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Towards comprehensive cell lineage reconstructions in
complex organisms using light-sheet microscopy

Fernando Amat* and Philipp J. Keller*
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Understanding the development of complex multicellular organisms as a function of the underlying cell behavior
is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics
in entire developing embryos is an indispensable step towards such a system-level understanding. In recent
years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in
vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can
be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent
signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting data-
sets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of
development. However, the complexity and size of these multi-terabyte recordings typically preclude compre-
hensive manual analyses. Thus, new computational approaches are required to automatically segment cell mor-
phologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic
development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal,
and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organ-
isms, including fruit fly, zebrafish and mouse.

Key words: cell lineage reconstruction, cell tracking, data visualization, embryonic development, light-sheet
microscopy, quantitative developmental biology.

Introduction

Following the dynamic behavior of every cell at every

point in time and space throughout the development
of entire complex organisms is one of the central goals

of developmental biology (Megason & Fraser 2007;

Keller et al. 2008; Khairy & Keller 2011; Tomer et al.

2012). Comprehensive reconstructions of cellular

dynamics and cell lineage information are indispens-

able for systematically dissecting functional relation-

ships in the developmental building plan,

understanding the morphological development of com-
plex tissues and entire organisms, quantitatively and

comparatively analyzing mutant phenotypes, correlat-

ing gene expression and cell fate decisions, testing

biophysical models of the physical forces acting in

development and, ultimately, formulating and testing

models of the entire developing embryo. In the long-

term perspective, the systematic reconstruction and
correlation of cell lineage information for individuals of

the same species as well as across species borders

may furthermore provide key insights into the funda-

mental quantitative rules underlying developmental

building plans.

In order to realize the automated reconstruction of cel-

lular dynamics, however, a combination of key advances

in in vivo fluorescence light microscopy, computational
image processing, image data management and data

visualization are needed to generate and efficiently ana-

lyze the large amount of information required for system-

level studies of development. Figure 1 shows a generic

pipeline for such experiments and analyses (please see

Box 1 for a definition of technical terms). Briefly, the spec-

imen is recorded in vivo for the maximum duration possi-

ble without causing damage to the fluorescent markers
(owing to photo-bleaching) or to the specimen itself

(owing to photo-toxic effects). Achieving good physical

coverage, spatial resolution and temporal sampling is
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Fig. 1. Pipeline for cell lineage reconstructions. (a) Block diagram comprising the main steps required to obtain cell lineage information

from time lapse microscopy data. Pre-processing refers to any image processing tasks required to enhance the datasets for the purpose

of accurate segmentation and cell tracking. Segmentation refers to spatial coherence while tracking refers to temporal coherence.

Although image segmentation and cell tracking are often seen as separate steps, both tasks can benefit from each other, considering

the high spatial correlation between adjacent images in time (indicated by a bidirectional arrow). Panels (b–g) provide examples for each

step, using 2D images for illustrative purposes. The same pipeline can be applied to 3D images. (b) Maximum-intensity projection of a

raw 3D image dataset showing a nuclei-labeled Drosophila embryo recorded with SiMView light-sheet microscopy. (c) Enlarged view of

the region indicated by the orange box in (a). Two consecutive time points are shown. (d) Applying a median filter to the images shown

in panel (c) removes shot noise and represents a commonly-used image pre-processing step in light microscopy. (e) Segmentation of

the images shown in panel (d) provides estimated cell boundaries (pink). (f) Cell tracking involves identification of corresponding nuclei in

subsequent time points (orange arrows). (g) Abstraction of the segmentation and tracking results obtained from the processing steps

illustrated in panels (c–f) allows visualizing and analyzing the lineage information. The cell lineages are constructed by concatenating the

pairwise associations shown in panel (f) across multiple time points and through cell divisions. Scale bars: 25 lm (b), 10 lm (c). Credits:

Panel (g) was reprinted from Tomer et al. (2012), Copyright (2012), with permission from Macmillan Publishers Ltd.
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crucial to reliably capture and resolve cell migration and
cell division events across the entire embryo. In the

resulting datasets, cell boundaries and/or locations need

to be identified for every cell in the embryo and at every

time point (segmentation) and associated with the cor-

rect object in the next time point (tracking). Since com-

plex multicellular organisms typically comprise many

tens of thousands of cells already in early developmental

stages, automated computational approaches are
required to perform these tasks and extract quantitative

information from the recorded images that can then be

analyzed for new biological insights.

In the following sections, we will discuss in more

detail state-of-the-art approaches for each of these

steps, from image acquisition to image analysis and

data visualization. Although there are still many chal-

lenges (Keller et al. 2008; McMahon et al. 2008; Olivier
et al. 2010), we argue that complete cell lineage

reconstructions in complex multicellular organisms are

within reach in coming years.

Light-sheet microscopy

Light-sheet microscopy has emerged as a powerful

technology that provides substantially improved perfor-
mance over confocal and point-scanning two-photon

microscopy in several parameters crucial for long-term

in vivo imaging of complex multicellular specimens

(Keller & Dodt 2011; Tomer et al. 2011). The central

idea behind light-sheet microscopy is to illuminate a

thin volume section of the sample from the side, using

a thin sheet of light or a rapidly scanned pencil beam

perpendicular to the axis of fluorescence detection
(Fig. 2) (Siedentopf & Zsigmondy 1903; Voie et al.

1993; Fuchs et al. 2002; Huisken et al. 2004; Keller

et al. 2008). Light-sheet microscopy provides intrinsic

optical sectioning by illuminating only the part of the

sample that is in focus of the detection system. Expo-

sure of the specimen to laser light is thus greatly

reduced. Positioning the detection objective perpen-

dicular to the illuminated plane allows recording an
image of the entire illuminated plane with a camera-

based detection system in a single step. Fast three-

dimensional (3D) imaging is performed by moving the

sample through the light sheet or by quickly displacing

the light sheet and detection optics.

