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Abstract
Purpose This paper describes an approach for the three-
dimensional (3D) shape and pose reconstruction of the hum-
an rib cage from few segmented two-dimensional (2D)
projection images. Our work is aimed at supporting temporal
subtraction techniques of subsequently acquired radiographs
by establishing a method for the assessment of pose differ-
ences in sequences of chest radiographs of the same patient.
Methods The reconstruction method is based on a 3D sta-
tistical shape model (SSM) of the rib cage, which is adapted
to binary 2D projection images of an individual rib cage. To
drive the adaptation we minimize a distance measure that
quantifies the dissimilarities between 2D projections of the
3D SSM and the projection images of the individual rib cage.
We propose different silhouette-based distance measures and
evaluate their suitability for the adaptation of the SSM to the
projection images.
Results An evaluation was performed on 29 sets of biplanar
binary images (posterior–anterior and lateral). Depending on
the chosen distance measure, our experiments on the com-
bined reconstruction of shape and pose of the rib cages yield
reconstruction errors from 2.2 to 4.7 mm average mean 3D
surface distance. Given a geometry of an individual rib cage,
the rotational errors for the pose reconstruction range from
0.1◦ to 0.9◦.
Conclusions The results show that our method is suitable for
the estimation of pose differences of the human rib cage in
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binary projection images. Thus, it is able to provide crucial
3D information for registration during the generation of 2D
subtraction images.
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Introduction

In clinical routine, radiography is an inexpensive and fre-
quently used imaging technique for screening and diagnosis
of the chest region. However, interpreting radiographs is diffi-
cult, especially if conclusions about the 3D geometry need to
be drawn. For this reason, computer-aided diagnosis (CAD)
methods are developed and increasingly applied to support
physicians [1].

A widely used diagnosis method is the comparison of
chest radiographs with previously acquired radiographs of
the same patient to detect changes in the health status. This
approach is also commonly used in the context of inter-
val studies, where radiographs are acquired intermittently
to identify interval changes between subsequent images to
observe the course of a disease, e.g tumor growth. To detect
interval changes by automated procedures, a CAD method
known as temporal subtraction of subsequently acquired
radiographs can be applied [2]. Subtraction images show
the difference between previous and follow up images of
a patient after a suitable image registration (c.f. Fig. 1). Ide-
ally, unchanged anatomical structures are eliminated while
any interval change caused by new opacities (e.g., tumors)
appears strongly contrasted and stands out more clearly. Stud-
ies on the benefit of image subtraction indicate a significant
improvement in the accuracy of detecting abnormalities in
the chest region in case subtraction images are used [3]. One
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Fig. 1 Two different subtraction images of the same patient after image
registration: a the interval change (the development of a pneumonia) is
clearly visible (arrow); b no interval change is detectable due to artifacts
that are caused by a strong anterior–posterior inclination

of the major problems for the generation of suitable subtrac-
tion images is the deviation of the patient’s pose between
subsequent images. For this reason, image registration prior
to the image subtraction is indispensable, since the imaging
geometry may differ for each radiograph. In case the registra-
tion fails (due to major pose differences), undesired artifacts
emerge that might superimpose the interval change, which in
consequence may remain undetected (see Fig. 1). In practice,
especially anterior–posterior (AP) inclination and rotation
around the longitudinal axis impair the quality of subtraction
images [2].

The compensation of such 3D pose differences using 2D to
2D image registration does not necessarily lead to sufficient
results. A phantom study of von Berg et al. [4] showed that
deformable 2D to 2D image registration, compared to non-
deformable registration, better compensates for pose varia-
tions of up to 2.3◦, still allowing faithful detection of interval
changes from image pairs.

An accurate assessment of the 3D pose difference that
causes the discrepancies between two images may yield valu-
able information that can be used in cases where deformable
registration methods are likely to fail.

To quantify the 3D pose difference between subsequent
images the 3D pose of a patient’s thorax needs to be estimated
from 2D radiographs. The ribs are suitable structures to serve
for this task since they are rigid and do not notably change
in shape over time. In comparison to scapulae and clavicle
their pose is largely independent from the arm posture. Last
but not least, ribs are reasonably contrasted in radiographs.
Hence, they can be used as a reference system to define pose
differences of a patient between time intervals.

We propose to use the rib cage to infer the 3D pose of a
patient’s thorax from 2D images. The general idea is to match
the patient’s individual 3D rib cage model to the image data
such that the pose of the 3D model yields a good approx-
imation of the patient’s pose during image acquisition. For
such an approach, the patient-specific rib cage geometry is
required first. Therefore, this work addresses two problems:

1. 3D shape reconstruction: The 3D geometry of the rib
cage needs to be retrieved from patient-specific data. As
an alternative to an expensive acquisition of tomographic
image data with higher radiation exposure, the recon-
struction shall be obtained from few 2D projections.

2. 3D pose reconstruction: The patient’s individual 3D rib
cage, reconstructed via a 3D shape reconstruction, is used
to recover the 3D pose from subsequent 2D images.

The general task of 3D reconstruction of anatomical struc-
tures from X-ray images is challenging, as only partial infor-
mation is available. Our approach is based on an SSM of the
rib cage, which aims at providing missing information in a
reasonable and well-founded manner.

A factor that limits the information at hand is the small
number of X-ray images to be used for a 3D reconstruction.
While in clinical practice two radiographs (one posterior–
anterior (PA) view and one lateral (LAT) view) are acquired
in most examinations, there is no standardized imaging proto-
col for their acquisition. The patient commonly turns approx-
imately 90◦ for the LAT-view. Consequently, PA and LAT
X-ray images do not depict the same scene. This makes the
problem of the 3D shape and pose reconstruction from two
views more difficult. Although there are special X-ray imag-
ing devices that can be configured to generate a calibrated,
biplanar PA and LAT pair of radiographs, as described in [5]
and used in [6], they are not widely used. Additionally, iden-
tifying the ribs in the LAT-view is even more difficult due to
a higher degree of superposition by other thoracic structures.
For the aforementioned reasons the 3D shape as well as pose
reconstruction of a patient’s individual rib cage should be
preferably accomplished from one PA-projection.

