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Abstract. We propose a fully automatic method for tooth detection and
classification in CT or cone-beam CT image data. First we compute an
accurate segmentation of the maxilla bone. Based on this segmentation,
our method computes a complete and optimal separation of the row of
teeth into 16 subregions and classifies the resulting regions as existing or
missing teeth. This serves as a prerequisite for further individual tooth
segmentation. We show the robustness of our approach by providing
extensive validation on 43 clinical head CT scans.

1 Introduction

Cone beam computed tomography (CBCT) is becoming a preferred imaging
technique for three-dimensional diagnosis and therapy planning in dentistry as
well as maxillofacial surgery. In dental implantology, for instance, surgical drill
guides are individually manufactured based on CBCT data and rapid prototyp-
ing techniques. The accuracy of such drill guides highly depends on the quality
of the 3D reconstructions of jaw structures. Such reconstructions often end up
in tedious image segmentation tasks, in case dental fillings and brackets heavily
degrade image quality due to the resulting shadowing artifacts within respective
image slices. In most cases, only manual segmentation leads to useful results.

Research on jaw segmentation in CT data has mostly concentrated on the
lower jaw [1–4], since the maxilla is generally more difficult to segment automat-
ically. The maxilla exhibits thin bony structures (palate, sinus maxillaris, orbital
walls), which are difficult to detect with intensity thresholds alone [5, 6]. To the
best of our knowledge, only Kainmueller et al. [7] segment the maxillary bone as
part of the midface. Tooth regions, however, are omitted in all previous studies
due to the aforementioned artefacts. The problem of detecting teeth in medical
images has been well studied for 2D radiographs, but sparsely researched for 3D
images, since effects of metal artefacts are less severe in 2D than in 3D. Mahoor
et al. [8], Nassar et al. [9] and Lin et al. [10] use a three-step approach consisting
of tooth isolation in the row of teeth, independent classification of each isolated
tooth and correction of the classification results. All three methods use integral
projection to separate teeth. Then, each isolated tooth region is classified based
on area features [9] or shape features [8, 10]. The latter need a segmentation of
each tooth in the isolated region. After independent classification of each region,



the result is corrected by considering tooth order. In this step, string alignment
techniques are used. For 3D CT images, Gao et al. [11] and Hosntalab et al. [12]
propose algorithms for segmentation, however, they do not perform a classifi-
cation of teeth. The main limitation of these methods is that they require a
segmentation of the tooth region as input. To the best of our knowledge, there
exist no approaches which automatically detect teeth in 3D CT data.

This paper contributes an algorithm to reliably segment the maxillary bone
and detect the individual dentition state in an automatic way. Therefore, we
first perform an accurate and robust segmentation of the bony structure based
on statistical shape model (SSM) adaptation, following the approach of [7]. Then,
we use this segmentation to detect the 16 tooth regions by fitting 15 separation
planes. Subsequently, we classify each separated region as “tooth” or “gap” via
histogram analysis, yielding the individual dentition state. Fig. 1 depicts this
algorithmic pipeline for an exemplary CT dataset.

(a) (b) (c) (d)

Fig. 1: Algorithmic pipeline in exemplary CT. (a) Maxilla segmentation, shown
as yellow surface in volume rendering and (b) as yellow contour in coronal slice
(vs. gold standard in blue). (c) Tooth region detection via separation planes. Gold
standard teeth shown as colored surfaces. The red contour shows an individual
tooth region that yields the intensity histogram (d) used for classification.

2 Maxilla segmentation

For maxilla segmentation we follow the three-step approach proposed in [7], con-
sisting of (1) initialisation of shape and pose of a statistical shape model (SSM)
via the Generalized Hough Transform, (2) adaptation of the SSM governed by
a heuristic bone intensity model, (3) refinement of SSM-based segmentation via
locally regularized shape deformation. To cope with the specific properties of
the maxilla, as well as the need to accurately reconstruct the tooth region for
subsequent tooth separation and classification, we extend this framework as de-
scribed in the following.

