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SUMMARY

In animals, Hox transcription factors define regional
identity in distinct anatomical domains. How Hox
genes encode this specificity is a paradox, because
different Hox proteins bind with high affinity in vitro
to similar DNA sequences. Here, we demonstrate
that the Hox protein Ultrabithorax (Ubx) in complex
with its cofactor Extradenticle (Exd) bound specif-
ically to clusters of very low affinity sites in enhancers
of the shavenbaby gene of Drosophila. These low
affinity sites conferred specificity for Ubx binding
in vivo, but multiple clustered sites were required
for robust expression when embryos developed
in variable environments. Although most individual
Ubx binding sites are not evolutionarily conserved,
the overall enhancer architecture—clusters of low
affinity binding sites—is maintained and required
for enhancer function. Natural selection therefore
works at the level of the enhancer, requiring a partic-
ular density of low affinity Ubx sites to confer both
specific and robust expression.

INTRODUCTION

Diversity along the anterior-posterior axis of animals results from

differential expression of Hox transcription factors, which regu-

late different sets of target genes to determine the features spe-

cific to each anatomical region (McGinnis and Krumlauf, 1992).

For example, in Drosophila, Sex combs reduced (Scr) deter-

mines anterior thoracic segments (Struhl, 1982; Wakimoto and

Kaufman, 1981), whereas Ultrabithorax (Ubx) and abdominalA

(abdA) specify thoracic and abdominal segments (Lewis, 1978;

Sánchez-Herrero et al., 1985).

Hox protein specificity is paradoxical, because all Hox pro-

teins have similar DNA binding domains (the homeodomain),
particularly for residues that contact DNA directly (Akam, 1989;

McGinnis and Krumlauf, 1992). As a result, all Hox proteins

bind similar DNA sequences with high affinity (Berger et al.,

2008; Mann et al., 2009; Noyes et al., 2008). In principle,

one solution to this paradox is that sequences outside of the

homeodomain, which have diverged among Hox proteins, allow

interactions with a diversity of cofactors to confer specificity.

However, only two cofactors, the homeodomain proteins Extra-

denticle/Pbx (Exd) and Homothorax/MEIS (Hth) (Moens and

Selleri, 2006), are known to interact with Hox proteins (Chan

et al., 1994; Chang et al., 1995; Mann et al., 2009). Exd dimerizes

with Hox proteins and Hth facilitates nuclear localization

and DNA binding of Exd (Pai et al., 1998; Rieckhof et al., 1997;

Ryoo et al., 1999). Thus, Hox specificity is unlikely to arise from

interactions with a diversity of cofactors.

However, Hox protein structure is altered when bound to DNA

with Exd, resulting in increased binding site specificity of Hox-

Hth-Exd complexes in comparison with Hox monomers (Joshi

et al., 2007; Slattery et al., 2011). In vivo support for this latent

specificity model came from studies of artificial enhancers con-

taining multimerized Hox-Exd binding sites (Ryoo and Mann,

1999). Therefore, it is not clear whether this mechanism is suffi-

cient to account for the high degree of regulatory specificity ex-

hibited by Hox proteins on native enhancers.

One clue that may inform the Hox specificity paradox is that

many enhancers, including Hox-regulated enhancers, contain

multiple binding sites for the same transcription factor (Arnone

and Davidson, 1997; Gotea et al., 2010; Lifanov et al., 2003;

Ochoa-Espinosa et al., 2005; Papatsenko et al., 2002; Stanojevic

et al., 1991). These so-called homotypic binding site clusters are

widespread, but the functions of clustered binding sites are un-

derstood in only a few cases. For example, homotypic clusters

can fine-tune the response to graded transcription factors levels

(Driever et al., 1989; Gaudet andMango, 2002; Jiang and Levine,

1993; Rowan et al., 2010; Struhl et al., 1989), control the timing of

enhancer activation (Gaudet and Mango, 2002), or determine

whether binding results in repression or activation (Ramos and

Barolo, 2013). However, elimination of individual binding sites
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in homotypic clusters often has little or no effect on enhancer

activity (Doniger et al., 2005; Driever and Nüsslein-Volhard,

1989; Hersh and Carroll, 2005; Saramäki et al., 2006; Stanojevic

et al., 1991), suggesting that there may be additional reasons for

the widespread existence of homotypic binding site clusters.

To gain insight into the Hox specificity paradox, we asked how

Hox factors regulate native enhancers to achieve a specific

pattern of epidermal trichomes along the anterior-posterior

axis of Drosophila larvae. Trichome patterns display strong

differences between adjacent segments in a Hox-dependent

manner (Lewis, 1978; Sánchez-Herrero et al., 1985). Because

shavenbaby (svb) is the master control gene for trichome devel-

opment (Chanut-Delalande et al., 2006; Delon et al., 2003; Payre

et al., 1999), we examined whether and howHox factors regulate

svb. We found that svb enhancers are directly regulated by Ubx

and that they solve the Hox specificity paradox by employing

clusters of low affinity Ubx-Exd binding sites. Specificity is en-

coded by low affinity sites and homotypic clusters of these sites

provide regulatory robustness. This overall architecture—homo-

typic clusters of low affinity binding sites—is evolutionarily

conserved and may provide a general mechanism to reconcile

the need for both enhancer specificity and robustness.

