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SUMMARY

In the rodent vibrissal system, active sensation and
sensorimotor integration are mediated in part by
connections between barrel cortex and vibrissal
motor cortex. Little is known about how these struc-
tures interact at the level of neurons. We used Chan-
nelrhodopsin-2 (ChR2) expression, combined with
anterograde and retrograde labeling, tomap connec-
tions between barrel cortex and pyramidal neurons in
mouse motor cortex. Barrel cortex axons preferen-
tially targeted upper layer (L2/3, L5A) neurons in
motor cortex; input to neurons projecting back to
barrel cortex was particularly strong. Barrel cortex
input to deeper layers (L5B, L6) of motor cortex,
including neurons projecting to the brainstem, was
weak, despite pronounced geometric overlap of
dendrites with axons from barrel cortex. Neurons in
different layers received barrel cortex input within
stereotyped dendritic domains. The cortico-cortical
neurons in superficial layers of motor cortex thus
couple motor and sensory signals andmightmediate
sensorimotor integration and motor learning.

INTRODUCTION

Rodents move their large whiskers, also called facial vibrissae,

through space to locate and identify objects (Carvell and

Simons, 1990; Hutson and Masterton, 1986; Knutsen et al.,

2006; Krupa et al., 2001; O’Connor et al., 2010a). Conversely,

whisker movements are guided by sensory feedback (Mitchin-

son et al., 2007; Nguyen and Kleinfeld, 2005). These interactions

between sensory and motor systems are crucial for haptic

perception (Diamond et al., 2008; Gibson, 1962; Wolpert et al.,

1995). Sensorimotor integration in whisker-based somatosensa-

tion is mediated by brain structures that form a series of nested

loops, at the levels of the brainstem, thalamus, and cerebral

cortex (Diamond et al., 2008; Kleinfeld et al., 1999). Little is

known about the cellular architecture of these different loops.

A prominent loop occurs at the level of the cerebral cortex (Ar-

onoff et al., 2010; Chakrabarti and Alloway, 2006; Donoghue and

Parham, 1983; Ferezou et al., 2007; Hoffer et al., 2003; Izraeli and
Porter, 1995; Miyashita et al., 1994; Porter and White, 1983; Vei-

nante and Deschênes, 2003; Vogt and Pandya, 1978; Welker

et al., 1988; White and DeAmicis, 1977). Vibrissal primary

sensory cortex (vS1, barrel cortex) and vibrissal primary motor

cortex (vM1) are reciprocally connected. One barrel column in

vS1 projects to a band of vM1, with its long axis in the anterior/

posterior (A/P) direction (Aronoff et al., 2010). vM1 projects

diffusely to vS1, covering most of the barrel field and adjacent

areas (Veinante and Deschênes, 2003).

Reciprocal cortical connections have also been detected in

neurophysiological recordings in vivo. Following the deflection

of a whisker, excitation first ascends into vS1 and then rapidly

propagates to vM1 (Farkas et al., 1999; Ferezou et al., 2007;

Kleinfeld et al., 2002). Neuronal activity in vS1 is modulated by

whisking (Curtis and Kleinfeld, 2009; de Kock and Sakmann,

2009; Fee et al., 1997; O’Connor et al., 2010b), mediated in

part by an efference copy-like signal originating in vM1 (Ahrens

and Kleinfeld, 2004; O’Connor et al., 2002). Integrating signals

related to whisking and whisker deflection might underlie object

localization (Curtis and Kleinfeld, 2009; Diamond et al., 2008).

The detailed neural circuits underlying the vS1 )/ vM1 loop

are poorly understood. A circuit diagram, based on functional

connections between defined cell types, might reveal the

primary loci where sensorimotor associations are formed. In

addition to the connectivity between cell types, the interactions

between neurons in vS1 and vM1 depend on the locations of

synapses within the dendritic arbors of the postsynaptic neurons

(Larkum et al., 2004; London and Häusser, 2005). Anatomical

methods, relying on visualizing axons and dendrites with light

microscopy, have often been used to predict circuits (Binzegger

et al., 2004;Meyer et al., 2010a; Shepherd et al., 2005). However,

axodendritic overlap is not necessarily a good predictor of

functional connection strength (Callaway, 2002; Dantzker and

Callaway, 2000; Petreanu et al., 2009; Shepherd et al., 2005;

White, 2002). Alternatively, electrophysiological methods that

detect functional synapses, including paired recordings and

glutamate uncaging-based methods, have been applied to

map local circuits within vS1 (Bureau et al., 2006; Hooks et al.,

2011; Lefort et al., 2009; Lübke and Feldmeyer, 2007; Schubert

et al., 2003, 2006; Shepherd et al., 2003, 2005; Shepherd and

Svoboda, 2005) and vM1 (Hooks et al., 2011). These techniques

require the preservation of pre- and postsynaptic neurons and

their axonal processes within a brain slice and are thus mostly

limited to local circuits (Luo et al., 2008).
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Although a subset of long-range connections between vS1

and vM1 can be preserved in brain slices (Rocco and Brumberg,

2007), it is unclear how complete the preserved circuit is. We

previously applied subcellular Channelrhodopsin-2-assisted

circuit mapping (sCRACM) to chart the connections made by

long-range projections onto vS1 neurons (Petreanu et al.,

2009). sCRACM measures connections between presynaptic

neurons, defined by ChR2 expression, and postsynaptic

neurons, defined by whole-cell recordings. sCRACM relies on

photostimulating axons, which can be efficiently excited even

when severed from their parent somata. Therefore, sCRACM

can map connections between defined neuronal populations

over long length scales, not limited to circuits preserved in brain

slices. sCRACM also provides an estimate of the spatial dis-

tribution of synapses made by ChR2-positive axons onto the

dendritic arbors of recorded neurons.

Here, we applied anatomical methods and sCRACM to map

inputs from vS1 onto neurons in vM1. vM1 neurons in upper

layers (L2/3 and L5A), which harbor mostly cortico-cortical

neurons, receive strong input from vS1. These neurons also

provide the majority of the projection back to vS1. In contrast,

deep layer neurons (L5B and L6), which include the ‘‘cortico-

fugal’’ neurons that project to motor centers in the brainstem

and elsewhere, received only weak input from vS1.

RESULTS

Reciprocal Connections between vS1 and vM1
We characterized the projections between vibrissal somatosen-

sory cortex (vS1) and vibrissal motor cortex (vM1) using viral-

mediated anterograde tracing (Figure 1; see Figure S1 andMovie

S1 available online). vS1 was identified by the presence of large

barrels. vS1 layers were defined according to well-established

cytoarchitectural criteria (Bureau et al., 2006; Groh et al., 2010).