Automatic bone threshold selection. The approach in [7] adapts an SSM
to given image data by minimizing a cost-function that measures how well the
model fits the data. A central parameter in this method is an image-specific



threshold tBone characterizing typical bone intensities. For the segmentation of
the lower jaw (mandible), a fixed threshold can be applied since the bony struc-
ture is rather compact and the cortical region is adequately sampled within the
image data. However, for the upper jaw (maxilla), a fixed threshold is insuffi-
cient, because thin structures, such as the palate and the walls of the maxil-
lary sinuses are typically undersampled in consecutive image slices. Here, par-
tial volume effects lead to reduced intensities of thin bone structures. Thus,
we propose to automatically determine tBone by analyzing the intensity his-
togram h(x) in the vicinity of the initialised SSM. It exhibits a characteristic
peak corresponding to air voxels at about −1000HU and another one corre-
sponding to soft tissue around 0HU . We model the shape of each peak by a

Gaussian function gi(x) = ai exp
(

(x−µi)
2

σ2
i

)
, i ∈ {1, 2} with mean µi, standard

deviation σi, and scale ai, and the remaining intensity occurrences with a con-
stant C. The final function fitted to the histogram is f(x) = g1(x) + g2(x) + C.
The problem of fitting f(x) to h(x) by determining the optimal parameter set
Θ∗ = (a1, a2, µ1, µ2, σ1, σ2, C) = arg minΘ(h(x) − f(x))2 can be solved via
Levenberg-Marquardt optimization. Using Θ∗, we set the bone threshold as
tBone = µ2 + 2σ2, i.e., roughly above 85% of the intensities captured by the
soft tissue peak.

Segmentation strategy for the tooth region. The key idea of the algo-
rithm in [7] is to analyze intensity profiles P sampled in direction of the surface
normal on each vertex of the SSM to drive the segmentation process. To seg-
ment the bone region, we propose to decide for each intensity profile on the
tooth region whether it contains a bone-soft tissue interface or not. After binary
classification, we apply an individual segmentation strategy for each class. Using
histogram analysis as described above, we heuristically determine lower intensity
thresholds of soft tissue tTissue = µ1+µ2

2 (inbetween air- and soft-tissue mean)

and teeth tTeeth = arg minx
d
dxh(x) ∧ x > 1000HU , i.e. the steepest descent

above 1000HU. The latter can be interpreted as an upper threshold to bone,
and thus serves as a lower threshold to teeth. We use these thresholds to classify
each sample point on an intensity profile P . Afterwards, a rule-based decision
is made whether to analyze the profile with the bone intensity model (BIM)
as employed in [7]: If there is (1) no region classified as tooth, or (2) one or
two regions classified as tooth as well as a transition from bone-classified to air-
classified sample points, the BIM is employed. In all other cases, a conservative
strategy is employed that slightly prefers the mid-sample point on the profile
(i.e. the current position of the respective vertex on the deformable surface) over
all others.

3 Tooth detection

After successful segmentation of the maxillary bone, we determine the volumet-
ric image region containing the teeth as all voxels within a reasonable distance
to the tooth patch, which is a predefined region on our maxilla SSM’s surface.



We propose the following scheme to detect/classify teeth within that region: In
a first step, the region is divided into 16 plausible subregions, each containing
either single teeth or representing missing teeth. In a second step, the individual
dentition state is classified.

Separation. For decomposing the entire tooth region into subregions, we em-
ploy 15 separation planes. We propose to formulate the task of finding a suitable
position and orientation for each of these planes as a graph optimisation prob-
lem. This leads to a optimal solution with respect to an objective function as
described in the following. First, we limit the number of possible positions and
orientations for each plane to a finite set. Moreover, we limit the distances and
angles between adjacent planes to plausible intervals which have been learnt a
priori from the sizes of the respective teeth in training data. Hence, a feasible
sequence of tooth separation planes (ID i next to ID i+ 1) defines a sequence of
consecutive tooth cells corresponding to a sequential tooth numbering scheme.

For each potential separation plane Pi, we define a cost that encodes how
likely it separates two teeth given the image data. This cost is derived from the
average image intensity mi and standard deviation si within the plane as well
as the average directional derivative of the image perpendicular to the plane, gi.
Additionally, a penalty cost ai is assigned to highly tilted planes as a regularizing
term in case many consecutive teeth are missing. The cost c of Pi is then defined
as a weighted sum

c(Pi) = α ·mi + β · si + γ · 1

g2i + ε
+ δ · ai (1)

where a small ε serves for avoiding divisions by zero. Note that the weights
(α, β, γ, δ) are fixed for all planes.

The costs are encoded within a graph: Each potential separation plane (i.e.
combination of position and orientation) is represented by a graph node; Fea-
sible neighboring separation planes are encoded via a graph edge between the
respective nodes; Each graph node is weighted by the cost of the respective sep-
aration plane. The optimal path through this graph, computed with Dijkstra’s
algorithm, yields our optimal set of separation planes:

{
P̂i, i = 1 . . . 15

}
= arg min
{Pi,i=1...15}

15∑
i=1

c(Pi) subj. to (Pi, Pi+1) ∈ E ∀i < 15 (2)

where E denotes the set of graph edges.