RESULTS

Ubx Positively Regulates svb Expression
In wild-type embryos of Drosophila melanogaster, cells of the

ventral first abdominal segment (A1) differentiate a row of stout

trichomes (Figure 1B). These trichomes were lost in the absence

of Ubx (Figure 1D). Reciprocally, ectopic expression of Ubx

using a heat shock inducible promoter (HS:Ubx) caused pro-

duction of ectopic trichomes in thoracic segments (Figure 1F)

(González-Reyes and Morata, 1990; Mann and Hogness,

1990). Because svb controls trichome development (Chanut-

Delalande et al., 2006), we tested whether Ubx regulates svb

expression. In wild-type embryos, svb was expressed strongly

in cells of A1 and other abdominal segments that generate

ventral trichomes and only weakly in the third thoracic segment

(Figure 1A). In the absence of Ubx, svb expression was reduced

in segment A1 (Figure 1C), consistent with the loss of the A1

trichomes in these larvae (Figure 1D). When we expressed

Ubx ubiquitously, svb was upregulated in thoracic segments

in a pattern similar to svb expression in segment A1 (Figure 1E).

These results indicate that Ubx is required for expression of svb

in the cells that generate A1 trichomes and that Ubx is sufficient

to induce ectopic expression of svb when misexpressed in

thoracic segments.

Ubx Controls Multiple svb Enhancers
To determine how Ubx regulates svb expression, we examined

the effects of altered Ubx expression on two svb enhancers,

called E and 7, that drive ventral stripes of expression (Figure 1G)

(Frankel et al., 2010, 2011; McGregor et al., 2007). Through sys-

tematic functional dissection, we identified a 292 bp region of E,

called E3N, and a 1,056 bp region of 7, called 7H (Figure S1 avail-

able online; Table S1), that each drove expression that accu-

rately recapitulated the ventral patterns generated by the larger

regions from which they were derived.
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In wild-type embryos, E3N and 7H reporter genes were ex-

pressed in ventral rows of segments A1–A8 (Figures 1H and

1I). In embryos that lacked Ubx, E3N and 7H reporter gene

expression was lost in the A1 segment (Figures 1J and 1K) and

reduced in A2–A8 segments (Figures 1H–1K), consistent with

the reduction in trichome numbers caused by loss of Ubx func-

tion (Lewis, 1978). Ectopic Ubx caused ectopic expression of

E3N and 7H in thoracic segments and increased expression in

abdominal segments (Figures 1L and 1M). In response to all ma-

nipulations of Ubx function, the expression patterns driven by

E3N and 7Hwere similar to endogenous svb expression (Figures

1A–1F and 1H–1M). Therefore, these two enhancers respond to

Ubx and, at least in part, capture the regulatory inputs of Hox

genes to establish the anterior-posterior pattern of svb expres-

sion and trichomes.

Hox proteins bind DNA with Exd and Hth (Mann et al., 2009)

and embryos lacking either hth or exd display homeotic transfor-

mations of trichome patterns (Jürgens et al., 1984; Peifer and

Wieschaus, 1990; Rieckhof et al., 1997). To test if the Exd-Hth

complex contributes to Ubx regulation of svb expression, we

assayed expression of the E3N and 7H enhancers in embryos

homozygous for a strongly hypomorphic hth allele, hthP2, which

cannot facilitate nuclear localization of Exd (Noro et al., 2006;

Rieckhof et al., 1997). E3N and 7H expression was abrogated

in hthP2 embryos (Figures 1N and 1O), suggesting that Ubx

requires Exd and Hth for activation of these svb enhancers.

The loss ofE3N and 7H activity in abdominal segments in hthP2

embryos suggests that multiple Hox genes activate these en-

hancers. WhileUbx specifies the trichomes in A1, it acts together

with abdA to specify trichomes in more posterior segments

(Lewis, 1978). Ubx and AbdA have similar DNA-binding specific-

ities in complex with Exd (Karch et al., 1990; Slattery et al., 2011)

and either Ubx or abdA is sufficient to drive svb expression in

ventral abdominal stripes (Coiffier et al., 2008). Accordingly, we

found that embryos deficient for Ubx and abdA expressed

neither E3N nor 7H in abdominal stripes (see below), indicating

that both Ubx and AbdA activate the E3N and 7H svb enhancers.

Ubx Regulates the E3N and 7H Enhancers Directly
through Multiple Low Affinity Binding Sites
To determine whether Ubx binds to svb enhancers, first we

examined genome-wide Ubx and Hth chromatin immunoprecip-

itation data (Choo et al., 2011). These data revealed in vivo bind-

ing of Ubx and Hth at the E3N and 7H regions, as well as at other

svb enhancer regions (Figure S1). These results suggest that Ubx

may regulate the E3N and 7H svb enhancers directly, which we

tested further below.