Another difficulty involved in a 3D reconstruction from
X-ray images is that the reconstruction process relies on the
detection of features that represent the anatomy in the X-ray
images. Extracting these features is a challenging problem in
itself and strongly depends on the details of the imaging pro-
tocol. In this work, we assume that the ribs can be segmented
from X-ray images. In most situations this assumption is met,
i.e., rib boundaries can be identified visually in X-ray images
and, at least, outlined manually. Work to extract the contours
of posterior ribs from frontal X-ray images has been reported
[7–9]. Park et al. address the problem of detecting and label-
ing the ribs [10]. Nevertheless, the automation of this task is
still an open research problem not being within the scope of
this work.

The objective of this work is to show that the proposed
reconstruction method yields useful results within a well-
defined experimental setup, and thus provides a solid basis
for future clinical applications. Artificial binary projection
images of the rib cage, for which the exact parameters to be
determined are known beforehand, enable us to verify the
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accuracy of our reconstruction results. Segmentations of the
ribs can be easily obtained from such binary images. We show
that an automated 3D reconstruction of shape and pose can
be achieved from segmented binary projection images of the
rib cage.

Related work

Matching objects is a fundamental problem that arises in var-
ious application fields of computer vision and medical image
analysis. Ways and means are required to measure the sim-
ilarity between objects to be matched. A common approach
is to use distance measures, which rely either on geometrical
features like edges (feature based) or on intensity informa-
tion in images (region based), to quantify the similarity. The
efficient computation of edge-based distance measures, as
used in our work, has been investigated in the past, for exam-
ple with edge-based template matching using the Hausdorff
distance, which was used to quickly locate objects within
images [11,12].

A general method for aligning shapes is the iterative clos-
est point (ICP) algorithm [13]. Starting with an initial trans-
formation estimate of the shape to be matched to a reference
shape, pairs of corresponding points are generated between
the two shapes. Then, the initial transformation and the point
correspondences are iteratively adjusted, such that an error
metric is minimized. There are many different variants of
the ICP method, and it was also adapted and modified to
be used with 2D to 3D reconstruction problems [14–17].
A comparison of ICP variants can be found in [18].

In recent years, several methods for the pose reconstruc-
tion of 3D objects from 2D projections were introduced [14,
19–21]. The work of Lavallée et al. [19] deals with deter-
mining position and orientation of arbitrary surfaces based
on contour points in 2D image data. The matching is achieved
by minimizing signed distances from projection lines, which
are defined between 2D contour points and the projection
center, to the surface. A similar approach to [19] that uses an
extended ICP method was introduced by Feldmar et al. [14].
Instead of using signed distances the approach exploits infor-
mation of the surface normals. Since ICP-based methods
highly depend on the initialization and may lead to local
optimal solutions, Cyr et al. [20] propose a hierarchical iter-
ative matching approach to avoid this problem. Here, the pro-
jection direction of vertebrae is recovered from one binary
projection image. However, recovering translation parame-
ters of the object with respect to the location of the projection
source is not considered.

The aforementioned methods address the problem of
recovering the pose of known shapes from their projections.
With regard to medical applications, however, it is often
required to assess the pose of an unknown patient-specific
shape of a known anatomical class. The method presented

by Bhunre et al. [21] accomplishes this for the proximal and
distal femur by fitting a generic model to one patient-specific
X-ray image. For complex geometries, such as the rib cage,
this approach is not likely to yield accurate results, because
such structures are often subject to a high inter-patient vari-
ability and involve symmetry or even repetitive structures as
the ribs. For this reason, it is also necessary to retrieve the
specific 3D shape of a patient’s anatomy, to estimate its pose
from projection images correctly.

Several shape reconstruction methods have been proposed
that use a priori knowledge, e.g., in form of SSMs [22], to
incorporate information about reasonable variations in shape
within a class of shapes [15–17,23,24]. Fleute and Lavallée
[15] retrieve the shape of the femur from segmented contours
in X-ray images with an SSM. They use a generalized ver-
sion of the ICP algorithm to minimize the distance between
apparent contours on the SSM’s surface and a set of projec-
tion lines as already used in [19]. The shape reconstruction
method presented by Lamecker et al. [16] minimizes the dis-
tances between 2D images and projection images of an SSM
based on the silhouettes in both images. The pose of the shape
to be reconstructed is assumed to be known in advance.

These previous methods deal with anatomies of the femur
[15,17,21,24], the pelvis [16] and individual vertebrae [19,
20]. Thus, they address only single bones. The reconstruction
of bone ensembles with repetitive structures as the rib cage
and the spine is considered much more challenging, because
similarity and redundancy of sub-structures can lead to mis-
matches.

One of the first methods for the reconstruction of the
human rib cage was proposed by Dansereau and Srokest [25]
to asses geometric properties of the rib cage of living subjects.
It uses direct linear transformation (DLT) [26] for the recon-
struction of rib midlines from a pair of stereo-radiographs
(one conventional PA-view and a second PA-view with 20◦
difference of the X-ray source’s incidence angle). Delorme
et al. [27] presented an approach to generate patient-specific
3D models of scoliotic spines, pelvises and rib cages. They
used the method of Dansereau and Srokest [25] in combina-
tion with an additional LAT-view to obtain 3D coordinates of
anatomical landmarks that need to be manually identified in
the 2D radiographs. To obtain patient-specific surface models
a generic 3D model of a scoliotic patient, reconstructed from
computer tomography (CT), was adapted to these landmarks
using free form-deformation. The work of Novosad et al. [28]
addresses the problem of estimating the pose of vertebrae to
reconstruct the spinal column for the analysis of the spine’s
flexibility. This work is similar to ours in that patient-specific
3D shape reconstructions from projection images are used to
perform a subsequent pose reconstruction. For the prior 3D
shape reconstruction Novosad et al. use the method described
by Delorme et al. [27]. The pose is then reconstructed using
only one PA X-ray image.
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Recently, two works using a semi-automated framework
for the reconstruction of the rib midlines have been pre-
sented by Mitton et al. [29] and Bertrand et al. [6]. Their
approach depends on a prior 3D reconstruction of the spinal
column and two calibrated, exactly perpendicular, and simul-
taneously acquired radiographs (PA and LAT) [5]. A generic
model, fitted to previously reconstructed landmarks of the
sternum and entry points of the ribs at each vertebra (using
the same technique as in [27]), yields an initial estimate
for the reconstruction. This estimate is iteratively improved,
with the interaction of an operator who manually adapts pro-
jected rib midlines of the matched generic model to image
information in the radiographs.