Classification. Having partitioned the entire tooth region into distinct cells,
we can independently decide whether a cell contains a tooth or not. If we detect
a tooth, we can classifiy it directly from the ID of the cell containing it. Since
teeth are imaged with a high intensity value in CT images, we use the intensity
histogram of the region as a feature for the decision whether a tooth is present
or not. To this end, a support vector machine (SVM) is learnt from training data
and employed as a binary classifier.



(a) (b) (c)

Fig. 2: Maxilla segmentation results. (a) Mean surface distances assessed in
43 datasets. (b,c) Exemplary automatic segmentation (yellow) vs. ground truth
(blue). (c) Low intensity at sinus causes inaccuracy.

4 Results and Discussion

The data basis for our experiments consists of 43 clinical CT datasets, fully de-
picting the maxilla and the upper teeth. The individual maxillas differ in number
of teeth and bone density. Moreover, the data basis contains “pathological” cases
that occur in clinical practise, e.g. with dental prosthesis or metal artefacts due
to fillings of implants.

Maxilla segmentation. We assess the accuracy of maxilla segmentation in a
leave-one-out evaluation. For each dataset, we use the ground truth shapes of
the other 42 datasets to generate the SSM applied for segmentation. As quality
measure for segmentation, we use mean surface distance to the ground truth. In
order to evaluate the performance of the tooth region segmentation strategy, we
separately measured mean surface distances for tooth and non-tooth region. Fig.
2 plots the resulting error measures and shows exemplary segmentation results.
The median mean surface distance is below 1mm for both tooth- and non-tooth
regions. Slightly higher errors for the tooth region can be attributed to a lack
of image features within teeth, as well as a stronger influence of metal artefacts
which occur mainly in the tooth region.

Tooth separation. In order to test our tooth separation approach, we perform
a ten-fold cross validation. We learn the tooth sizes in the training set, and apply
our separation algorithm to the test set using these size parameters.

As for the weights (α, β, γ, δ) of the per-plane costs that build the separation
cost function (cf. Eq. 1), we set α = 1 and determine the best set of remain-
ing weights (“best” w.r.t. volume overlap averaged over all teeth and datasets)
via exhaustive search. We had to exclude this search from the cross validation
framework for performance reasons, and hence performed it just once, w.r.t. the
whole data set, instead of for each training set, in violation of a strict separation
between training- and test data.



(a) (b) (c) (d)

Fig. 3: Separation results. Tooth region and corresponding gold standard tooth
are shown in same color. (a,b) Good results despite gaps. (c) Two regions contain
three teeth - correspondence error is propagated. (d) One tooth in wrong region.

We measure the separation quality of each tooth region by volume overlap
of the respective gold standard tooth: Let Ti ⊂ R3 be the i-th gold standard
tooth and Ri ⊂ R3 the respective tooth region as determined by our separation
algorithm. The volume overlap for this region is then computed as (Ti ∩Ri)/Ti.
Table 1(a) lists the results for all datasets containing teeth, which are 27 out of
the total 43. In 22 of these 27 datasets, all tooth regions determined by fully
automatic separation contain at least 70% of the corresponding gold standard
tooth (Table 1(a), 2nd row).

The tooth separation algorithm achieves high volume overlap when the row
of teeth is complete or only solitary gaps exist inbetween. The method can even
deal with larger gaps when they do not split off solitary teeth (Fig. 3(a,b)). If,
however, one solitary tooth is split from the remaining row of teeth by a gap
significantly larger than a single tooth, the separation algorithm runs the risk of
placing it in a non-corresponding region (Fig. 3(d)). This might be partly due
to a solitary tooth’s naturally enlarged freedom to move. Furthermore, in case
subsequent teeth are relatively slim and densely packed, they might be split into
too few regions (Fig. 3(c)).

Number of datasets with
Overlap 0 1 2 3 4 5

threshold teeth below threshold

< 50% 25 1 0 1 0 0

< 70% 22 4 0 1 0 0

< 90% 8 9 4 5 0 1

(a)

Ground truth
Tooth No tooth

Auto, ideal sep.
Tooth 61% 1%

No tooth 0% 38%

Auto, auto sep.
Tooth 58% 2%

No tooth 3% 37%

(b)

Table 1: (a) Tooth separation results on 27 datasets. (b) Tooth classification
results based on ideal (top) and automatic (bottom) separation. 61% of ground
truth regions contain teeth; 39% contain gaps.