Individual layers contain distinct sets of neurons, with different

projection patterns and inputs (Groh et al., 2010; Hattox and

Nelson, 2007; Sato and Svoboda, 2010; Svoboda et al., 2010).

We labeled vS1 neurons by infection with recombinant adeno-

associated viruses (AAV) (Chamberlin et al., 1998) expressing

eGFP or tdTomato, and imaged the projections of the infected

neurons throughout the brain using a high-resolution slide

scanner (excluding most of brainstem and spinal cord). Infected

neurons were distributed over several barrel columns (diameter

of infection site <1.5 mm) (Figures 1A and 1B), mainly in L2/3

and L5 (Figure S1A). Axonal projections were seen in multiple

cortical and subcortical targets. We quantified these projections

by integrating the fluorescence intensity over the sections con-

taining specific targets and fluorescent axons (see Supplemental

Experimental Procedures). The projections from anatomically

strongest to weakest (annotations refer to Paxinos and Franklin

[2004]) were as follows: striatum (Str), secondary somatosensory

cortex (S2), vM1 (including frontal association cortex [FrA]),

thalamic nuclei (Th) (including, posterior thalamic nucleus [PO],

reticular thalamic nucleus [RT], and ventral posteromedial

thalamic nucleus [VPM)]), superior colliculus (SC), ectorhinal/

perirhinal cortex (Ect), contralateral vS1, zona inserta (ZI),

primary sensory cortical region medial to vS1 (MS1), anterior

pretectal nucleus (APT), contralateral Ect, contralateral MS1, re-
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uniens thalamic nucleus (Re)/rhomboid thalamic nucleus (Rh),

orbital cortex (OC), lateral parietal association cortex (LPtA), in-

fralimbic cortex (IL)/dorsal peduncular cortex (DP) (Figures

1B2, 1B3, 1C and S1B–S1H; see Experimental Procedures and

Supplemental Experimental Procedures). These data are quali-

tatively consistent with previous tracer studies (Fabri and Burton,

1991; Hoffer et al., 2003, 2005; Hoogland et al., 1987; Welker

et al., 1988; White and DeAmicis, 1977) but also include projec-

tions that have not been reported (e.g., Re/Rh, OC and IL/DP),

and poorly characterizedmedial parietal cortical areas, including

MS1 and LPtA.

One of the most prominent projections was vS1/ vM1. Stim-

ulating the vS1-projection zone in vM1 in vivo, using microelec-

trodes (Donoghue and Parham, 1983; Ferezou et al., 2007; Li

and Waters, 1991; Matyas et al., 2010; Porter and White, 1983)

or ChR2 photostimulation (Hooks et al., 2011; Matyas et al.,

2010), causes whisker protractions at low stimulus intensities

(Figure S2). Simultaneous tracing with two viruses expressing

different fluorescence proteins (GFP or tdTomato) revealed that

the vS1 projection to vM1 and S2 were topographic (Figures 1D,

1E, and S3). The projection zone in vM1 shifted primarily in the

anterior-lateral direction as the site of labeling in vS1 moved

along a whisker row across arcs (Figure 1E3), in agreement with

previous studies in mouse (Welker et al., 1988) and rat (Hoffer

et al., 2005). The distance separating the injection sites was 1.5

fold larger than thedistancebetweenprojectionsites (FigureS3H).

The vS1 projection split into multiple distinct domains in vM1,

offset in the anterior-posterior direction (Figure 1E3, arrowheads).

Apart from the boundary between layer 1 (L1) and layer 2 (L2),

vM1 cytoarchitecture is relatively indistinct (Figures 2A and S4),

and approaches for defining layers in the motor cortex vary

across studies (Brecht et al., 2004; Hooks et al., 2011; Weiler

et al., 2008). Here, we defined vM1 layers using a combination

of cytoarchitectural criteria and retrograde labeling of neurons

by injecting fluorescent microbeads into the vM1 projection

zones (Figures 2 and S4). L1 has few neurons. L5A and L2/3

contain high densities of vS1-projecting neurons (Figures 2B

and 2C). L5A corresponds to a light zone in bright field images,

continuous with L5A of sensory cortex (Weiler et al., 2008).

Compared to vS1, L5A in vM1 is relatively superficial (Figure S4).

As an agranular cortex, vM1 lacks a clearly defined layer 4 (L4).

However, we note that a distinct band between L5A and L2/3

contains neurons that were not labeled by any of the retrograde

labeling experiments (Figure 2C, dashed line separating L2/3

and L5A; Anderson et al., 2010). This layer, therefore, appears

to harbor mainly local neurons, similar to L4 in sensory cortex.

This band also overlaps with L4 markers, such as RAR-related

orphan receptor beta (mouse.brain-map.org) (Hooks et al.,

2011). However, in terms of its inputs, this band is not obviously

different from L2/3 and L5A and was therefore subsumed into

these layers for the analysis below. L5A separates L2/3 and

deeper layers (5B and 6). Layer 5B (L5B) is defined by the pres-

ence of pyramidal tract (PT) type neurons projecting to subcor-

tical targets, including the brainstem and other areas (Figure 2C).

In bright field images, layer 6 (L6) appears darker than L5B (Fig-

ure 2A). The L5B/L6 boundary corresponds to the lower extent

of brainstem-projecting PT type neurons (Figure 2C). L6 has a

high density of neurons projecting to the thalamus (Figure 2C).

http://mouse.brain-map.org
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Figure 1. Mapping Output from Somatosensory Cortex (Barrel Cortex, vS1) and Vibrissal Motor Cortex (vM1)

(A–C) Viral injections in vS1 and projections to vM1 and other targets. (A) Schematic, injection in vS1 and projection to vM1. (B) Representative images of

injections in vS1 and projections to vM1 and other targets. (B1) AAV-tdTomato injected into vS1 (asterisks) and projection to vM1 (arrowhead). Dashed lines

correspond to the sections containing the injection site in vS1 (inj) and the projection site in vM1 (proj). (B2) Coronal section through the vS1 injection site (asterisk).

Also shown are projections to second somatosensory cortex (S2), thalamus (Th), and ectorhinal/perirhinal cortex (Ect), and fibers passing through the internal

capsule (ic). (B3) Coronal section through vM1. (B4) Confocal image of vS1 axons in vM1, overlaid with a bright field image of the brain slice. (C) Fraction of vS1

output to various brain areas, rank-ordered by strength (quantified based on fluorescence; three separate experiments).