These rib cage reconstruction methods [6,25,27,29]
depend on the identification of landmarks within the X-ray
images. The correct identification of anatomically relevant
landmarks of the ribs in X-ray images is difficult even when
performed manually. A promising alternative is the use of fea-
tures from X-ray images that are more likely to be detected
automatically, e.g., rib contours or image gradients. More-
over, the methods do not take advantage of a priori knowl-
edge about the rib cage’s shape variability due to the use of the
DLT technique. Benameur et al. [23] approach this problem
using 3D SSMs of rib midlines and extracted contours from
a calibrated pair of X-ray images (PA and LAT-view). The
reconstruction is obtained by minimizing an energy func-
tion defined via edge potential fields between rib contours
and projected rib midlines of an SSM. This method is used
to classify pathological deformities of the spinal column in
scoliotic patients.

Contribution

Our work is based on the method of Lamecker et al. [16] that
uses a 3D SSM for the reconstruction of complex 3D shapes
from 2D projection images. We extend this method in two
directions: (1) we additionally handle pose reconstructions
with respect to a known image acquisition setup. This is cru-
cial for supporting interval studies as described above; (2)
we consider the distinct and complex geometry of the rib
cage. Here, new problems arise which call for new solutions
compared to the case of the pelvic bone geometry [16]. In
this context, we compare different edge-based distance mea-
sures with regard to their application to the 3D reconstruction
of the rib cage and thereby extend preliminary work pre-
sented in [30]. Additionally, we evaluate the accuracy of the
pose reconstruction from one and from two calibrated binary
projection images, which has not been done with other rib
reconstruction methods.

Our method is similar to the work of Benameur et al. [23]
inasmuch as it uses a 3D SSM and relies on edge-based fea-
tures in the image data, instead of landmarks that have little
prospect of being detected automatically from radiographs.

However, in contrast to [23], we use an SSM of the rib’s
surfaces. Our approach allows for a direct comparison of rib
contours in both, the model projection and the image data,
where Benameur et al. propose to compare projected mid-
lines of the model with contours of the ribs in the image data.
Furthermore, Benameur et al. [23] use 3D reconstructions
obtained by the method of Dansereau and Srokest
[25] as gold standard to evaluate the method, which limits
the assessment of the method’s accuracy, as already stated
in [29]. We use 3D surface models of rib cages, extracted
from CT-data of 29 different subjects, as gold standard for
evaluation.

Material and methods

Overview

The present work addresses two problems: (1) the 3D shape
reconstruction of an individual rib cage and (2) its 3D pose
reconstruction, each from few binary 2D projection images.
The goal of the 3D shape reconstruction is to estimate a rib
cage’s individual shape from the projection images. For this
not only the 3D shape, but also the 3D position, orientation,
and size must be determined. For the pose reconstruction
only the 3D position, orientation, and size are recovered.

The aim of the reconstruction process is to infer these
parameters from the projection data. The idea is to obtain a
3D model that serves as an estimate for the 3D pose (and
3D shape) of the individual rib cage. For this purpose a
parameterized 3D model is fitted to the 2D projection images
(reference images). In case of the 3D shape reconstruction,
this model is deformable and has been derived from a set
of training data. For a pose reconstruction we use a patient-
specific, non-deformable model. Fitting such a model to the
image data is accomplished as follows:

We generate projection images of the 3D model (model
images). On the basis of images features, i.e., contours of
the rib boundaries, these model images are compared to the
reference images. The dissimilarities of the model images
to the reference images are iteratively reduced by adapting
parameters of the 3D model that control its 3D pose (and 3D
shape) variations.

Statistical shape model of the human rib cage

Since projection images can only provide limited informa-
tion about a 3D anatomy it is beneficial to incorporate a pri-
ori 3D shape knowledge to infer missing information in an
anatomically plausible way. Cootes and Taylor [22] proposed
statistical shape models (SSM) that comprise such shape
knowledge. An SSM is a deformable model that is based on
statistical analysis of a set of trainings examples of the same

123



Int J CARS (2010) 5:111–124 115

shape class. Only deformations according to the variability
within the set of training shapes are permitted.

Our reconstruction process is based on such an SSM of
the human ribs that was created from 29 triangulated surface
models of different rib cages, automatically segmented from
CT-data [31]. As not all ribs are displayed in each of the CT-
images due to an incompleteness of the image data, the model
we use is restricted to the ribs 2 to 8. The anatomical corre-
spondences between the vertices of the individual surfaces
are established during segmentation. The SSM is generated
via a principle component analysis (PCA) on the set of the
29 rib cages. It captures the average shape of the training set
as well as its variability in terms of n = 28 modes of shape
variation (shape modes) and is defined as

S(b, T ) = T

(
v +

n∑
i=1

bi pi

)
, (1)

where v is the average shape and pi are the shape modes.
The degrees of freedom of the SSM are its shape weights
b = (b1, . . . , bn), which control the shape variation, and a
linear transformation T describing the model’s pose. More
precisely, T is composed of translation (tx , ty, tz) and rota-
tion parameters (θx , θy, θz) as well as a uniform scaling s.

Projection of the SSM

The reconstruction of a 3D rib cage from 2D projection
images is based on the comparison of the projection of an
SSM to the given reference images. For this purpose,
instances S(b, T ) of the SSM with varying shape parame-
ters b and transformation T are projected.

In our case, the projection image Ip of S(b, T ) is gener-
ated by means of rays that are emitted by a point source and
propagated onto an image acquisition plane. The calibration
of the point source with respect to the image plane is known
and is consistent with the camera calibration that was used
for the acquisition of the reference image. If the path of a
ray to the image plane intersects the SSM then Ip(x) = 1,
where x is the projected intersection. Otherwise, Ip(x) is set
to zero. The projected SSM is then defined as

P = {x ∈ R
2 : Ip(x) > 0}. (2)

The mean shape v of the SSM and its projection images
are shown in Fig. 2.

Optimization

Our reconstruction process is defined in terms of an opti-
mization problem. The goal is to determine values for both
the shape weights b and transformation parameters T of the
SSM such that the projection of the 3D model S(b, T ) is an
optimal approximation to the reference image. The model

Fig. 2 The SSM and its projections: a shows the average shape v of
the SSM and in b binary projection images of v are depicted

S(b, T ) then serves as an estimate for the 3D shape and 3D
pose of the individual rib cage’s anatomy. The quality of
the approximation is measured via an objective function D,
hence the goal is to compute

(b∗, T ∗) = arg min
b,T

D(b, T ). (3)

By minimizing D the similarity between the reference images
and the projections of S(b, T ) is maximized.