Surprisingly, the DNA sequences of E3N and 7H contained no

Hox-Exd sites that match those previously identified by system-

atic evolution of ligands by exponential enrichment sequencing

(SELEX-seq) (Slattery et al., 2011). Therefore, we systematically

searched for Ubx binding sites in E3N using electrophoretic

mobility shift assays (EMSAs) of overlapping DNA fragments

(Figures 2A and S2; Table S2). Ubx showed concentration-

dependent binding to E3N1 and E3N2 fragments, but only

when in complex with both Hth and Exd (Figures 2C, S2B, and

S2C). These fragments bound Ubx-Exd in complex with either

full-length Hth (HthFL) or with HthHM, similar to a naturally
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Figure 1. Ubx Is Necessary and Sufficient

for svb Expression

(A–F) Embryos stained with fluorescent svbmRNA

probe and larval cuticle preps (B, D, and F) of the

indicated genotypes. Loss of Ubx function trans-

formed segment A1 into a thoracic segment that

lacks svb expression (C) and larval trichomes (D),

highlighted with bounding boxes. Ubiquitous

expression of Ubx protein resulted in homeotic

transformations of thoracic segments (arrows) into

segments resembling segment A1 (E and F).

(G) Schematic of the svb upstream cis-regulatory

region, indicating embryonic enhancers. The

ventral enhancers E3N and 7H are highlighted in

yellow and blue boxes, respectively. See also

Figure S1.

(H–O) Expression of E3N::lacZ or 7H::lacZ reporter

constructs (I, K, M, and O). Ubx was necessary for

E3N and 7H reporter expression in segment A1

(J and K) and sufficient for their expression in

thoracic segments when expressed ubiquitously

(L and M).

(N and O) In hthP2mutant embryos, activity of both

the E3N and 7H enhancers was lost.

See also Table S1.
occurring isoform of Hth that lacks a homeodomain but that can

translocate Exd to the nucleus (Ryoo et al., 1999). Neither HthHM-

Exd nor HthFL-Exd bound to these E3N subfragments in the
Cell 160, 191–203
absence of Ubx (Figures S2B and S2C).

Thus, despite the absence of predicted

Ubx binding sites in E3, these data re-

vealed binding of Ubx-Exd-Hth trimers—

hereafter abbreviated as Ubx-Exd for

simplicity—to several regions of this

enhancer.

To identify the Ubx-Exd binding sites in

the E3N subregions, we systematically

tested binding of Ubx-Exd to oligonucleo-

tides mutated at each 50-AT dinucleotide

pair (Figure S3) and found that most of

the Ubx-Exd binding activity came from

three sites (Figure 2C). Mutation of each

of two binding sites in E3N1 reduced

Ubx-Exd binding and mutation of both

together abolished Ubx-Exd binding (Fig-

ure 2C, see also Figure S3). In the E3N2

fragment, we found a third site that,

when mutated, abolished Ubx-Exd bind-

ing (Figures S3P and S3Q). Mutation of

an additional site located near the 50 end
of E3N1 also reduced Ubx-Exd binding,

suggesting that this region may contain

another low affinity Ubx-Exd binding site

(Figures S2 and S3D). The Ubx-Exd bind-

ing sites in E3N show variable levels of

evolutionary conservation and only site 3

is conserved across all sequenced

Drosophila species.
We next tested, in vivo, the role of Ubx-Exd sites identified

in vitro by generating transgenic constructs with all possible

combinations of the three sites mutated (Figure 2). Mutation of
, January 15, 2015 ª2015 Elsevier Inc. 193
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Figure 2. The svb E3N Enhancer Contains a Cluster of Ubx-Exd Binding Sites

(A) A schematic of the regions tested for their ability to bind Ubx-Exd, assayed via EMSAs. See also Figures S2 and S3.

(B) Sequence alignment for the region of the E3N enhancer containing the three Ubx-Exd sites, labeled and highlighted. Dashes indicate gaps in the aligned

sequence. Mutations of the Ubx-Exd binding sites are shown (Mut).

(C) Ubx-Hth-Exd bound specifically to each of the three sites, as demonstrated with EMSAs. In this and the following figures, Hth and HM refer to the full-length

(HthFL) and homeodomainless (HthHM) isoforms of Hth, respectively.

(D–S) Expression of E3N::lacZ reporter constructswith Ubx-Exd sites altered as indicated (B), juxtaposedwith plots of average expression in the region outlined in

(D) (n = 10 for each genotype). In all plots, the black and red lines denote expression driven by the wild-type and modified enhancers, respectively. Shaded areas

indicate ±1 SD. AU, arbitrary units of fluorescence intensity.

See also Figures S4 and S5 and Tables S1 and S2.
either site 1 or site 3 reduced the expression levels driven by E3N

(Figures 2F, 2G, 2J, and 2K). Mutation of site 2 had no detectable

effect on E3N expression (Figures 2H and 2I), including when

combined with either site 1 or site 3 mutations (Figures 2L, 2M,

2P, and 2Q). However, when both site 1 and site 3 weremutated,

the E3N enhancer still drove weak expression, which was
194 Cell 160, 191–203, January 15, 2015 ª2015 Elsevier Inc.
reduced further upon knockout of site 2 (Figures 2N, 2O, 2R,

and 2S). Thus, all three Ubx-Exd sites in the E3N enhancer are

functional in vivo.

We obtained very similar results for Ubx binding to the 7H

enhancer. In vitro assays identified three low affinity Ubx-Exd

binding sites in 7H (Figures S4A and S4B). Individual mutation
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Figure 3. Inverse Correlation between

Sequence Affinity and Specificity

The proportion of 12mer sequences bound by

various Hox-Exd complexes versus relative affinity

of these 12mers for Ubx/AbdA-Exd is shown as

colored bars (specificity groups). The number of

12mers in each affinity bin is plotted as a gray line.