(D and E) Topographic projections from vS1 to vM1 and S2. (D) Schematic, pairs of injections in vS1and projections to vM1. (E1) AAV-eGFP and AAV-tdTomato

injected in nearby parts of vS1 (green, centered on barrel C2; red, centered on barrel C5) (additional examples in Figure S3). The fluorescence image is from

a section of flattened cortex, overlaid on a brightfield image showing the cytochrome oxydase stained section to highlight barrels (see Experimental Procedures).

(E2) Locations of the projections to vM1 and S2 (dashed boxes). (E3) Contrast-enhanced image showing projections to vM1 (arrowheads indicate split projection).

(E4) Contrast-enhanced image showing projections to S2.

(F–H) Projections from vM1 to vS1 and other targets. (F) Schematic, injection in vM1 and projection to vS1. (G1) AAV-eGFP injected into vM1 (asterisks) and

projection to vS1 (arrowhead). Dashed lines correspond to the sections containing the injection site in vM1 (inj) and the projection site in vS1 (proj). (G2) Coronal

section through the injection site (asterisk) and projection to contralateral vM1. (G3) Coronal section showing vS1, S2, and dorsal lateral striatum (Str). (G4)

Confocal image showing vM1 axons in vS1. (H) Fraction of vM1 output to various brain areas, rank-ordered by strength (quantified based on fluorescence; two

separate experiments).

Str, striatum; S2, secondary somatosensory cortex; vM1, primarymotor, and some area of FrA; Th, thalamus, includingPO, Rt, and VPM in (C) andPO, VA,VL in (H);

SC, superior colliculus; Ect, ectorhinal/perirhinal cortex; cvS1, contralateral vS1; ZI, zona incerta; MS1, medial primary sensory cortex, medial to vS1 (also see

Figure S1); APT, anterior pretectal nucleus; cEct, contralateral side of ectorhinal/perirhinal cortex; cMS1, contralateral side of medial primary sensory cortex; LPtA,

lateral parietal association cortex (see Figure S1); OC, orbital cortex; Re/Rh, both ipsilateral and contralateral sides of reuniens thalamic nucleus and rhomboid

thalamicnucleus; DP, infralimbic cortex/dorsal peduncular cortex. S1+S2, primary sensory cortex andalso including someof secondary sensory cortex; FrA, frontal

associate cortex, also might include some intra-vM1 axons; cvM1, contralateral side of primary motor, and contralateral side of FrA; cStr, contralateral side of

striatum; RSA, retrosplenial agranular cortex; cOC, contralateral orbital cortex; cCl, contralateral side of claustrum; *one animal’s data not shown, either because

projections could not be clearly segregated from injection site (forMS1 in C) or not visible (for DP in C), or slightly damaged (for Ect in H). Unless explicitly stated, the

region of interest is on the same side as the viral infection. See also Figures S1–S4, Table S1, and Movie S1.
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Figure 2. Relationship between Laminar Location

and Projection Targets in vM1

(A) Bright field image of a vM1 brain slice. The vertical lines

demarcate the recording locations. Horizontal lines indi-

cate layer boundaries.

(B) A representative retrograde labeling experiment.

Fluorescent microbeads were injected in vS1 and imaged

in vM1.

(C) Fluorescent microbeads were injected in brain areas

that are targets of vM1 projections. vS1, black; zona

inserta, ZI, magenta; superior colliculus, SC, gray; brain-

stem, BS, green; posterior thalamic nucleus, PO, blue;

three separate experiments for each target brain region;

15 experiments total. Bead-positive cells were mapped

and their density plotted against the relative cortical depth

(see Experimental Procedures). Error bars, SEM.

See also Figures S4 and S5 and Table S1.
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The deeper layers (L5B and L6) occupy more than half of the

depth of vM1. As additional data on local circuits becomes avail-

able, these layers may have to be subdivided further (Anderson

et al., 2010; Hooks et al., 2011).

In vM1, a band of vS1 axons ascended from the white matter

through most layers (Figure 1B3). Although vS1 axons arborized

in L1, they were excluded from the top-most �20 mm (Fig-

ure 1B4), indicating that L1 in vM1 contains sublaminae that

participate in distinct circuits. Retrograde labeling experiments

revealed that these axons arise mainly from L2/3 and L5A in

vS1 (Figures S5A–S5B; Sato and Svoboda, 2010).

We next mapped the output from vM1 (Figures 1F–1H). A

cluster (diameter <1.5 mm) of neurons was infected throughout

the cortical layers in vM1 (Figure S1A). The projections (from

anatomically strongest to weakest) were as follows (Figure 1H):

Str, somatosensory cortex (including vS1 and S2), FrA (including

projections within vM1), Th (including PO, ventral-antero/

ventral-lateral thalamic nucleus [VA/VL], and VPM), contralateral

vM1, contralateral Str, retrosplenial agranular cortex (RSA), OC,

contralateral OC, SC, ZI, Re/Rh, contralateral Ect (cEct), contra-

lateral claustrum (cCl), and Ect (Figures 1G1–1G3, 1H, and

S1I–S1K; Experimental Procedures and Supplemental Experi-

mental Procedures; Miyashita et al., 1994; Porter and White,

1983). A prominent projection was vM1 / vS1. In vS1, vM1

axons ascended from the white matter and arborized in L5

and, most abundantly, in L1 (Figures 1G3 and 1G4; Cauller

et al., 1998; Petreanu et al., 2009; Veinante and Deschênes,

2003). These observations confirm that vS1 and vM1 are strongly

connected in a reciprocal manner in mice.

ChR2-Based Mapping of Long-Range Neuronal
Connections
Weused subcellular ChR2-assisted circuit mapping (sCRACM) to

measure the strength of input from vS1 to excitatory neurons
114 Neuron 71, 111–123, October 6, 2011 ª2011 Elsevier Inc.
across layers in vM1. AAV virus was used to

express ChR2 tagged with fluorescent proteins

(Nagel et al., 2003) (Venus [Petreanu et al., 2009]

or tdTomato) in vS1. In brain slices we recorded

from vM1 pyramidal neurons with dendrites

overlapping vS1 axons (Figures 3A and S4A).
In most experiments (except in Figures 6B, S6F, S8B, and

S8C) the bath contained TTX (1 mM), to eliminate action poten-

tials, and 4-AP (100 mM), to block the K+ channels that are critical

for repolarizing the axon (Petreanu et al., 2009). Under these

conditions short laser pulses (1–2 ms) depolarized ChR2-

expressing axons in the vicinity of the laser beam and triggered

the local release of glutamate. CPP (5 mM) was added to the

bath to block nonlinear NMDA conductances in the postsyn-

aptic dendrites. Measurements of postsynaptic currents (EP-

SCsCRACM) then revealed the presence of functional synapses

between ChR2-expressing axons and the recorded neuron in

the vicinity (<60 mm) of the photostimulus (Petreanu et al.,

2009). Block of action potentials also prevented possible contri-

butions from polysynaptic pathways.