The objective function D depends on the specific data and
thus may exhibit a highly complicated behavior with many
local minima. There is no general rule how to treat such
non-convex problems. Applying local minimization schemes
requires additional suitable heuristics to guide the minimiza-
tion into the right direction.

For the minimization of D a gradient-based optimiza-
tion procedure was adapted [32]. Starting initially at v0 =
(b0, T0), during step i of an iterative process, the gradient
∇D is approximated at the current solution vi . Performing a
line search along the direction of ∇D an improved solution
vi+1 is computed. This is repeated until a termination criteria
is reached: if ‖∇D‖ falls below a certain threshold at a step
n, the iteration is stopped, and v∗ = vn is the final solution.

The line search is performed as follows: an initial large
length parameter δ0 and a minimal, final parameter δ f are
defined by the user. ∇D is scaled to δ0 with regard to its
maximal component, d := δ0‖∇ D‖∞ ∇D. The step size is then
defined by ‖d‖. As long as the value of D improves, another
step is taken in this direction. Hereafter, the line search is
refined with step sizes δ j iteratively reduced by a constant
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factor, starting from the current solution: in each iteration,
one step is taken in the direction of ±∇D. This is repeated
until step size δ f is reached.

Large steps in the beginning of the line search contribute
to a faster convergence and prevent the optimization of get-
ting stuck in small local minima, introduced by noise in the
data. By narrowing the search interval with reduced step sizes
the neighborhood of a minimum is sampled with increasing
accuracy.

However, even with these heuristics, the optimization is
still local in nature and cannot detect a global optimum.
Therefore, a good initialization is of particular importance.

Distance measures

A distance measures is used to assess dissimilarities between
the projection of the SSM and the reference images. It serves
as the objective function D for the optimization of the SSM’s
parameters. In the following, we define different distance
measures that are to be tested for their suitability for the
3D reconstruction of the rib cage. Different degrees of prior
knowledge that could be extracted from X-ray images are
considered. Reasons as to when to choose which specific
distance measure are motivated and supported by qualitative
results in the section on “Choice of distance measure”.

Silhouettes

A silhouette S is a set of contours. The silhouette Sm of the
projected SSM P in Eq. (2) is defined by the boundary ∂ P
and is referred to as the model silhouette. The reference sil-
houette Sr in a reference image is assumed to be known. We
follow the approach of a silhouette-based distance measure
as proposed by Lamecker et al. [16].

Given a reference and a model silhouette, the silhouette
distance between a contour point xm ∈ Sm to Sr is defined as

de(xm, Sr ) = min
xr ∈Sr

(‖xm − xr‖), (4)

where ‖xm − xr‖ is the Euclidean distance between xm and
xr . The distance de(xr , Sm) from xr to Sm is defined analo-
gously. In case the correspondences between individual rib
silhouettes are given, i.e., the ribs are labeled within the
images, the distance is defined between contours of these
corresponding ribs only. Then, de(xm, Sr ) for a point xm in
a contour si ∈ Sm to another contour s j ∈ Sr is defined with
the constraint that i = j ∈ {1, . . . , l} applies, where l is the
number of labeled ribs.

Symmetric and asymmetric distance measure

The objective function to be minimized can be defined sym-
metrically or asymmetrically. The symmetric distance
measure is given by the integrated symmetric squared

Fig. 3 Avoiding contour mismatches: a mismatches can be identified
by different orientations of the silhouette normals, b whereas the ori-
entation at corresponding contour points is similar

distance between two silhouettes Sm and Sr ,

DS =
∫

xm∈Sm

de(xm, Sr )
2dxm +

∫
xr ∈Sr

de(xr , Sm)2dxr , (5)

while the asymmetric distance measure is defined as the inte-
grated squared distance from silhouette Sm to Sr ,

DA =
∫

xm∈Sm

de(xm, Sr )
2dxm . (6)

Contour normals

A feature that can assist in finding meaningful point cor-
respondences between silhouette points are the contour nor-
mals of silhouettes. As illustrated in Fig. 3, orientation
differences of the normals at two contour points indicate a
mismatch. To avoid contour mismatches, we can extend the
distance measure to take into account the orientation of the
silhouette’s normals.

The modified distance is then defined as

dn(xm, Sr ) = min
xr ∈Sr

((1 + c · e)(2 − n)), (7)

where n = nr · nm denotes the inner product of two con-
tour normals at points xr and xm , and e = ‖xm − xr‖. n
serves as a measure of the orientation difference of both nor-
mals. Note that nr and nm are normalized. The purpose of
the pre-defined constant factor c is to balance the impact of
the Euclidean distance and orientation difference.

Area difference

Another measure, which we propose to incorporate into the
objective function, is the relative area difference of silhou-
ettes. The distance measure is extended by a quotient a of the
areas ASr and ASm enclosed by the silhouettes Sr and Sm ,

da(xm, Sr ) = min
xr ∈Sr

((1 + c · e)(2 − n)(2 − a)2), (8)
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where a is given by ASm /ASr if ASm < ASr and ASr /ASm

otherwise, with

ASm =
∫

x∈P

1dx. (9)

Discrete distance computation

In the following details of the computation of the distances
de and dn defined in Eqs. (4) and (7) are described.

Silhouette-based Euclidean distance

Model silhouettes can be obtained automatically from IP .
They are represented as sets of discrete pixels, which define
the outer rib boundaries in the rasterized projection image.
The outer rib boundaries in the reference images are repre-
sented in the same manner. Consequently, the distance mea-
sures presented in Eqs. (5) and (6) are implemented as sums
over centers of silhouette pixels. The distance de between two
silhouettes in Eq. (4) is computed by means of 2D distance
maps, which encode the Euclidean distance for an arbitrary
image pixel to the closest point on a given silhouette. There-
fore, for each point xm the distance can be retrieved from the
distance map of Sr at xm .

Extended distances

The normal-extended distance dn is computed as follows: for
a point xm with a certain normal orientation nm , the point xr

with normal nr must be determined that minimizes the com-
bined distance in Eq. (7). This xr is not necessarily the point in
Sr with the smallest Euclidean distance to xm . For this reason,
the distance evaluation cannot be performed by calculating
one distance map of Sr as previously described. Instead, we
compute a set of Euclidean distance maps Mi (i = 1, . . . , k)

as follows:

1. For all points in a reference silhouette and a model silhou-
ette the normals are computed. A normal nm of xm ∈ Sm

is given by the normalized image gradient of Ip.
2. All silhouette points are sorted into point sets pi accord-

ing to their normal orientation. Therefore, a set of k nor-
malized vectors

ni = (cos(ϕi ), sin(ϕi ))
T (10)

is built where ϕi = i · 2π/k is the orientation angle.
A point with a normal nr is assigned to the set pi if
arccos(ni · nr ) ≤ π/k holds true.