Average relative affinities of 12mers were calcu-

lated for four pairs of Hox-Exd complexes with

similar binding profiles: (1) Labial and Pb, (2) Dfd

and Scr, (3) AbdB and Antp, and (4) Ubx and AbdA.

Sequences specific for Ubx/AbdA-Exd (green

bars) are more prevalent in lower affinity bins than

in higher affinity bins.
of each of the three Ubx-Exd binding sites did not modify the ac-

tivity of 7H in embryos, either qualitatively (Figures S4C, S4G,

S4K, and S4O) or quantitatively (Figures S4D, S4H, S4L, and

S4P). In contrast, simultaneous mutation of sites 1 and 2, or sites

2 and 3, decreased 7H activity (Figures S4E–S4N) and mutation

of all three sites almost completely abrogated 7H expression

(Figures S4Q and S4R). Collectively, these results indicate that,

as observed for E3N, the 7H svb enhancer uses at least three

low affinity Ubx-Exd sites to drive expression along the AP axis

of embryos. The absence of Ubx-Exd sites in E3N or 7H that

match those detected by SELEX-seq (Slattery et al., 2011) im-

plies that these sites have very low affinity for Ubx-Exd (see

below).

In addition to Ubx, the E3N and 7H enhancers are regulated

in vivo by abdA (Figure S5). Therefore, we tested whether the

Ubx-Exd sites we identified could also bind AbdA-Hth-Exd

(AbdA-Exd). In vitro, AbdA-Exd bound to the same E3N and

7H binding sites as Ubx-Exd did, and binding was abrogated

when these sites were mutated (Figure S5). Thus, Ubx-Exd and

AbdA-Exd directly regulate the E3N and 7H enhancers through

the same binding sites.

Taken together, these data show that both the E3N and 7H

svb enhancers contain clusters of low affinity Ubx/AbdA-Exd

binding sites that are required to drive svb expression in ventral

abdominal stripes. They further indicate that these sites mediate

the action of Ubx in segment A1 and Ubx plus AbdA in segments

A2–A8.

Proper Regulation of a svb Enhancer Requires Low
Affinity Ubx Binding Sites
While our in vivo assays demonstrated that all of the Hox-Exd

sites in E3N and 7H are required for proper function, it is not clear

why these enhancers employ low affinity rather than higher affin-

ity binding sites. We hypothesized that the low affinity of these

binding sites may be part of the solution to the Hox specificity

paradox. To explore this idea, we analyzed previously published

data in which the DNA sequence preferences of all Drosophila

Hox-Exd complexes were measured using SELEX-seq, resulting

in relative affinity scores from 0.03 to 1 (Slattery et al., 2011).

Using these data, we asked if there was any correlation between

affinity and specificity. For example, do sequences with low

affinity versus high affinity for Ubx-Exd display preference
for Ubx-Exd compared to other Hox-Exd complexes? The

results of this analysis were striking; only sequences with a rela-

tive affinity lower than 0.3 bound Ubx/AbdA-Exd specifically

compared to the other Hox-Exd complexes (Figure 3). Moreover,

as the relative affinity for Ubx/AbdA-Exd decreased, the num-

ber of sequences that bound specifically to Ubx/AbdA-Exd

increased (Figure 3). These data imply that Hox-Exd complexes

display, at least in vitro, a tradeoff between binding affinity and

specificity.

To test whether this affinity-specificity tradeoff holds in vivo,

we generated E3N transgenic variants in which we varied the af-

finity of the Ubx-Exd binding sites according to the relative affin-

ities predicted by SELEX-seq (Figure 4A) (Slattery et al., 2011).

Although none of the binding sites found in the native svb

enhancer were identified by SELEX-seq, we estimate (based

on the core 8-mer) that they have relative affinities <0.03 (Slattery

et al., 2011). Every mutation that increased the affinity of Ubx-

Exd sites resulted in qualitative or quantitative changes in E3N

enhancer expression (Figure 4). For example, converting either

native sites 1 or 2 to high-affinity sites (scores of 0.87 or 0.79,

respectively) resulted in increased expression in the normal

domain of E3N and ectopic expression anteriorly and dorsally

(Figures 4C and 4D). Replacing site 3 in E3N with the highest

affinity site (score of 1.0) also resulted in ectopic expression in

anterior segments and in the intestine (Figure 4B). We further

explored the functional consequences of gradually increasing

the affinity of a Hox-Exd binding site by replacing site 3 with sites

that have a range of relative affinities, from 0.06 to 0.72. A

small increase in affinity to 0.06 resulted in higher levels of E3N

expression within its normal expression domain (Figures 4H

and 4I). Increasing the affinity to 0.25, 0.65, and 0.72 altered

levels of expression in the normal domains of E3N and induced

ectopic expression in anterior segments (white arrows in Figures

4E–4G).

We also observed strong position effects of a high affinity site,

similar to observations in a previous study (Swanson et al., 2010).