Stimuli were delivered on a grid pattern which covered the

entire dendritic arbor of the recorded cell (Figures 3A and 3B).

Maps were reproducible across iterations (repeated 2–4 times;

Figure 3C). Averaged EPSCsCRACM were used as pixel values

in sCRACM input maps (Figure 3D). Aligning the dendritic arbor

of the recorded cell with sCRACM maps revealed the dendritic

locations where the synapses from ChR2-positive axons oc-

curred. Because of electrotonic filtering more distant inputs are

relatively more attenuated, and sCRACM maps represent

a soma-centric view of the spatial distribution of synaptic input

within the recorded neurons (Petreanu et al., 2009). Multiple

neurons were recorded sequentially in the same brain slice

(lateral distances <300 mm, with overlapping dendrites), under

identical conditions (Figure 3D). Within-slice comparisons of

input strength are necessary because ChR2 expression varies

across experiments.

The Strength of vS1 Input as a Function of Cortical Layer
We compared the strength of vS1 input to pyramidal neurons in

different layers in vM1 (Figure 4). We summed pixels with
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Figure 3. Subcellular Channelrhodopsin-2-AssistedCircuitMapping

(sCRACM)

(A) A vM1 slice overlaid with the photostimulation grid (123 26, 50 mmspacing)

and the reconstructed dendrites of two sequentially recorded cells (L5A,

magenta; L5B, blue) in the same column of the same slice. White fluorescence,

vS1 axons.

(B) Excitatory postsynaptic currents (EPSCsCRACM) recorded from the L5A cell

(magenta in A), evoked by photostimulation on a grid (black traces are re-

produced at higher magnification in C). EPSCsCRACM are caused by local

depolarization of ChR2-positive axons, triggered by blue light.

(C) EPSCsCRACM were reproducible across repetitions (three repetitions;

photostimulus locations as for black traces in B). Blue ticks indicate the

photostimuli. The blue and gray ticks demarcate thewindow for calculating the

response plotted in sCRACM input maps.

(D) sCRACM input maps. Left panel, L5A cell in (A). Right panel, L5B cell in (A).

The pixel value is proportional to the strength of input from ChR2-positive

axons to particular locations of the dendritic arbor. The triangles indicate the

soma locations. Two maps were obtained under the same stimulation and

recording conditions.

See also Figures S4 and S5.
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significant responses (>63 standard deviation) to estimate input

strength (Figures 4C–4F; other analyses without thresholding

produced similar results; Figures S6D–S6I; also see Experi-

mental Procedures).

For all cells we compared the input strength to that of L5A

neurons, which received the strongest input from vS1. L2/3

neurons received similarly strong input (Figure 4C; p > 0.5,

signed-rank test). In experiments where input was detected in

one L5A cell (failures did occur in a small fraction of experiments

due to insufficient ChR2 expression), other L2/3 and L5A cells

also showed input. This suggests that most, perhaps all, L2/3

and L5A cells in the vS1 projection zone within vM1 receive input

from vS1.
In contrast to the upper layer neurons, many (but not all) L5B

and L6 cells did not receive detectable vS1 input. Input to large

pyramidal neurons in L5B was 7-fold weaker than input to L5A

cells on average (p < 0.001, signed-rank test); input to L6 was

10-fold weaker than input to L5A (p < 0.001, signed-rank test).

Together, these data show that the laminar location of the

soma is a key determinant of the strength of input from vS1.

L5A and L2/3 neurons, containing mostly cortico-cortical and

local cortical neurons, receive strong input from vS1. L5B and

L6, containing the vast majority of vM1 neurons projecting out

of the cortex, receive relatively little direct input from vS1.

The Distribution of vS1 Input within the Dendrites
of vM1 Neurons
We next analyzed the spatial distribution of vS1 input within the

dendritic arbors of vM1 neurons. sCRACM input maps were

averaged, aligned either on the pia (Figure 5A) or the soma (Fig-

ure 5B). Since the density of ChR2-positive axons varies

between preparations, the measured vS1 input varied greatly

across experiments. Therefore, individual sCRACM maps were

normalized before averaging, by dividing with the largest pixel

in a map. The average maps thus represent the relative distribu-

tion of input within the dendritic tree. L2/3 neurons received input

within a single, contiguous domain, centered on the soma,

approximately 50 mm above the peak of basal dendrite length

density (Figure 5B1). Input to L5A neurons was split into separate

basal and apical domains. The basal domain was centered on

the basal dendrites, whereas the apical domain was on the

border between L1 and L2. When it was present, the input to

L5B neurons was primarily in the basal dendrites. Input to L6

neurons was mainly on the proximal apical dendrites. These

spatial distributions of input were also apparent in individual

maps (Figure S6A). In general, regions with large input corre-

sponded to high densities of dendritic length (Figure 5B). But

there were exceptions to this rule; for example, input to L6

targeted proximal apical dendrites, avoiding the denser basal

dendrites (Figure 5B4). These findings indicate that input from

vS1 targets specific domains within the dendritic arbors of vM1

neurons.

The Strength of vS1 Input to PT Type Neurons
PT type neurons project to the brainstem reticular formation, the

facial nucleus and the spinal trigeminal nucleus (Grinevich

et al., 2005; Hattox et al., 2002; Miyashita et al., 1994). These

neurons are located in L5B, intermingled with pyramidal neurons

projecting to other targets (Nudo and Masterton, 1990) (Figures

2C, S5C, and S5D). Although L5B neurons received weak vS1

input on average (Figure 4D), a small fraction of cells received

strong input from vS1 (Figures 6A and S6). These outliers

were not necessarily near the L5A/L5B border (Figure S6B).

We thus wondered if L5B cells with large vS1 input might corre-

spond to PT type neurons projecting to brainstem. To test this

possibility, we injected ChR2 into vS1 and fluorescent micro-

beads into the reticular formation and facial nucleus. In vM1

slices we recorded from bead-labeled cells in L5B and unlabeled

neurons in L2/3 and L5A in the same column. Responses in

bead-labeled neurons were small compared to upper layer

neurons (p < 0.001, signed-rank test), and indistinguishable
Neuron 71, 111–123, October 6, 2011 ª2011 Elsevier Inc. 115
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Figure 4. Input from vS1 to vM1 as a Function of Layer

(A) Representative dendritic arbors in vM1, sorted by depth in the cortex.

(B) sCRACM input maps in different layers. Themaps were thresholded to show pixels with significant signal (Experimental Procedures). Note differences in color

scales.

