Fermentas) directly to the resus-
pended library prior to electrophoresis to correct for the effects of
salt and other factors on band migration in the gel.

Similar to the standard Illumina library protocol, we attached
the FC2 flow cell sequence to ligation products with 15 cycles of PCR
(Phusion high-fidelity, Finnzymes) using HPLC-purified primers
(IDT) that are slight modifications of the standard Illumina primers:
FC2_PCR, 59-AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGA-39; FC1_PCR, 59-CAAGCAGAAGACG
GCATACGAGCTCTTCCGA-39. The 39 end of these primers is modi-
fied with phosphorothioate, preventing degradation of the primer by
error-correcting polymerases (Quail et al. 2008). The amplified li-
brary was flourometrically quantified on a Qubit flourimeter
(Invitrogen) and sequenced on an Illumina Genome Analyzer
(Princeton Microarray Facility, http://www.genomics.princeton.edu/
microarray/) using the standard Illumina protocols. We used a
sequencing primer that is a truncated version of the standard Illu-
mina sequencing primer: 59-ACACTCTTTCCCTACACGACGCTCTT
CCGA-39. A linker-dimer band was typically present following PCR
and was removed using AMPure beads, as described above.

Parsing, mapping reads, and assigning ancestry

Our library sequencing protocol typically produced 10–20 million
reads per lane of an Illumina Genome Analyzer flow cell.
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Sequences for backcrossed individuals from the F1-backcross ex-
periment have been deposited in the Sequence Read Archive
SRA025671; SRS118670. The sequences were first parsed by bar-
code and each read was assigned to an individual. Considerable
variance in the number of reads per individual is observed (Sup-
plemental Fig. S1, coefficient of variation: 0.89). We performed two
additional experiments (Supplemental Fig. S7) that show that
barcode identity and the starting quality of genomic DNA are both
likely to contribute to this variation. This said, the coefficient of
variation in the number of informative markers per individual
(0.67) is considerably lower than the number of reads. While this
variation does not pose a problem for the analyses outlined here,
we are currently working on ways to mitigate this bias in order to
improve the efficiency of the method under higher levels of mul-
tiplexing and lower levels of divergence between the crossed
strains.

For all reads assigned to an individual, we used BWA (the
Burrows-Wheeler Alignment tool) (Li and Durbin 2009) to map
each read to both parental genomes, which produces two ‘‘sam’’
format (http://samtools.sourceforge.net) files for each individual.
The resulting sam files were then filtered and only those reads that
mapped uniquely (with no suboptimal matches) to both parental
genomes were retained. Unlike traditional genotyping methods
that rely on a well-established panel of SNPs, the use of whole
genome shotgun sequencing of cross progeny is associated with
uncertainty in the states of parental genomes. In addition, the
processes of sequencing and mapping sequence reads to reference
genomes—our analog to genotyping—are also subject to error.
Since it would be advantageous to model these sources of error
explicitly, we formulated a Hidden Markov Model (HMM) (Rabiner
1989) to estimate underlying genome-wide ancestry and the po-
sitions of recombination breakpoints (i.e., changes in ancestry of
adjacent chromosome segments, see Supplemental Fig. S8). The
emission probabilities in the model are parameterized by two error
parameters (g and e) that serve to model uncertainty in parental
genome sequence, as well as sequencing and mapping error. The
assignment of ancestry to genomic segments has the advantage
that it circumvents the need to type all markers in all individuals.
In addition, as an alternative to making ‘‘hard’’ assignments to one
parent or the other, our approach allows us to compute a posterior
probability distribution on the ancestry of chromosomal seg-
ments. Such ‘‘soft’’ approaches have been previously applied in a
variety of similar contexts (e.g., Falush et al. 2003) and are partic-
ularly well suited to our multiplexed sequence data, in which ge-
nome coverage varies considerably among individuals.

Let {AA, AB, BB} represent the three possible ancestry states at
a locus in diploid progeny of a cross between parental strains A and
B. Priors on these ancestry states depend on the crossing design
and whether a chromosome is sex-linked (and potentially hemi-
zygous in one sex). In the case of our F1 parent backcross experi-
ment, if A represents D. simulans and B represents D. sechellia, then
the priors are set to {0, 0.5, 0.5} for autosomes and the X chro-
mosome in females and {0.5, 0, 0.5} for the X chromosome in
males. The HMM for individual i features a sequence of latent
variables Zim 2 {AA, AB, BB} representing the unknown ancestry
state at locus m (see Supplemental Fig. S6). The transition proba-
bilities (rm,m+1) between states Zim and Zi(m+1) were set such that the
average number of crossover events detected is on the order of one
per chromosome (Ashburner 1989). The read data at locus m are
contained in a count vector Xim, such that Ximj is the number of
reads from individual i that mapped to locus m and that have allele
j 2 {A,C,G,T}. We modeled these counts as being multinomially
distributed with cell probabilities depending on the genotype Gim

of individual i at locus m, while allowing for errors. In general,
the ancestry state Zim contains information about Gim, but does not

determine it unambiguously. Therefore, we computed the emission
probabilities by averaging over the uncertainty in the genotype,

Pr Xim jZimð Þ= +
g2G

Pr Gim = g jZim

� �
Pr Xim jGim = gð Þ; ð1Þ

where G is a set containing the 10 possible diploid genotypes. We
defined the two ancestry states by specifying ‘‘allele frequency
distributions’’ at each locus, such that Pkmj is the probability of
sampling allele j at locus m from ancestry background k2 {A,B}. The
genotype probabilities in the mixture (Eqn. 1) are then given by