Tooth classification. To evaluate classification performance, we first run a
ten-fold cross-validation on “ideal” regions which perfectly separate teeth. These
“ground truth” regions are created from ground truth tooth segmentations. In a
second experiment, we run another cross validation on the “real-world” regions
computed by our tooth separation method. Table 1(b) lists the results. For ideal
separation, 99% of auto-classifications are correct, while we have 0% false nega-
tives and 1% false positives. For automatic separation, 95% of auto-classifications
are correct, while we have 3% false negatives and 2% false positives.

Fig. 4: Metal implant has
same intensity as teeth

In case classification fails, in the “real-world”
scenario, it can be attributed mostly to previous er-
rors in the automatic tooth separation step, where
either correspondence between tooth and region
does not apply (cf. Fig. 3(c,d)), or a tooth is split
into two parts, one located in the region which is not
supposed to contain a tooth. There are also individ-
ual cases where the patient has metal implants in
the jaw which have intensity values similar to teeth
and are therefore classified as tooth (cf. Fig. 4).

5 Conclusion

We propose a method which is able to segment the maxillary bone and detect
and classify upper jaw teeth in CT images. Contrary to previous work, our seg-
mentation approach specifically deals with the tooth regions and thus allows for
subsequent tooth detection and classification. Our experiments provide evidence
of the robustness of our approach on 43 clinical data sets. Even datasets with
strong metal artefacts are processed successfully (cf. Fig. 5).

However, in challenging regions like the thin walls and sinus floor where
polyps often occur, maxilla segmentation may still be improved, e.g. via locally
adaptive threshold estimation. Furthermore, we observe that our classification
scheme for bone/tooth profiles in some cases leaves us with too few profiles to
drive the segmentation correctly. This may be overcome by a denser sampling
of the tooth region on the SSM.

(a) (b) (c) (d)

Fig. 5: Exemplary CT with dental fillings: Whole pipeline of segmentation (a,b),
separation (c) and classification (d) successful despite strong metal artefacts



As for tooth classification, we expect that the use of volumetric information
instead of intensity histograms as feature vectors would reduce false positive
classifications. To this end, future work may integrate shape features, e.g. SSMs
of individual teeth, into both tooth separation and classification. Most impor-
tantly, our tooth detection pipeline, together with tooth-specific SSMs, may serve
as input for accurate automatic segmentation of individual teeth.
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5. Barandiaran, I., Maćıa, I., Berckmann, E., Wald, D., Dupillier, M., Paloc, C.,
Graña, M.: An automatic segmentation and reconstruction of mandibular struc-
tures from CT-data. In: Proc. Int. Conf. on Intelligent Data Eng. and Automated
Learning, Springer (2009) 649–655

6. Tognola, G., Parazzini, M., Pedretti, G., Ravazzani, P., Grandori, F., Pesatori, A.,
Norgia, M., Svelto, C.: IST 2006 - International Workshop on Imaging Systems
and Techniques Minori, Italy 29 April 2006. (April) (2006) 3–6

7. Kainmueller, D., Lamecker, H., Seim, H., Zachow, S.: Multi-object Segmentation
of Head Bones. MIDAS Journal, Contribution to MICCAI Workshop Head and
Neck Auto-Segmentation Challenge. (2009) 1–11

8. Mahoor, M., Abdelmottaleb, M.: Classification and numbering of teeth in dental
bitewing images. Pattern Recognition 38(4) (April 2005) 577–586

9. Nassar, D., Abaza, a., Ammar, H.: Automatic Construction of Dental Charts
for Postmortem Identification. IEEE Transactions on Information Forensics and
Security 3(2) (June 2008) 234–246

10. Lin, P., Lai, Y., Huang, P.: An effective classification and numbering system for
dental bitewing radiographs using teeth region and contour information. Pattern
Recognition 43(4) (April 2010) 1380–1392

11. Gao, H., Chae, O.: Automatic Tooth Region Separation for Dental CT Images.
2008 Int. Conf. on Conv. and Hybrid Inf. Tech. (2008) 897–901

12. Hosntalab, M., Aghaeizadeh Zoroofi, R., Abbaspour Tehrani-Fard, A., Shirani,
G.: Segmentation of teeth in CT volumetric dataset by panoramic projection and
variational level set. Int. J. of Comp. Ass. Rad. Surg. 3(3-4) (June 2008) 257–265