(C–E) Comparison of input using L5A as the reference. A neuron in L2/3, L5B, or L6 was recorded in the same brain slice as a neuron in L5A. Input (summed pixels

with significant signal) for L2/3 (C) (n = 19 pairs of cells, 11 mice), L5B (D) (n = 31 pairs of cells, 15 mice), or L6 (E) (n = 21 pairs of cells, 8 mice) neurons is plotted

against input to L5A neurons. Statistics, signed-rank test.

(F) Summary of pair wise comparisons. The histogram corresponds to the slopes of the regression lines in (C)–(E).

See also Figure S6 and Table S1.
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from unlabeled L5B neurons (p > 0.1, ranksum rest) (Figures 6C,

6D, S6E, and S6H).

Large pyramidal neurons have electrotonically complex struc-

ture (Johnston et al., 1996; London and Häusser, 2005). Distal

inputs are filtered and may rely on non-linear mechanisms for

amplification. We considered the possibility that detecting vS1

input at the soma of large L5B neurons might require functional

NMDA-Rs (Larkum et al., 2009), sodium channels (Magee and

Johnston, 1995), or calcium channels (Helmchen et al., 1999).

We recorded ChR2-photostimulation-evoked postsynaptic

potentials with these channels intact (omitting TTX, CPP, and

4-AP from the bath) (Figures 6B and S6F). These measurements

were consistent with the sCRACMmeasurements. ChR2-photo-

stimulation-evoked responses were 6–7 times weaker in L5B

neurons compared to upper layer neurons recorded under iden-
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tical conditions (p < 0.001, signed-rank test). The shapes of the

input maps were different under the two conditions, because,

in the absence of TTX, action potential propagation delocalizes

the effects of photostimulation (Petreanu et al., 2007, 2009).

These results support the conclusion that L5B cells, including

PT type neurons, receive little input from vS1 compared to

superficial vM1 neurons.

We note that the differences in vS1 input strength to L5B and

upper layer cells (L2/3, L5A) cannot be explained by the overlap

between vS1 axons and vM1 dendrites. Indeed, L5A neurons

received significantly more input from vS1 then L5B neurons,

even when normalized for dendritic length density (Figure S7).

Similar types of specificity have been reported in projections

from the thalamic PO nucleus to vS1 (Petreanu et al., 2009).

For comparison we provide this data (Figure S8). This confirms
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See also Figure S6 and Table S1.
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that geometric overlap is not an accurate predictor of the

strengths of functional projections (Brown and Hestrin, 2009;

Callaway, 2002; Shepherd et al., 2005).

vS1-Projecting Neurons in vM1 Receive Input from vS1
L2/3 and L5A neurons in vS1 provide input to L2/3 and L5A

neurons in vM1 (Figures S5A, S5B, and S9; Sato and Svoboda,

2010). Similarly, a subset of vM1 neurons, concentrated in L2/3

and L5A, connect with L2/3, L5A, and L5B neurons in vS1 (Pet-

reanu et al., 2009; Figures 2B and 2C). Do neurons in L2/3 and

L5A in vS1 and vM1 form a direct feedback loop? Or do L2/3

and 5A in vM1 harbor distinct set of neurons, one receiving input

from vS1, and the other sending output to vS1? To directly distin-

guish between these possibilities we coinjected virus expressing

ChR2-venus and retrogradely-transported microbeads into vS1

(Figure 7A). In vM1, the distribution of retrogradely labeled cells

overlapped with the band of axonal labeling (Figure 7B). The vast

majority of bead-positive cells were located in L2/3 and L5A (Fig-

ure 2C), similar to the neurons receiving strong input from vS1

(Figure 4). We measured sCRACM maps for bead-positive cells

and neighboring bead-negative cells (soma distance <50 mm,

without bias in vertical depth; Figures 7C–7E, S6G, and S6I).

Bead-positive vS1-projecting neurons received significantly

stronger (2.5-fold) input from vS1 than bead-negative neurons

(Figures 7E; p < 0.001, signed-rank test). Some bead-positive

cells were found (Figure 2C) and recorded in L5B (Figure S6C).

Similar to bead-positive cells in L2/3 and L5A, bead-positive

cells in L5B received stronger vS1 input comparable to neigh-

boring bead-negative cells (sub group in Figure 7E; p < 0.001,

signed-rank test); but the input was still much less than the input

to upper layer cells in the same column (Figure S6I; p < 0.001,

signed-rank test). We also performed the converse experiments,

recording in vS1 from vM1-projecting neurons and their neigh-

bors (Figure S9). Here, there was no difference between bead-

positive and bead-negative neurons (Figure S9G; p > 0.1,

signed-rank test). Thus, neurons in upper layers (L2/3 and L5A)
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of vS1 and vM1 form a strong feedback loop.

Furthermore, within a layer, a neuron’s projec-

tion pattern can determine the strength of

specific types of input.

DISCUSSION

We used viral anterograde tracing, retrograde

labeling, and Channelrhodopsin-2-assisted
circuit mapping to describe the circuits linking vS1 (barrel cortex)

and pyramidal neurons in vM1 (vibrissal motor cortex). vS1

axons preferentially targeted upper layer (L2/3, L5A) neurons in

vM1 (Figure 4). vM1 neurons projecting back to vS1 received

particularly strong direct input from vS1 (Figure 7). vS1 input to

neurons in deeper layers (L5B, L6) was weak (Figure 4). vS1 input

conspicuously avoided the majority of pyramidal tract (PT) type

neurons (Figure 6), despite pronounced overlap of dendrites

and axons. Our findings suggest that upper layers in vM1 partic-

ipate in forming sensorimotor associations (Figure 8).

AAV-Mediated Anterograde Tracing
For anterograde tracing we used AAV expressing GFP or the red

fluorescent protein tdTomato (Shaner et al., 2004) to infect

neurons in vS1 or vM1 (Figures 1 and S1; Movie S1). A high-reso-

lution slide scanner was used to image fluorescent axons

throughout the brain (Supplemental Experimental Procedures).