Placing the highest affinity site 50 of the E3N enhancer resulted in

ectopic expression in anterior segments, but decreased expres-

sion in the normal domain (Figure S6B). In contrast, placing this

site inside the enhancer increased expression in the normal

domain and generated ectopic expression in multiple regions

(Figure S6C). We cannot rule out the possibility, however, that
Cell 160, 191–203, January 15, 2015 ª2015 Elsevier Inc. 195
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    WT: TTGCTGATTTGTTGACCCGATAAAAAATGGGACTTTAAGCCTCGCTGGCATGCACATAATTTGTAGTTTTTGG
 Site1: ---A------A---C----------------------------------------------------------
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Site3-A: ---------------------------------------------------------G----A-G--------
Site3-B: -----------------------------------------------------------A-CA----------
Site3-C: -----------------------------------------------------------A-CT----------
Site3-D: -----------------------------------------------------------A-TT----------
Site3-E: ---------------------------------------------------------G----A-TAC------

Site 1 Site 2 Site 3

Figure 4. Conversion of Low Affinity Ubx-Exd Binding Sites to

Higher Affinity Sites Results in Ectopic Expression

(A) Aligned E3N sequences from wild-type and mutated sequences. Dashes

and red letters indicate unaltered and modified sequence, respectively.

(B–I) Embryos carrying E3N::lacZ constructs, with Ubx-Exd sites altered as

indicated in (A). The numbers in the top right of each panel indicate the average

levels of expression in the regions outlined in (I) (n = 10 for each genotype),

measured in arbitrary units of fluorescence intensity. Numbers in parantheses
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these position-dependent effects resulted from the creation or

destruction of binding sites for additional factors.

Taken together, these results indicate that Hox-Exd sites with

higher affinity than the native sites alter the specificity of the svb

enhancer, demonstrating that the affinity-specificity tradeoff that

was inferred from in vitro data also pertains in vivo.

High Affinity Hox Binding Sites Decreased the
Specificity of Enhancer Function
Replacement of native sites with high affinity sites caused

ectopic expression mostly outside of the domains of Ubx and

abdA expression (Figure S5), suggesting that these high affinity

sites bound transcription factors other than Ubx and AbdA.

Indeed, in embryos deficient for Ubx, the E3N enhancers with

high affinity binding sites showed the expected reduction of

expression in A1 (where Ubx is the only Hox gene active), but

they also continued to drive ectopic expression in anterior

segments (Figures 5A–5D).

Sex comb reduced (Scr) was an attractive candidate for

driving some of the ectopic anterior expression of svb enhancers

carrying high-affinity sites. Scr is expressed in anterior segments

(Kuroiwa et al., 1985) and SELEX-seq data indicated that Scr-

Exd can bind to high-affinity Ubx/Exd binding sites (Slattery

et al., 2011). When assayed on the E3N svb enhancer, Scr-Exd

showed little or no in vitro binding to the native E3N sites, but it

bound to the high affinity sites even more strongly than Ubx-

Exd bound to the native sites (Figure 5E). In vivo, uniform expres-

sion of Scr produced no obvious changes in the expression of

wild-type E3N (Figures 5F and 5G), but drove ectopic expression

of E3N variants that carried one high-affinity site (Figures

5H–5K). Thus, replacing low affinity Ubx/AbdA-Exd sites with

high-affinity sites enabled the E3N enhancer to respond to Scr.

In addition to Scr, it is likely that other homeodomain transcrip-

tion factors bind and activate the E3N enhancers carrying

high-affinity sites to generate their broad domains of ectopic

expression.

Together, our results indicate that the native low affinity

Ubx/AbdA-Exd binding sites in the E3N enhancer confer spec-

ificity for Ubx-Exd and AbdA-Exd over other Hox proteins,

such as Scr, and probably over additional homeodomain

factors.

Clusters of HOX Binding Sites Confer Robustness to
Genetic and Environmental Variability
As discussed earlier, some of the Ubx/AbdA-Exd binding sites in

the E3N and 7H enhancers can be mutated with minimal effects

on reporter gene expression (Figures 2 and S4). It is not clear,

therefore, why these enhancers contain multiple Hox binding

sites. We wondered if the multiple, apparently redundant, Ubx-

Exd binding sites within individual svb enhancers contribute to

transcriptional robustness, in the same way that multiple en-

hancers of svb confer robustness in the face of environmental

and genetic variation (Frankel et al., 2010).
indicate ±1 SD. White arrows and brackets denote expression in domains

anterior to segment A1 (B–G). The red asterisk marks ectopic staining in the

intestine; red arrows indicate ectopic dorsal and lateral expression (C).

See also Figure S6 and Table S1.
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Figure 5. Low Affinity Ubx-Exd Binding

Sites Provide High Ubx-Exd Specificity

(A–D) Embryos carrying E3N::lacZ constructs, with

Ubx-Exd sites altered as indicated in (Figure 4A). In

embryos deficient for Ubx, E3N::lacZ with high

affinity sites drove extensive ectopic expression

(B and D).

(E) Scr-Exd did not bind to wild-type E3NUbx-Exd

sites in vitro, as demonstrated with EMSAs.

However, both Scr-Exd and Ubx-Exd bound to

high-affinity Ubx-Exd sites.

(F–K) Ubiquitous expression of Scr (hs::Scr) did not

alter expression of the wild-type E3N::lacZ (G), but

caused ectopic expression of E3N::lacZ carrying

high-affinity Ubx-Exd sites (I and K).