3. For each pi a Euclidean distance map Mi is calculated.

The distance dn(xm, Sr ) for a point xm is then computed
as follows: for each pi the minimum Euclidean distance ei

of xm to pi is retrieved from the distance map Mi . Then,

dn(xm, Sr ) = min
i

((1 + c · ei )(2 − nm · ni )). (11)

For the area-extended distance da the area of a silhouette
is given by the number of pixels enclosed by the silhouette
contour.

Choice of distance measure

The distance measures defined in the previous section are
based on silhouette contours. We choose edge-based features
for the reconstruction of the rib cage over region-based mea-
sures for the following reason: in radiographs the cortical
bone layer of the ribs appears reasonably contrasted against
the background in regions where the X-rays penetrate the
bone surface nearly in a tangential direction. Therefore, the
contours of the ribs stand out more clearly and are more eas-
ily detectable. Region-based features, on the other hand, are
almost non-existent, since the intensity of the inner regions
of the ribs hardly differ from the background. Thus, with
regard to future clinical applications, we choose to use edge-
based features. Motives to choose a particular measure from
the different silhouette-based distance measures are given
below.

A silhouette-based distance measure (symmetric Eq. (5)
or asymmetric Eq. (6)) is a promising choice for the recon-
struction of the pose and the shape of a rib cage, provided that
the silhouettes are correctly extracted and the ribs are labeled
in the reference images. However, tests showed that a silhou-
ette-based distance measure in combination with unlabeled
rib silhouettes causes erroneous reconstructions. We identi-
fied two problems:

1. Mismatches of rib contours can emerge, i.e., ribs are fit-
ted to the contours of two adjacent ribs in the reference
images (see Fig. 4a). This is due to the spatial similarity
of the ribs’ width and the spacing between them.

2. Mis-assignments of ribs can occur, caused by the repeti-
tion of the ribs in the bone ensemble and the symmetric
geometry of the rib cage (see Fig. 4b).

Contour mismatches can be avoided by using the normal-
extended distance dn (Eq. (7)). Mis-assignments of ribs are
more difficult to cope with. Using a symmetric distance mea-
sure alleviates, but does not eliminate the effect. We solved
this problem by proper automatic initialization that antici-
pates mis-assignments of the ribs, as described below.

The use of asymmetric distance measures in combination
with unlabeled ribs introduce another problem: the incorrect
determination of the scale factor s (c.f. Fig. 4c). The reason
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Fig. 4 Possible mis-adaptations: a with a distance measure DS and a
distance de contour mismatches occur, and b mis-assignments of ribs
appear; c in case an asymmetric measure DA is used, the problem of

incorrect scaling is introduced; d plot of the scale factor s in the neigh-
borhood of the optimal reconstruction: a scale factor below the optimal
factor has too low an impact on the objective function DA

for this is illustrated in Fig. 4d. The plot of the objective
function DA demonstrates that a scale factor below the opti-
mal factor has a very low impact on the objective function,
whereas too high factors are accounted for accordingly. Erro-
neous reconstructions due to too small scale factors are the
consequence.

Nevertheless, asymmetric distance measures hold the
power to better cope with incomplete and erroneous contours
within the X-ray images.

In case the asymmetric distance measure is applied the
adaptation of the scaling can be controlled by the distance
da , which incorporates the relative area difference of the sil-
houettes.

Quantitative results

We evaluated the accuracy of the method using the different
distance measures to assess if the method is applicable to

1. determine 3D pose differences between images by esti-
mating the 3D pose of a rib cage from projection images,
given that the individual 3D rib cage model of the patient
is available. We evaluated pose reconstructions from two
biplanar, binary projection images (PA and LAT-view) as
well as from one binary PA-projection.

2. perform a 3D shape reconstruction of an unknown rib
cage from two biplanar, binary projection images (PA
and LAT-view), i.e., the simultaneous reconstruction of
the shape and the pose.

Experiments setup

In order to evaluate the reconstruction quality, we used the
29 surface models of different rib cages (reference surfaces),
which were extracted from CT-data and previously used for
the creation of the SSM. These reference surfaces were used

to generate binary projection images to which the shape
model was fitted.

All experiments involving shape reconstruction were per-
formed with an SSM that excludes the shape to be recon-
structed from the set of trainings shapes (leave-one-out test).
The weights b of all remaining 27 shape modes were
optimized.

For all experiments involving pose reconstructions, the rib
cage models (SSM or non-deformable) were initialized with
different, random pose parameters T0, restricted to ranges of
±30 mm for the translations tx , ty, tz and ±15◦ for the rota-
tion parameters θx , θy, θz . The initial scale was restricted to
factors between 0.7 and 1.3. The ranges chosen for rotation
and scaling follow reasonable pose variations observed dur-
ing the acquisition of X-ray images in medical practice.

For reconstructions from two biplanar images, a PA and
a LAT-view were used. The camera calibrations for both
images were known. The orientation of the LAT-projection
source was orthogonal to the PA-view. Its position is given
by a 90◦ rotation of the PA-projection source around the lon-
gitudinal axis of the reference surface (see Fig. 5). In case a
reconstruction was performed from one image, only the cal-
ibrated PA-view was used. In this virtual setup the distance
from the projection sources to the image acquisition plane
was 1m; the angle of the field of view was 22◦. In this well-
defined setting the silhouettes of the reference images can be
extracted from the binary images as described in the section
on “Silhouette-based Euclidean distance”. The experiments
were performed with k = 16 distance maps. The weighting
factor c, ranging from 1 to 65, was found empirically to yield
satisfactory results for the different distance measures.