Expression of the fluorescent proteins produced sufficient

contrast to detect and image individual axons in their projection

zones (Figures S1D and S1H), often millimeters from their parent

cell bodies (Aronoff et al., 2010; De Paola et al., 2006; Grinevich

et al., 2005; Petreanu et al., 2009; Stettler et al., 2006). This is

remarkable because these axons are the smallest structures in

the brain, often with diameters less than 100 nm (Shepherd

and Harris, 1998; De Paola et al., 2006). These images allowed

us to quantify the projection strength from vS1 and vM1 to

numerous areas throughout the brain. We confirmed previously

reported projections from the barrel cortex (for example, vS1/

striatum, vM1, FrA, thalamus, S2), but we also found projections

to other areas (vS1/ orbital cortex, reuniens thalamic nucleus/

rhomboid thalamic nucleus, infralimbic cortex/dorsal pedun-

cular cortex, MS1, cMS1, LPtA). From the vibrissal motor cortex

strong projections included, vM1 / striatum, vS1, FrA, thal-

amus, contralateral vM1. Weaker projections included vM1 /

contralateral claustrum, which was previously described in rats

(Alloway et al., 2009). Quantification of the projection strength
11–123, October 6, 2011 ª2011 Elsevier Inc. 117
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Figure 6. Low Input to Brainstem-Projecting L5B Pyramidal Neurons from vS1

(A) Input to upper layer neurons (L2/3 and L5A) compared to L5B neurons (left, actual values; right, normalized) (n = 36 pairs of cells, 17 mice). Statistics, signed-

rank test. The circle in the right panel indicates the mean (0.18).

(B) Same experiments as (A), except without antagonist cocktails (CPP, TTX, and 4-AP) (n = 23 pairs of cells, 4 mice). Statistics, signed-rank test. The circle in the

right panel indicates the mean (0.26).

(C and D) Input to upper layer neurons (L2/3 and L5A) compared to brainstem-projecting L5B neurons. (C) Individual maps of a L5A cell (left) and a bead-positive

L5B cell (middle). Triangles indicate the soma locations. Both maps were obtained under identical experimental conditions in the same brain slice. An overlay

of DIC and red fluorescence shows a bead-positive L5B cell (right). (D) Input to upper layer neurons (L2/3 and L5A) compared to bead-positive L5B neurons.

(left, actual values; right, normalized) (n = 8 pairs of cells, 5 mice). Statistics, signed-rank test. The circle in the right panel indicates the mean (0.28).

See also Figures S5–S8 and Table S1.
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based on the total brightness of the projection to particular struc-

tures (Figures 1C and 1H) serves to rank-order brain areas for

potential importance in vibrissa-dependent somatosensation

and functional follow-up experiments (Luo et al., 2008; O’Connor

et al., 2009).

Two caveats deserve discussion. First, our quantification of

projection strength is only indirectly related to synaptic output.

Fluorescence is proportional to axonal volume and since axonal

caliber is constant, also to axonal length density. For cortical

axons terminating within cortex bouton density is approximately

constant (Anderson et al., 2002), and most axonal length resides

in these termination zones; fluorescence is, therefore, expected

to be an accurate predictor of bouton number and output

strength. However, measurements of bouton densities in other

target areas are necessary to strengthen the interpretation of

projection strength based on fluorescence measurements.

Second, numerically small projections can be functionally prom-

inent, as has been documented for thalamocortical projections

to L4 in the sensory cortex (Benshalom and White, 1986; da

Costa and Martin, 2009).

Simultaneous tracing with pairs of colors (Figures 1E and S3)

confirmed that the vS1/ vM1 projection is topographic (Hoffer

et al., 2005; Welker et al., 1988). Furthermore, the projection

splits into multiple domains (Figure 1E3). Additional experiments

are required to determine if vibrissal motor cortex contains

multiple motor maps (Tennant et al., 2011). The more caudal

domain overlaps with the posterior-medial domain of the tongue

motor cortex (Komiyama et al., 2010).
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The Circuits Connecting vS1 and vM1
The brain is organized on a number of scales, including individual

cells, defined groups of neurons, and brain areas. At the highest

level, the hierarchical organization of brain areas has long been

a cornerstone in our understanding of the mammalian nervous

system (Felleman and Van Essen, 1991; Kleinfeld et al., 1999;

Sporns and Kötter, 2004). However, each brain area itself

containsmultiple cell classes, which are connected into complex

local circuits (Binzegger et al., 2004; Hooks et al., 2011; Lefort

et al., 2009). Subcellular ChR2-assisted circuit mapping

(sCRACM) allows long-range connections between brain areas

to be linked to defined neuronal populations within the local

circuits (Petreanu et al., 2007, 2009).

sCRACM has limitations. First, the detailed mechanisms

driving neurotransmitter release evoked by ChR2 may not be

the same as when evoked by action potentials (Zhang and Oert-

ner, 2007). However, our results were quantitatively similar with

action potentials blocked or intact (Figure 6), suggesting that

ChR2-based mapping provides accurate measurements of

relative input strength. Second, synaptic currents recorded at

the soma can be greatly attenuated by electrotonic filtering in

the dendrites. More distal inputs are therefore underrepresented

in a sCRACM map. Third, axonal expression levels of ChR2

typically vary greatly across experiments. Comparison of input

strength acrossdifferent postsynaptic neurons therefore requires

normalization of input strength within single experiments.

We mapped the long-range connections between sensory

and motor areas involved in whisker-based sensation.
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Figure 7. vS1-Projecting Neurons in vM1 Receive Strong Input from vS1

(A) Schematic of the experiment. AAV-ChR2-venus (green) and fluorescent microbeads (red) were coinjected in vS1. Recordings were made in vM1 (dashed line).

(B) Representative images of vS1 axons (left), bead-labeled cells (vS1-projecting cells; middle), and the overlay (right) in vM1.

(C) Example sCRACM input map recorded in a retrograde bead-positive cell (triangle, soma location).

(D) Average sCRACMmaps for bead-positive L2/3 neurons (left) aligned on the pia (n = 7 cells, 6 mice) and for bead-positive L5A neurons (right) aligned on the pia

(n = 8 cells, 6 mice).

(E) Input to bead-positive and nearby (distance <50 mm) bead-negative cells (left, actual values; right, normalized) (n = 15 pairs of cells, 12mice). Statistics, signed-

rank test. The circle in the right panel indicates the mean (0.40).