See also Tables S1 and S2.
To test this hypothesis, first we examined the effects of altered

levels of Ubx on the expression of E3N enhancers. The wild-type

E3N enhancer drove normal expression in embryos heterozy-

gous for an Ubx null mutation (Figures 6A, 6B, 6M, and 6N). In

contrast, all E3N enhancers that contained single mutations in

the Ubx-Exd binding sites drove dramatically lower levels of

expression in Ubx heterozygotes, compared to wild-type em-

bryos (Figures 6C–6T). Similar effects were observed for most

combinations of themutations (Figures 6I, 6J, 6U, and 6V). These
Cell 160, 191–203
results indicate that E3N requires multiple

sites to confer robustnesswhenUbx dose

is perturbed. The reduced activity of

these E3N enhancers in Ubx heterozy-

gotes also provides further evidence

that the Ubx-Exd binding sites respond

to Ubx in vivo.

Next, we assayed the effects of envi-

ronmental variation on enhancer activity

by exploiting the fact that svb enhancers

driving a svb cDNA in svb null embryos

provide a sensitive and quantitative

readout of enhancer function (Frankel

et al., 2010, 2011). We reared embryos

at 17�C and 32�C, temperature extremes

that are still compatible with normal

development (Powsner, 1935). In em-

bryos carrying the wild-type E3N::svb

rescue construct, trichome numbers

were relatively invariant to temperature

extremes (Figure 6C0). In contrast, en-

hancers containing a single mutated

Ubx/Exd binding site showed reduced

rescue of trichomes at extreme tem-

peratures (Figure 6C0). Furthermore, the

simultaneous mutation of site 1 and 2

abrogated trichome rescue at extreme

temperatures, while other double or

triple combinations led to no rescue

(Figure 6C0).
These results indicate that multiple

Ubx-Exd binding sites are required for
normal enhancer function and to cope with variable genetic

backgrounds and environments, similar to conditions faced by

flies in the wild.

Ubx Binds a Cluster of Low Affinity Binding Sites in the
Orthologous E3N Enhancer from a Distantly Related
Species
We wondered whether the enhancer architecture discovered for

E3N and 7H, with homotypic clusters of low affinity Hox-Exd
, January 15, 2015 ª2015 Elsevier Inc. 197
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Figure 7. Multiple Low Affinity Poorly Conserved Ubx-Exd Binding Sites Regulate the Drosophila virilis E3N Enhancer

(A) Sequence conservation over a 10 bp sliding window for a sequence alignment of the E3N region from ten Drosophila species.

(B) Regions tested for the ability to bind Ubx-Exd, assayed via EMSAs (see also Figure S7). The positions of the Ubx-Exd sites are indicated with red boxes.

(C) E3N Ubx-Exd binding-site sequences aligned with site-specific mutations indicated in lowercase, red letters.

(D) Ubx-HthFL-Exd and Ubx-HthHM-Exd bound five sites in the D. virilis E3N enhancer, as demonstrated with EMSAs (see also Figure S7). This binding was

reduced when the sites were mutated (MUT).

(E–L) Embryos carrying E3N::LacZ constructs, with Ubx-Exd sites altered as indicated in (C), juxtaposed with plots of average expression (n = 10 for each

genotype). Black lines denote expression driven by the D. melanogaster and D. virilis enhancers, respectively.

See also Tables S1 and S2.
sites, is an evolutionarily conserved feature of svb enhancers.

Because the large-scale cis-regulatory landscape of svb has

been well conserved in Drosophila virilis (Frankel et al., 2012),

we examined this question by focusing on the E3N region of

D. virilis.
Figure 6. The svb E3N Enhancer Contains a Cluster of Ubx-Exd Bindin

Variation

(A–X) Wild-type (A–L) and Ubx heterozygote (M–X) embryos carrying E3N::lacZ co

plots of average expression in the region outlined in (D) (n = 10 for each genotyp

intensity.

(Y–B0) Cuticle preps showing that the E3N::svb transgene (B0 ) in a svb null mutan

(C0) The number of trichomes in the larval A2 segment for the corresponding g

Bonferroni test p values, to control the type I error rate, from separate ANOVA te

See also Table S1.
Drosophila melanogaster and D. virilis last shared a common

ancestor �40 mya and the E3N region displays little sequence

conservation between these species (Figure 7A). We thus em-

ployed EMSAs to identify, in an unbiased manner, all of the

Ubx-Exd binding sites putatively present in the D. virilis E3N
g Sites that Confer Robustness against Environmental and Genetic

nstructs with Ubx-Exd sites altered as indicated in Figure 2B, juxtaposed with

e). Shaded bounding areas indicate ±1 SD. AU, arbitrary units of fluorescence

t background rescued a subset of the wild-type trichome pattern (cf. Y–A0).
enotypes. The error bars indicate ±1 SD. Significance values are sequential

sts for each genotype.
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orthologous region (VE3N). We found that four fragments—

VE3N1, VE3N2, VE3N5, and VE3N9—bound Ubx-Exd in vitro

(Figures 7B–7D). Comprehensive mutagenesis of these frag-

ments revealed five Ubx-Exd binding sites (Figures 7B, 7C,

and S7). One of these sites is evolutionarily conserved and four

sites display no sequence conservation to D. melanogaster

and only weak conservation to closely related species (Fig-

ure 7A). As observed for D. melanogaster, none of the Ubx-Exd

binding sites of VE3N were detected by SELEX-seq, indicating

that they are low affinity sites.