Evaluation method

The virtual setup described above enables us to verify the
accuracy of our reconstruction experiments in 3D, since the
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Fig. 5 Image acquisition setup: the projection sources of the PA-view
and the LAT-view are calibrated to generate two orthogonal images of
the reference surface; a possible initialization of the SSM within this
setup is shown: the silhouettes to be matched are those of the projected
SSM (beige) and the reference silhouettes (red)

exact parameters that need to be recovered from the refer-
ence images are known. The reference surfaces served as a
gold standard for the evaluation of the reconstruction results.
We measured the reconstruction quality in 3D via the mean
surface distance between the surface of the adapted SSM
and the reference surface. The surface distance was com-
puted between corresponding vertices of the reference sur-
face and the adapted model. The following reconstruction
results are given as average and maximum mean surface dis-
tance across the individual reconstructions. The maximum
mean distance represents the worst of the reconstructions
(29 for experiments involving shape reconstructions, 20 for
pose reconstruction experiments) in terms of its average dis-
tance to the reference surface and thereby yields evidence
on the robustness of the method. Additionally, we deter-
mined the error for each transformation parameter to mea-
sure the quality of the pose reconstruction. Here, especially
the rotational errors are of interest, as the quality of subtrac-
tion images is mainly influenced by AP-inclination (θx ) and
rotation around the longitudinal axis (θz) [2]. The results of
the respective distances de, dn , and da are summarized in
Tables 1, 2, 3 and are discussed in the remainder of this
section.

Pose reconstruction

We adapted patient-specific rib cage models with different,
random pose initializations T0 to reference images of the
respective rib cage geometry. Only parameters of T are to
be determined. Ideally, the surface distance for such pose
reconstruction would reduce to zero, since the shape of the
rib cage is known. In terms of the reconstruction quality the

randomly initialized models deviated on average 21.8 mm
(max. 37.4 mm) from the reference surface with the correct
pose before our method was applied.

In case reconstructions were performed with two reference
images, the distance de in combination with labeled ribs led
to results with surface distances ≤0.2 mm and rotation errors
≤0.2◦ on average, regardless of whether an asymmetric or a
symmetric distance measure was used (see Table 1). A sym-
metric measure with distance de and unlabeled ribs occa-
sionally caused contour mismatches and mis-assignments
of ribs, and it yielded an average reconstruction quality of
2.0 ± 3.0 mm (max. 8.5 mm). With an asymmetric distance
dn applied to the reconstruction of unlabeled ribs the addi-
tional problem of incorrect scaling occurred (11.0 ± 6.9 mm
(max. 27.4 mm)). Here, the scaling s highly deviates with a
factor of 0.25 on average from the correct size. The effects
of the contour mismatches and incorrect scaling were allevi-
ated (4.6 ± 3.9 mm (max. 9.3 mm)) by using distance da . In
this case the errors in the parameters T were ≤2.9◦ for the
rotation and ≤5.4 mm for the translation. These errors are
due to ribs mis-assignments that occurred in all the experi-
ments with unlabeled ribs. In order to overcome the problem
of these mis-assignments, we fit only a subset of ribs to the
image data to initialize the pose. The ribs corresponding to
this subset were labeled in the image data and were chosen to
be spatially located as far apart from each other as possible
in the projections (see Fig. 6). This avoids the periodicity of
the ribs and prevents mutual occlusion in the LAT-projec-
tion image. After such an initialization, a subsequent pose
and shape reconstruction was performed using the entire set
of ribs. It yielded a surface distance of 0.6 ± 0.2 mm (max.
1.2 mm) and rotation errors below 0.9◦ for distance measure
DA and distance da .

We additionally carried out pose reconstructions from one
PA-view. In these experiments the scale parameter was not
optimized, since depth, i.e., translation along θy , and size are
redundant. However, this is of little concern for a pose recon-
struction, because the size of a rib cage is determined during
the prior 3D shape reconstruction. Nevertheless, if two cal-
ibrated views are available, adapting the size of a rib cage
during a pose reconstruction is possible and has its advanta-
ges: A possible scaling error that emerges during 3D shape
reconstruction can be compensated for, which may result in
an improved reconstruction of the pose. A drawback of this
approach is that calibrated PA and LAT-views are needed that
represent the same scene. For this reason, it is worthwhile to
conduct pose reconstructions from one PA-image. Recon-
structions from one PA-view led to an average accuracy of
0.3±0.2 mm (max. 1.0 mm) on labeled ribs and 0.7±0.4 mm
(max. 1.8 mm) on unlabeled ribs after a proper initialization
using DS and de. The reconstruction qualities of these results
are slightly lower in comparison to the respective reconstruc-
tions from two views. It is noteworthy that the rotation angles
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Table 1 Results for the silhouette-based distance de

Experiment Views Pose Transform. error Shape Pose + shape Transform. error
surf. dist. (tx , ty, tz, θx , θy, θz, s) surf. dist. surf. dist (tx , ty, tz, θx , θy, θz, s)

DS , L PA/LAT 0.16 ± 0.06 (0.28) 0.08, 0.18, 0.12,
0.05, 0.14, 0.21,
0.00

2.08 ± 0.96 (4.11) 2.18 ± 0.82 (3.91) 0.40, 0.56, 0.62,
0.61, 0.20, 0.30,
0.00

DA, L PA/LAT 0.17 ± 0.07 (0.39) 0.06, 0.21, 0.14,
0.06, 0.13, 0.19,
0.00

2.00 ± 0.87 (4.19) 2.62 ± 1.15 (5.30) 0.60, 0.84, 0.90,
0.80, 0.19, 0.35,
0.00

DS , U PA/LAT 1.97 ± 2.98 (8.45) 0.92, 2.31, 2.20,
0.44, 1.26, 1.66,
0.00

2.34 ± 0.98 (4.26) 4.53 ± 2.00 (8.98) 1.27, 3.68, 2.70,
1.85, 1.60, 2.16,
0.00

DA, U PA/LAT 19.2 ± 10.9 (38.3) 9.06, 11.5, 35.7,
7.95, 3.64, 4.57,
0.25

2.54 ± 1.36 (7.12) – –

DS , L PA 0.29 ± 0.21 (0.97) 0.10, 0.57, 0.16,
0.06, 0.09, 0.14,
–

DS , U , Init. PA 0.72 ± 0.37 (1.75) 0.25, 1.41, 0.23,
0.13, 0.27, 0.41,
–

The averaged mean surface distances with standard deviations (and maximum mean surface distances) are given in millimeter. Additionally, the
average reconstruction error is listed for each transformation parameter. Rotation errors are specified by Euler angles in degree. Experiments using
labeled (L) or unlabeled (U ) silhouettes of the ribs as well as asymmetric (DA) or symmetric (DS) distance measures are listed. For the shape
reconstructions leave-one-out tests were performed

Table 2 Results for the extended distance dn

Experiment Views Pose Transform. error Shape Pose + shape Transform. error
surf. dist. (tx , ty, tz, θx , θy, θz, s) surf. dist. surf. dist (tx , ty, tz, θx , θy, θz, s)