See also Figures S6 and S9 and Table S1.
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Somatosensation relies on active movement of whiskers to

gather information in the vicinity of the head. Sensory input is

critical for object localization and recognition, and also to guide

future movements of the whiskers. By collating our studies of

long-range connections with previous data on thalamocortical

(Bureau et al., 2006; Lu and Lin, 1993; Meyer et al., 2010b; Pet-

reanu et al., 2009) and local cortical circuits (Hooks et al., 2011;

Lefort et al., 2009; Svoboda et al., 2010) it is possible to sketch

out a circuit diagram for the cortical vibrissal sensorimotor loop

in mice (Figure 8).
Figure 8. The Long-Range Circuits Connecting vS1 and vM1

Red, projections from vS1 to vM1. Blue, projections from vM1 to vS1. Gray,

three strongest intracortical projections. Line thickness is proportional to the

strength of connection strength. Targets of vM1 projections: zona inserta

(ZI, magenta), superior colliculus (SC, cyan), braisnstem (BS, green), and

posterior thalamic nucleus (PO, blue).
Forces acting on whiskers excite sensory neurons in the

trigeminal ganglion, triggering activity which ascends through

the brainstem into VPM and L4 neurons in the barrel cortex (Pe-

tersen, 2007; Svoboda et al., 2010). L4 stellate cells mainly excite

L2/3 neurons, which in turn excite neurons in L5A and also in L5B

(Armstrong-James and Fox, 1987; Brecht et al., 2003; Brecht

and Sakmann, 2002; Hooks et al., 2011; Lefort et al., 2009;

Manns et al., 2004). A subset of L2/3 and L5A neurons project

to vM1 (Figures S5A, S5B, and S9C), where they strongly target

upper layer neurons in L2/3 and L5A, and only weakly deep layer

neurons in L5B and L6 (Figures 4C–4F, 6, and S6). Upper layer

neurons in vM1 receiving strong input from vS1 project back to

vS1 (Figures 2B, 2C and 7B), where they synapse onto neurons

in L2/3, L5A, and L5B (Petreanu et al., 2009). Cortico-cortical

neurons in L2/3 and L5A in vM1 are thus the nexus of a powerful

disynaptic feedback loop (vS1, L2/3/5A )/ vM1, L2/3/5A),

linking sensory and motor cortex (Figure 8). This loop apparently

violates the no-strong-loops principle which is thought to govern

inter-areal connectivity in the visual system (Crick and Koch,

1998).

SinceAAV infected both L2/3 and L5Acells in vS1 (Figure S1A),

additional experiments are required to determine the separate

contributions of L2/3 and L5A neurons to activating targets in

vM1 (Aronoff et al., 2010). A small subset of deep L6 cells in

vS1 also projected to vM1 (Figures S5A, S5B, and S9C). These

neurons were only sparsely infected by the AAV virus, and their

contribution to the vS1 / vM1 projection, although likely small

in total, was underrepresented in our study.
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Howdoes this superficial feedback loop communicatewith the

deep layer output neurons in vM1? The local circuit in somatic

(Weiler et al., 2008) and vibrissal (Hooks et al., 2011)motor cortex

shows a top-to-bottom organization. Interlaminar excitation is

strongest from superficial layers downward, with a powerful de-

scending projection from L2/3 to the border of L5A and L5B

(Hooks et al., 2011). Weaker projections exist from L5A to L5B.

Similarly, L2/3 and/or L5A neurons in vM1 excite L5B neurons

in vS1 (Petreanu et al., 2009). L5B neurons in vM1 (Figures 2

and S5D) and vS1 (Matyas et al., 2010) are projecting to motor

centers in the brainstem. Our studies thus suggest that sensori-

motor integration underlying adaptive whisking occurs primarily

in the superficial layers, and the results of this computation are

then passed on to neurons in deeper layers, which control motor

centers (Fetz and Baker, 1973; Matyas et al., 2010).

PT type neurons in L5B of vM1 primarily control whisker

protractions, whereas PT type neurons in L5B of vS1 might

control whisker retractions (Matyas et al., 2010). Our studies

suggest that whisker retractions triggered by intracortical micro-

stimulation in vM1 are mediated by direct stimulation of cortico-

cortical neurons in L2/3 and L5A, which in turn excite deep layers

in vS1 (Petreanu et al., 2009).

The documented sources of synaptic input to deep neurons in

vM1, including PT type neurons, remain few and weak (Hooks

et al., 2011; Anderson et al., 2010; Figures 4 and 6). L5B and L6

neurons receive only weak input from superficial layers (Hooks

et al., 2011; Anderson et al., 2010) and from vS1 (Figures 4 and

6). Additional studies of other possible sources of input, including

the thalamusand theanterior cortex,will benecessary to account

for the input to PT type neurons in vM1.

Specificity in Long-Range Projections
Numerous experiments using a variety of techniques have

shown that the overlap of axons and dendrites fails to accurately

predict the strengths of connections between neuronal popula-

tions (Callaway, 2002; White, 2002). For example, in vS1, L4

neurons strongly excite L2/3 pyramidal cells, but not inter-

mingled somatostatin-positive interneurons (Dantzker and

Callaway, 2000). In the rat vS1 but not in the mouse (Bureau

et al., 2006), L2/3 pyramidal cells above barrels are strongly

excited by L4 neurons, whereas L2/3 pyramidal cells above

septa receive only weak input (Shepherd et al., 2003; Shepherd

and Svoboda, 2005). In mouse vS1, L5A neurons receive strong

input fromPO,whereas neighboring large-tufted L5B neurons do

not (Petreanu et al., 2009; Figure S8). Similarly, in the mouse

vM1, L5A neurons receive strong input from vS1 compared to

L5B neurons (Figures 3D, 4B–4F, 6, and S7). Input strength

can also depend on the neuron’s projection target (Figure 7; An-

derson et al., 2010). Specificity beyond structure also exists at

the level of subcellular distributions of synapses. For example,

L6 neurons in vM1 receive input mainly on their sparse apical

dendrite, and little input on their basal dendrites (Figures 4B4

and 5B4). These findings highlight the need for methods of

circuit-mapping that detect functional synapses.

Sensorimotor Integration
Mice whisk in an adaptive manner to extract information about

the tactile world. For example, in object localization tasks
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rodents move their whiskers to locate an object in the vicinity

of their heads (Knutsen et al., 2006; Mehta et al., 2007; O’Connor

et al., 2010a). Here, a sensory cue (typically visual or auditory)

triggers a motor program which leads to contact between

whisker and object. The sensory input in turn changes the whisk-

ing pattern (Mitchinson et al., 2007; O’Connor et al., 2010a).

Ultimately the animal makes a judgment about object location

to collect a reward by executing a second motor program

involving licking. A standard laboratory task of this type therefore

involves multiple stimulus-response associations (Lalazar and

Vaadia, 2008). The microcircuitry connecting sensory and motor

cortices described here might help to implement these stimulus-

response associations.

It has been suggested that vibrissa-based object localization

requires the brain to interpret contact between whisker and

object in the context of an internal reference signal indicating

whisker location or phase (Curtis and Kleinfeld, 2009; Diamond

et al., 2008). This reference signal might consist of an efference

copy generated by the inverse model driving goal-directed

whisking. The circuits uncovered here may underlie mixing of

whisking and contact signals and thus, might underlie computa-

tion of object location.