We next tested whether these Ubx-Exd sites function in vivo

by generating transgenic D. melanogaster lines that contained

either the wild-type or mutated D. virilis VE3N enhancers. The

wild-type VE3N enhancer drove lower levels of expression than

did itsD.melanogaster E3N counterpart (Figures 7E–7H), a result

observed often in tests of orthologous enhancers (Crocker et al.,

2008; Ludwig et al., 1998). Mutation of the conserved site

present in VE3N resulted in the loss of reporter expression (Fig-

ures 7I and 7J). To test if only this site was required for VE3N

expression, we mutated the four nonconserved sites, leaving

the conserved site intact. This reporter also displayed very little

VE3N activity (Figures 7K and 7L). Therefore, multiple Ubx-Exd

binding sites, at least some of which are poorly conserved,

contribute to the proper regulation of the D. virilis VE3N

enhancer.

Taken together, these results indicate that clustering of low

affinity Ubx-Exd sites is an evolutionarily conserved strategy

used by svb enhancers, although many of the individual binding

sites are not conserved across species.

DISCUSSION

We have demonstrated that the Hox protein Ubx regulates sepa-

rate enhancers of the svb gene by binding, with its cofactors

Exd and Hth, to clusters of low affinity binding sites. Combining

in vitro and in vivo assays, we provided experimental demonstra-

tion of an affinity-specificity tradeoff for Hox proteins, such that

enhancers that integrate Hox inputs to drive regionalized expres-

sion are unlikely to utilize high affinity Hox binding sites. Forced

to utilize low affinity sites, enhancers have evolved to contain

multiple binding sites to ensure regulatory robustness to genetic

and environmental variations. Most individual Ubx-Exd sites

have evolved rapidly, but evolution has conserved overall

enhancer architecture, with clusters of low affinity sites.

Homotypic clusters of transcription factor binding sites

are pervasive in animal genomes (Arnone and Davidson, 1997;

Gotea et al., 2010; Lifanov et al., 2003; Ochoa-Espinosa et al.,

2005; Papatsenko et al., 2002; Stanojevic et al., 1991) and

several models have been proposed to explain their existence

(Doniger et al., 2005; Giorgetti et al., 2010; He et al., 2012; Segal

et al., 2008). Our results provide experimental evidence that

homotypic clusters of Hox binding sites can confer robustness

to enhancers. This may reflect a more widespread phenomenon.

Although many enhancers contain homotypic clusters with low

affinity sites, previous studies have rarely detected changes in

expression by deleting individual binding sites (Doniger and

Fay, 2007; Driever and Nüsslein-Volhard, 1989; Estella et al.,

2008; Giorgianni and Mann, 2011; Hersh and Carroll, 2005; Sar-
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amäki et al., 2006; Stanojevic et al., 1991). However, these

mutated enhancers have not been tested in variable environ-

ments. It is possible that many of these clustered sites confer

regulatory robustness.

It is useful to compare our results with previous studies that

have demonstrated specific regulatory functions for homotypic

clusters. For example, clustered binding sites in an enhancer

of the Drosophila hunchback gene mediate cooperative

DNA binding by Bicoid, which provides threshold-dependent

enhancer activity (Driever et al., 1989; Lebrecht et al., 2005;

Struhl et al., 1989). In other cases, clusters of homotypic binding

sites act in a noncooperative manner to allow enhancers to

respond in a graded fashion (Giorgetti et al., 2010), for example

to determine expression levels in response to transcription factor

concentrations (Driever et al., 1989; Gaudet and Mango, 2002;

Rowan et al., 2010). It is worth noting that in these cases, where

homotypic clusters mediate specific linear or nonlinear outputs,

enhancers are bound by transcription factors that belong to

small paralogous families: e.g., two paralogs for Msn2 (Hasan

et al., 2002); three for p53 (Belyi et al., 2010); two for Dorsal (Sil-

verman and Maniatis, 2001); and five for NFkB (Silverman and

Maniatis, 2001). In contrast, there are 84 homeodomain-contain-

ing proteins encoded in theDrosophila genome, many with over-

lapping specificities (Berger et al., 2008; Noyes et al., 2008).

Therefore, in previously described examples of homotypic clus-

ters, binding affinitymay not be a strong constraint on specificity.