Pr Gim = fg1; g2g jZim

� �
=

PAmg1
PAmg2

2� dg1g2

� �
;Zim = AA

PAmg1
PBmg2

+ PAmg2
PBmg1

1� dg1g2

� �
;

PBmg1
PBmg2

2� dg1g2

� �
;Zim = BB

8<
: Zim = AB

ð2Þ

in which djj9 is an indicator variable that takes the value of 1 if j = j9
and the value of 0 otherwise. One can think of P as an expression of
our confidence in the parental genome reference sequences to
which reads were mapped. In the special case of homozygous in-
bred parental lines whose genome sequence may be considered
known without error, ancestry uniquely determines genotype (the
‘‘allele frequency distributions’’ have probability 1 for one allele
and 0 elsewhere) with the result that only one genotype contrib-
utes to the mixture (Eq. 1).

The values P can be defined at any level of detail, including
specifying the individual parental genome reference (k) or specific
positions within those sequences (m). In practice, we define P us-
ing just one parameter, g, which reflects an average genome-wide
uncertainty in both parental reference sequences. For example, if a
given nucleotide state j exists at position m of parental reference
genome k and is ‘‘C’’, we define Pkm = ðPkmA;PkmC; PkmG; PkmT Þ=
ðgk=3;1� gk;gk=3; gk=3Þ. We set gk = 0.01 for both parental ge-
nomes, and have found that our results are not affected much by
varying g by twofold (Supplemental Material S2).

Conditional on the diploid genotype, we model the read data
as being generated by repeated sampling with replacement from
these two alleles with sequence errors occurring with probability eim:

Pr Xim jGim = fg1; g2gð Þ =
ð+

j

XimjÞ!
Q
j

Ximj!

Y
j

dg 1 j + dg
2

j

2
1� eimð Þ

�

+ 1�
dg1j + dg2 j

2

� �
eim

3

�Ximj

: ð3Þ

We found that multiple reads mapping to individual sites in
heterozygous regions were often invariant, suggesting that only
one of the two parental alleles at this site is represented in the
reads. This is not unexpected given the low level of coverage, on
average, at particular loci. In practice, we therefore randomly
sample one read at each marker locus. Future versions of the code
will consider all reads at a locus, which will be appropriate for
higher coverage data. The sequencing error, eim is estimated for
each marker locus as êim = 10�Qim=10, where Q im corresponds to the
Phred quality value of the base-call in the randomly sampled read.

We focused on the marginal posterior probability of ancestry
at locus m, Pr(Zim | Xi), which can be computed from equations 1–3
using standard algorithms for HMMs (Rabiner 1989). In the pre-
ceding description, the index m varies over those loci at which read
data are available for individual i. After fitting the HMM for all
individuals, we used linear interpolation to extend the model fit so
that, in each individual, a posterior probability of ancestry is
available at every position to which reads map in at least one in-
dividual. We measured the evidence for linkage between markers
m and m9 with a version of the standard LOD statistic modified to
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use soft ancestry calls. The LOD statistic for markers m and m9 is a
log likelihood ratio statistic testing the hypothesis that the re-
combination fraction rmm9 is zero:

LODmm0 = log10

PrðZ:m;Z:m0 j rmm0 = r̂mm0 Þ
PrðZ:m;Z:m0 j rmm0 = 0Þ ; ð4Þ

= nr̂mm0 log10 ðr̂mm0 Þ+ nð1� r̂mm0 Þ log10 ð1� r̂mm0 Þ + n log10 ð2Þ: ð5Þ

where n is the number of individuals. We compute this statistic using
soft ancestry calls by using the posterior probability of ancestry at
markers m and m9 to estimate the recombination fraction rmm:

r̂mm0 =
1

n
+
n

i = 1

+
z1 6¼z2

PrðZim = z1 jXiÞPrðZim0 = z2 jXiÞ: ð6Þ

Software implementing the above analyses is available at http://
genomics.princeton.edu/AndolfattoLab/MSG.html.

Parental genomes

Because we estimated ancestry using an HMM that incorporates
uncertainty due to incomplete knowledge of the parental genomes
(reflected in the parameter P), we did not require perfect knowledge
of the parental genomes. In fact, our approach worked reasonably
well when we used the reference genomes in lieu of the true parental
genomes in the case of D. simulans and D. sechellia. Nonetheless, to
reduce uncertainty in the parental genomes, we collected 20 million
95-bp reads from D. simulans w501 (SRS139966.1), 21 million 95-bp
reads from D. sechellia w1(SRS139969.2), 6 million 70-bp reads from
D. simulans wsu1, and 1 million 70-bp reads from D. sechellia strain
14021-0248.28. We prepared multiplexed libraries for these parental
strains as described above, to maximize the degree of overlap among
reads from parental strains and backcross progeny. These reads were
mapped to the genome reference strains using BWA (as above) and
the resulting pileup (SAMtools, http://samtools.sourceforge.net)
was used to generate a consensus sequence for each of the pa-
rental strains. Applying our mapping approach to D. simulans
and D. sechellia backcross progeny, we identified six regions of
the D. simulans genome with anomalous segregation patterns
(Supplemental Material S9). These regions were masked in sub-
sequent analyses.
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