EXPERIMENTAL PROCEDURES

Stereotactic Injections

Experiments were conducted according to National Institutes of Health guide-

lines for animal research and were approved by the Institutional Animal Care

and Use Committee at Janelia Farm Research Campus. For anterograde

tracing we used adeno-associated virus (AAV; serotype 2/1) expressing

eGFP (www.addgene.com) or tdTomato (a gift from J. Magee) under the

CAG promoter. For sCRACMmapping experiments, we used AAV virus (sero-

type 2/1; in some experiments serotype 2/10) expressing either ChR2-venus

(Petreanu et al., 2009) or ChR2-tdTomato (www.addgene.com). For retrograde

tracing we used fluorescent LumaFluor microbeads (LumaFluor Inc.). C57BL/

6J mice (Charles River) (13–16 days old) were anesthetized using an isoflur-

ane-oxygen mixture and placed in a custom stereotactic apparatus. A small

hole was drilled into the skull, allowing insertion of a pulled glass pipette

(Drummond) (tip diameter: 10–20 mm for virus; 40–60 mm for LumaFluor

microbeads). For sCRACM experiments, coordinates were as follows (in mm,

from bregma): vS1, 0.5 to 0.8 posterior, 2.9–3.3 lateral; vM1, 1.0�1.1 anterior,

0.60–0.75 lateral. Injections sites were confirmed by post hoc histological anal-

ysis (Figures 1B, 3, 4, 5, 6, 7, and S1B–S1H). See Supplemental Experimental

Procedures for further details.

Slice Preparation and Electrophysiology

Brain slices were prepared as described (Bureau et al., 2006) 14 to 24 days

after viral infections (see Supplemental Experimental Procedures). For vM1,

the brain was tilted�10� to 15� forward during slicing to optimize the alignment

of apical dendrites with the slice surface. When cutting from rostral to caudal,

1�2 slices,�0.8–1.3 mm anterior to bregma, corresponding to the first and/or

second slice containing a fused corpus callosum, were used. For vS1 slices,

the brain was cut in the coronal plane. Only slices with prominent barrels

(Figure S9B) were used (Petreanu et al., 2009).

All recordings were performed at room temperature in circulating ACSF.

For most experiments (except Figures 6B, S6F, S8B, and S8C) TTX

(1 mM), 4-AP (100 mM), and CPP (5 mM) were added (Petreanu et al., 2009).

Whole-cell recordings were obtained using borosilicate pipettes (resistance

4–6 MU) and an Axopatch 700B amplifier (Axon Instruments). The intracellular

solution contained (in mM): 128 potassium gluconate, 4 MgCl2, 10 HEPES,

1 EGTA, 4 Na2ATP, 0.4 Na2GTP, 10 sodium phosphocreatine, 3 sodium

L-ascorbate, and 0.02 Alexa-594 (Molecular Probes), and 3 mg/ml biocytin

(pH 7.27; 287 mOsm). Cells were recorded at depths from 46 to 103 mm

http://www.addgene.com
http://www.addgene.com
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within the brain slice. Data were acquired using Ephus (www.ephus.org).

Pyramidal neurons were selected based on their morphology confirmed

under fluorescence microscopy (Alexa-594 in pipette solution) or post hoc

by biocytin staining. For sCRACM mapping, EPSC were recorded in voltage

clamp while holding at �70 mV (L2/3 cells) or �75 mV (L5 cells). Access

resistances ranged 10–40 MU. For every vM1 cell included in the data set,

the site of viral infection was confirmed to lie within the barrel cortex by post

hoc histological analysis. Most infections were roughly centered on the barrel

field.

Photostimulation

The position of a blue laser beam (473 nm; Crystal Laser) was controlled with

galvanometer scanners (Cambridge Scanning, Inc.). The beam passed

through an air objective (43; 0.16 NA; UPlanApo, Olympus) and was nearly

cylindrical (�8–16 mm in diameter, full-width at half max at the specimen

plane). The light pulses were controlled with a Pockels cell (ConOptics). The

power (0.7–1.8 mW) of the light pulses (duration, 1–2 ms) was adjusted so

that the largest EPSCsCRACM had peak values in the range of 50–100 pA; in

some cases EPSCsCRACM were smaller even at the highest laser powers.

Each trial consisted of approximately 100 ms baseline, the photostimulus,

and 300ms response period. Stimulation sites were on a 50 mmgrid. Grid sizes

(123 24, 123 26 or 123 28) were adjusted based on the size of the neuron; all

grids covered all potential sites of input within the dendritic arbor. Each map

was repeated 2–4 times. The laser stimuli were given in a spatial sequence

designed to maximize the intervals between stimuli arriving to neighboring

spots (Shepherd et al., 2003).

Data Analysis

sCRACM pixel values corresponded to the mean EPSC amplitude in a 75 ms

time window after the onset of the stimulus (given in picoamperes, pA, for

consistency with previous studies). In some figure panels (Figures 3D and

4B), we display only pixels with significant responses (response amplitude

>63 standard deviation of the baseline). For each cell, maps were averaged

across repeats. To show the spatial distribution of input, maps were first

peak-normalized (Figures 5, 7D, S9E, and S9F) and then averaged across cells

within a class. Normalization was necessary because response amplitudes

vary across experiments depending on the infection efficiency and the ChR2

expression level.

To quantify the total input for pairs of neighboring neurons we summed all

pixels that showed significant responses (>63 standard deviation of the base-

line; Figures 3D, 4C–4F, 6, 7E, S8D, and S8E). Only cell pairs with soma

distance%300 mm and dendritic overlap were used. We performed additional

analyses to check for possible biases imposed by thresholding (>63 standard

deviation of the baseline): First, we computed input across a 33 3 grid around

the soma (Figures S6D–S6F). Second, we generated a mask by averaging

the responses across cells within a group. Themaskwas defined by significant

responses (>53 standard deviation). The mask was then used to compute

input from the original maps (Figures S6G–S6I). Third, we also computed the

mean pixel value over the entire map without thresholding (data not shown).

These three analysis methods yielded consistent results. Since the time

between stimulus and the beginning of the baseline period for the next trial

was fairly short (300 ms), we corrected for bleedthrough across trials (baseline

drift). Because the grid size for stimulation was always larger than the dendritic

arbors of the recorded cells (for example, Figure 3B), we estimated the base-

line drift from the traces far outside the cell’s dendritic arbor (these traces were

‘‘blanks’’ that could not have contained true responses; they thus represent

pure baseline drift). We then subtracted the baseline drift from the mean value

of all other traces.

Paired comparisons used the nonparametric Wilcoxon signed-rank test

(Figures 6, 7, S6, S7, and S9).
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