For the Hox regulated svb enhancers, low affinity Ubx/AbdA-

Exd binding sites enable specificity, while the clustering of low

affinity sites confers phenotypic robustness. This is a fundamen-

tally different constraint on clustered binding sites than observed

in all previous examples. The affinity-specificity tradeoff, initially

supported by our computational analysis of in vitro data, was

confirmed in vivo by progressively increasing the affinity of the

Ubx-Exd binding sites. While replacement of low affinity sites

with higher affinity sites always quantitatively altered enhancer

activity, either positively or negatively, most higher affinity sites

generated strong ectopic expression. As we show, this ectopic

expression is driven, at least in part, by gaining the binding of

additional Hox proteins, which are normally not involved in the

regulation of these enhancers. Other studies have performed

replacement of low affinity sites with higher affinity sites and, in

some cases, they have also observed ectopic expression

(Busser et al., 2012; Driever et al., 1989; Gaudet and Mango,

2002; Jiang and Levine, 1993; Peterson et al., 2012; Ramos

and Barolo, 2013; Scardigli et al., 2003; Stewart-Ornstein

et al., 2013; Struhl et al., 1989). These altered patterns of expres-

sion may reflect increased sensitivity of enhancers to the same

transcription factor that binds to the wild-type enhancer (Jiang

and Levine, 1993). We observed a similar effect for Ubx and

AbdA-dependent upregulation of svb enhancers in the cells in

which they are normally expressed. In addition, however, we

found that sites with higher affinity resulted in a reduced speci-

ficity, due to the binding of additional homeodomain proteins,

such as Scr, to svb enhancers. Our computational analyses

suggest that this affinity-specificity tradeoff is a fundamental

property of Hox proteins andwould therefore influence the archi-

tecture of enhancers that must generate specific outputs in

response to Hox factors. We suggest that transcription factors



that belong to other large paralog groups may exhibit a similar

affinity-specificity tradeoff and that enhancers regulated by

these factors may also exploit clusters of low affinity sites.

Our results help to explain previous difficulties with bio-

informatic prediction of functional Hox binding sites, because

low affinity sites are difficult to detect reliably. Indeed, the low af-

finity sites that implement Hox regulation within svb enhancers

share little similarity with canonical Hox or Hox-Exd binding

sites. Consequently, a very large number of seemingly disparate

DNA sequences can confer low affinity binding for Hox proteins.

If Hox-Exd sites are often clustered in the genome, then signals

from genome-wide chromatin immunoprecipitation sequencing

(ChIP-seq) will reflect binding to the entire cluster (as we

observed) and the signals associated with individual low affinity

sites may be difficult to discern from noise. Identification of

important low affinity sites will require a change in computational

approaches to analyzing genome-wide data. Currently, it is de ri-

gueur to apply an arbitrary threshold to genome-wide data and

then to analyze only signals above this threshold. This approach

is likely to bias detection toward high affinity sites, whose func-

tions may be distinct from those of clusters of low affinity sites.

Our findings provide insight into how different Hox proteins

regulate specific target genes to generate phenotypic diversity

across the anterior-posterior axis. One unanswered question is

how the many low affinity DNA sequences, which appear to

share little in common, are bound by the sameHox-Exd complex

with apparently similar affinity. It is possible that variations in

DNA shape (deviations from the structure of canonical B-DNA)

influence Hox-Exd binding to low affinity sites (Dror et al.,

2014; Joshi et al., 2007; Rohs et al., 2009). It remains unclear if

very different sequences can adopt similar shapes, or whether

instead the Hox-Exd complex can recognize a range of shapes.

Resolution of this question will require structural studies of Hox-

Exd complexes bound to a range of low affinity DNA sequences

and quantitative analysis of their binding dynamics in vivo.

EXPERIMENTAL PROCEDURES

Fly Strains and Transgenic Constructs

DNA fragments were cloned into the reporter constructs placZattB and

pHSPattB GFP and the pRSQsvb rescue construct (Frankel et al., 2011)

(see Table S1). Mutations were introduced using site-directed mutagenesis

(Genescript). Plasmids were integrated into the attP2 landing site by Rainbow

Transgenic Flies. Additional strains used were: svbR9/FM7c twi::GFP (Delon

et al., 2003); HS::Ubx-1; Ubx1; hthP2 (Noro et al., 2006); and Ubx1abdA-
D24AbdBD18 (Bloomington stock 1108).

Embryo Staining and Cuticles

Stage 15/16 embryos were collected, fixed, and stained using standard proto-

cols with mouse anti-bGal (1:1,000, Promega) and anti-mouse AlexaFluor

(1:500, Invitrogen) antibodies. Cuticles were prepared following standard pro-

tocols, imaged with phase-contrast microscopy, and ventral trichomes in

larval A2 segments were counted.

Image Analysis

Embryos carrying reporter constructs were imaged on a Leica SPE Confocal

Microscope. Sum projections of confocal stacks were assembled, images

were scaled, background was subtracted using a 50-pixel rolling-ball radius

and plot profiles of fluorescence intensity were analyzed using ImageJ soft-

ware (http://rsb.info.nih.gov/ij). Data from the plot profiles were analyzed

further in MATLAB (http://www.mathworks.com) (Crocker and Stern, 2013).
In Vitro Affinity-Specificity Tradeoff Calculations

Average relative affinities of 12mers fromSELEX-seq data (Slattery et al., 2011)

were calculated for four pairs of Hox-Exd complexes that share similar binding

preferences: (1) Labial and Pb, (2) Dfd and Scr, (3) Antp and AbdB, and (4) Ubx

and AbdA. Specificity groups (colored bars in Figure 3) were defined as having

an average relative affinityR0.05 for bound complexes and <0.03 for unbound

complexes. The proportion and total number of sequences in each specificity

group were calculated for ten bins based on their Ubx/AbdA-Exd relative

affinities.

DNA Alignments

Multiple sequence alignments were performed using Geneious (http://www.

geneious.com) with MUSCLE alignment algorithms (anchor optimized).

Protein Purification and EMSAs

Ubx (isoform IVa), abdA, HthHM-Exd, and HthFL-Exd constructs, protein purifi-

cation, and EMSA conditions were described previously (Lelli et al., 2011).

Further experimental details are provided in Table S2.
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