DA, L PA/LAT 0.37 ± 0.20 (0.81) 0.21, 0.62, 0.37,
0.15, 0.18, 0.26,
0.00

2.00 ± 0.87 (4.34) 2.48 ± 1.04 (5.26) 0.48, 0.99, 0.93,
0.92, 0.30, 0.44,
0.00

DA, U PA/LAT 11.1 ± 6.86 (27.4) 4.95, 5.85, 25.8,
7.20, 4.28, 2.58,
0.11

2.53 ± 0.78 (4.26) – –

Table 3 Results for the extended distance da

Experiment Views Pose Transform. error Shape Pose + shape Transform. error
surf. dist. (tx , ty, tz, θx , θy, θz, s) surf. dist. surf. dist (tx , ty, tz, θx , θy, θz, s)

DA, L PA/LAT 0.28 ± 0.13 (0.52) 0.11, 0.47, 0.29,
0.10, 0.19, 0.30,
0.00

2.11 ± 0.82 (3.96) 2.85 ± 1.09 (4.99) 1.34, 1.44, 2.03,
1.13, 0.33, 0.52,
0.01

DA, U PA/LAT 4.60 ± 3.90 (9.30) 2.03, 5.36, 4.63,
2.33, 2.88, 2.87,
0.00

– – –

DA, U , Init. PA/LAT 0.55 ± 0.22 (1.15) 0.38, 0.80, 0.24,
0.13, 0.37, 0.86,
0.00

2.53 ± 0.78 (4.26) 4.69 ± 2.35 (12.0) 1.32, 2.85, 2.16,
2.02, 1.02, 2.32,
0.02

of interest can be recovered with a higher accuracy (≤0.1◦
and ≤0.4◦) than from two views. From the translation error
along θy it is obvious that the error is mainly due to a slightly
erroneous estimation of the rib cage’s projection depth.

Shape and pose reconstruction

For the evaluation of a simultaneous reconstruction of the
shape and the pose it is necessary to know to what extent
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Fig. 6 Pose initialization: a subset of the average shape model is fitted
to the segmentation of the corresponding subset in the reference images

the SSM can approximate the shape of an unknown rib cage
independently from the pose. Hence, the method’s ability to
assess only the shape of an unknown rib cage with a given
correct pose is demonstrated at first. Then, the results of the
simultaneous pose and shape reconstruction are presented.

Shape reconstruction

To assess the optimal value obtainable with our SSM as a
reference value, we performed direct surface optimizations
in 3D by minimizing the distance between the SSM and the
reference surfaces. This leave-one-out test resulted in a mean
surface distance of 1.6 ± 0.6 mm (max. 2.9 mm).

For the evaluation of the 3D shape reconstruction from
2D image data, the SSM was adapted to 29 pairs of binary
reference images with a given, correct pose. All the shape

reconstruction experiments with labeled ribs yielded similar
results of approximately 2 mm mean surface distance aver-
aged across the individual 29 reconstructions. Using unla-
beled ribs, the reconstruction quality slightly degrades for
all distance measures with results ranging from 2.3
to 2.5 mm.

Combined shape and pose reconstruction

For the 3D reconstruction of an a priori unknown geometry
from clinical data. The shape and the pose must be recon-
structed simultaneously. To evaluate the method in this con-
text, we fitted the SSM to pairs of reference images of an
unknown rib cage using different random pose initializa-
tions.

With an average reconstruction quality of 2.2 mm a simul-
taneous pose and shape reconstruction on labeled ribs using
a symmetric measure with distance de yielded a result that
is comparable to the pose independent shape reconstruc-
tion (see section on “Shape reconstruction”). Reconstruction
examples are shown in Fig. 7a and b. In case only unla-
beled rib silhouettes were available the symmetric measure
de resulted in 4.5 ± 2.0 mm (max. 9.0 mm).

For unlabeled ribs, the distance da performed best among
the asymmetric measures, since incorrect scaling and con-
tour mismatches were avoided. However, in this case an
initialization of the pose using a less ambiguous subset of
ribs is required before the actual reconstruction, as explained
above. Experiments under these conditions yielded an aver-
age reconstruction quality of 4.7 ± 2.4 mm (max. 12.0 mm)
(see example reconstructions in Fig. 7c and d).

Fig. 7 Exemplary results of combined pose and shape reconstruc-
tions for the two most suitable distance measures on labeled and unla-
beled ribs: for each result both the reference surface (red) and the
reconstructed surface (beige) are depicted on the left; the reconstructed
surface with its distance to the reference surface is shown on the right

(additionally, the average surface distance is given). (a) A good result
(labeled ribs, DS, de): 2.03 mm; (b) A more difficult case (labeled ribs,
DS, de): 2.44 mm; (c) A good result (unlabeled ribs, DA, da , Init.):
1.81 mm; (d) Problematic case (unlabeled ribs, DA, da , Init.): 5.04 mm
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Discussion

Accuracy of pose reconstruction

The requirements for the pose reconstruction are difficult
to define as it is not clear yet which accuracy is needed to
improve the quality of the image subtraction with respect
to the detection of interval changes within a clinical set-
ting. However, it would already be beneficial to know up
to what 3D pose differences between previous and follow up
image interval changes are still detectable using present 2D
to 2D image registration approaches. To this end, von Berg
et al. [4] performed a phantom study. They conclude that
interval changes are detectable up to cut-off angles of 4.1◦
with non-deformable registration. While these cut-off angles
are specific to the nature of the interval change, von Berg et al.
reason that by using their deformable 2D to 2D registration
approach the cut-off angle is increased by 2.3◦.

With our method, rotation errors are below 0.3◦ on aver-
age for all distance measures on labeled ribs compared in
Tables 1, 2, 3. On unlabeled ribs the pose reconstructions
with distance measure DA with da from two views as well
as the distance measure DS with de from one PA-view—
both using prior initialization—yield an average accuracy of
0.4◦. Hence, for these distance measures the accuracy is suf-
ficient to detect undesirable pose deviations. Other distance
measures on unlabeled ribs exhibit relatively high average
reconstruction errors and may lack the required accuracy.

To the best of our knowledge there are no other methods
that quantify pose reconstruction of the 3D rib cage from 2D
projections. Bhunre et al. [21] recover the pose of the distal
and proximal femur from one 2D image within an experi-
mental setup that is similar to ours. They also measure the
accuracy of their method by assessing the angular error using
Euler angles and achieve results of 0.8◦ to 2.3◦ on aver-
age, where we obtain 0.1◦ to 0.4◦ for the rib cage from one
PA-view.

Accuracy of shape reconstruction

Causes of errors

The direct 3D surface optimization experiment of pose inde-
pendent shape reconstructions (pose parameters are known in
advance) shows that a considerable part of the reconstruction
error is due to the limitation of the SSM’s model space. The
cause of the residual error is presumably the mutual occlusion
of the ribs in the projection data. The accuracies of the pose
independent shape reconstruction for all distance measures
on labeled and unlabeled ribs are close to the results of the
direct 3D surface optimization. Thus, all distance measures
are applicable. The results are comparable to those achieved
in the work of Lamecker et al. [16] for the reconstruction

of the pelvis (2.6 mm mean surface distance), despite of the
geometrically more demanding shape of the rib cage.

The experiments on the pose independent recovery of the
shape reveal the capability of the SSM to reconstruct an
unknown shape from projection images using our method.
In a realistic reconstruction of an unknown patient-specific
rib cage the pose parameters need to be estimated simulta-
neously with the shape. For this combined shape and pose
recovery all the tested distance measures are suitable in case
the ribs are labeled. The reconstruction errors range from 2.2
to 2.9 mm, i.e., they are only 0.1 to 0.7 mm worse than the
pose independent shape reconstructions. The error in the pose
parameters ranges between 0.2◦ and 1.1◦. Thus, the pose is
also accurately estimated during combined shape and pose
reconstructions on labeled ribs.

Robust reconstruction results on combined shape and pose
reconstruction with unlabeled ribs can only be obtained with
one of the distance measures tested (DS , da). Due to the
initialization procedure and the incorporation of the contour
normals into the distance measure, global mis-assignments
of ribs and contour mismatches are avoided. However, the
accuracy of reconstructions with unlabeled ribs is lower then
with labeled ribs. A possible reason for this inaccuracy is
that for a combined reconstruction of the shape and pose we
initially fit the average shape v to the image data. Thereby
the final pose of the shape yet to be reconstructed is only
roughly approximated. However, small deviations from the
correct pose can cause mis-adaptations of the model driven
by the adaptation of the shape weights b, especially if point
correspondences between silhouettes are not constrained by
a labeling of the ribs. In some cases on unlabeled ribs, using
DS with da , this leads to local mis-adaptations, that diminish
the overall reconstruction quality (c.f. Fig. 7d).

Comparison with other methods

Most existing rib cage reconstruction methods do not obtain
a reconstruction of the rib cage surface, but 3D models of rib
midlines. Moreover, they mainly assess their reconstruction
qualities not directly but via derived quantities, such as chord
length or maximal curvature [6,25,27,29]. For our applica-
tion these measures are not well suited, since the objective
is to globally recover the shape of a patient-specific rib cage
as accurately as possible, to be subsequently used for pose
reconstructions.

Benameur et al. [23] validated their rib cage reconstruc-
tion method only against another method [25], and not against
some reliable ground truth, as in our case. By comparison,
our method uses surfaces extracted from CT-data, which
serves as a more reliable gold standard. The mean 3D dis-
tance between reconstructed model to the reference midline
model is 1.6 mm on average [23], where we yield surface
distances from 2.2 to 4.7 mm, depending on the distance
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measure chosen. Since we compute our 3D surface distance
between corresponding points of the reconstructed model
and the reference surface, the accuracies are comparable.
However, measuring the 3D distance between midlines is
less sensitive against surface deviations than measuring the
surface distance directly, and hence is expected to generally
provide better results.

The method of Dansereau et al. [25] achieves an accu-
racy of 1 mm. This value is determined from radiographs of
7 isolated ribs by means of radio-opaque markers.

Conclusions

In this work, we have addressed the fundamental problem
of estimating the 3D geometry of the rib cage from 2D pro-
jection images. Solving this problem is an important step
towards improving CAD based on temporal subtraction of
sequences of chest radiographs. Our approach is based on
measuring the deviation between silhouettes of a projected
3D SSM and silhouettes of the ribs in the radiographs. The
shape and pose parameters of the SSM are varied to minimize
this deviation.

We have shown that with our approach the 3D shape and
pose of the ribs can be recovered with an accuracy of 4.5 mm
from two calibrated projection images. When the ribs in these
images are additionally labeled, the accuracy increases to
2.2 mm. Furthermore, when the shape is known the pose
alone can be accurately estimated even from a single pro-
jection image, given that only two ribs are labeled in the
projections. The accuracy (rotation errors ≤0.4◦) is suitable
to detect undesirable pose differences between image pairs.

There is still some room for improving the accuracy and
robustness of our method with regard to the optimization
approach as well as the optimal choice of the parameters
involved in the reconstruction process. One idea is to use
stochastic optimization methods to analyze the non-convex-
ity of our distance measures. With this we may gain insight
for developing multilevel optimization strategies, which are
both efficient and able to overcome local minima. We have
already performed first experiments with a sequential consid-
eration of the shape parameters. This improves the accuracy
of the 3D shape reconstruction from an average surface dis-
tance of 4.7 ± 2.4 mm (max. 12 mm) to 4.4 ± 0.8 mm (max.
5.5 mm). In future work we will systematically investigate
such strategies.

From a clinical point of view our current approach has
two major limitations. First, regarding the pose reconstruc-
tion, the exact shape is assumed to be known. With respect
to image subtraction, however, the shape can only be esti-
mated approximately at one time point and this estimation
could then be used to determine the pose. Therefore, in future
work it must be evaluated how the pose reconstruction can

cope with inexact shapes. The second limitation concerns
the assumption that the silhouettes of the ribs are exactly
known in the radiographs. In practice, however, it is difficult
to automatically detect them in radiographs.

Therefore, we anticipate two directions for future research.
One is to improve the detection of ribs in radiographs. The
other one is to investigate how to extend the distance mea-
sure to deal with incomplete input data, which is likely to be
produced by rib detection methods.

We have presented first experiments using asymmetric dis-
tance measures, which suggest that incomplete silhouettes,
e.g., arising from edge detecting methods, may also lead to
good results.

With this work, we have laid the solid foundation to
explore these future research directions. We have shown that
methods can be devised to estimate the 3D geometry of the
rib cage from 2D rib silhouettes in radiographs with good
accuracy. Our work suggests that it is possible to develop
clinical solutions that are adequate for the recovery of 3D
pose differences between subsequently acquired images to
increase the detection rate of developing diseases in patients.
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