Light-sheet microscopy has four main advantages

over conventional imaging approaches. First, photo-

bleaching and photo-toxic effects are substantially
reduced, which is of particular importance for long-

term in vivo imaging under physiological conditions.

For example, light-sheet microscopy has been used to

image Drosophila (Tomer et al. 2012) and early zebra-

fish (Keller et al. 2008) embryogenesis at a temporal

resolution that enables comprehensive cell tracking.

Second, camera-based fluorescence detection greatly

speeds up image acquisition over point-scanning volu-

metric imaging. The speed bottleneck in light-sheet

microscopy is effectively determined by the perfor-

mance of the camera and the electronics required for

data transfer and storage. Third, light-sheet micros-
copy provides an exceptionally high signal-to-noise

ratio (SNR), owing to the long pixel dwell times arising

from parallelized signal-detection with CCD or sCMOS

detectors. Finally, light-sheet microscopes are relatively
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Fig. 2. Scanned light-sheet microscopy. (a) The illustration

shows the principle behind Digital Scanned Laser Light Sheet

Fluorescence Microscopy (DSLM). The f-theta lens converts the

tilting movement of the scan mirror into a vertical displacement of

the laser beam. The tube lens and the illumination objective focus

the laser beam into the specimen, which is positioned in front of

the detection lens. The laser beam thus illuminates the specimen

from the side and excites fluorophores along a single line. Rapid

scanning of a thin volume and fluorescence detection at a right

angle to the illumination axis provides an optically sectioned

image. (b) Computer model of the opto-mechanical implementa-

tion of a light sheet microscope for simultaneous multiview imag-

ing (SiMView). The opto-mechanical modules of the instrument

consist of two illumination arms for fluorescence excitation with

scanned light sheets (blue), two fluorescence detection arms

equipped with sCMOS cameras (red) as well as beam-coupling

modules, specimen chamber and the specimen positioning sys-

tem (grey). Credits: Panel (a) was reprinted from Keller et al.

(2008), Copyright (2008), with permission from AAAS. Panel (b)

was reprinted from Tomer et al. (2012), Copyright (2012), with

permission from Macmillan Publishers Ltd.
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inexpensive (a very simple, yet powerful system can be
built for around $50 000 and less) and several ongoing

efforts aim at providing open source software for

recording and processing light-sheet microscopy data

(Eliceiri et al. 2012). Moreover, the first commercial

light-sheet microscopes have become available

recently.

A key challenge in light-sheet microscopy as well

as any other light-based microscopy technique is the
limited physical penetration depth of light at physio-

logical wavelengths in biological tissues. In addition,

optical aberrations and the increase in light sheet

thickness as a result of light scattering can lead to

substantial variation of the point spread function

(PSF) across the specimen. However, the core

design principles of light-sheet microscopy can be

extended in multiple ways to effectively address
these issues. Combining light-sheet microscopy with

multi-photon excitation substantially improves sample

penetration and physical coverage of the specimen

(Palero et al. 2010; Truong et al. 2011; Tomer et al.

2012). In sequential multiview imaging, multiple com-

plementary views of the specimen are recorded along

different directions to increase physical coverage of

the specimen (Huisken et al. 2004; Swoger et al.

2007; Keller et al. 2008, 2010; Preibisch et al. 2010).

This latter approach, however, introduces a trade-off

between physical coverage and imaging speed and

disrupts the spatio-temporal continuity of the record-

ing when imaging fast dynamic processes. In con-

trast, light-sheet microscopes designed with multiple

detection and illumination arms enable multiview

imaging without the need for sample rotation and
without a reduction of temporal sampling (Tomer

et al. 2012; Krzic et al. 2012). By combing such opti-

cal multi-lens designs with two-photon excitation the

truly simultaneous acquisition of four complementary

views of the specimen can be realized, providing

close to optimal physical coverage even for large

non-transparent specimens (Tomer et al. 2012).

Finally, the axial extent of the point-spread-function
can be significantly reduced by using Bessel beam

illumination in combination with structured illumination

or multi-photon excitation (Planchon et al. 2011; Gao

et al. 2012).

All of these recent developments lead to comple-

mentary improvements in the quality of the data

recorded with light-sheet microscopy. The SiMView

light-sheet microscopy implementation introduced
above provides imaging capabilities indispensable for

cell lineage reconstructions: Figure 3 shows a SiMView

light-sheet microscopy dataset of Drosophila embry-

onic development recorded at a rate of 175 million

voxels per second (Tomer et al. 2012). In these types

of experiments, 3D image stacks of the entire embryo
are acquired simultaneously from four different direc-

tions every 30 s, generating several gigabytes of image

data per time point over a period of approximately

20 h. Over the course of a single experiment, several

terabytes of image data are recorded, which provide

detailed information on the cellular dynamics of tens of

thousands of cells in the developing embryo. Figure 4

shows a manual proof-of-principle reconstruction of
several neuroblast and epidermoblast cell lineages

from such a SiMView recording. Scaling these types of

analyses (McMahon et al. 2008; Swoger et al. 2011;

Tomer et al. 2012) to the whole-embryo level, that is,

realizing the goal of complete cell lineage reconstruc-

tions for entire complex multi-cellular organisms, will

rely critically on the development of new automated

computational approaches with extremely low error
rates.

Computational approaches to cell lineage
reconstruction

Generally, three main computational tasks are involved

in cell lineage reconstructions: image pre-processing,

cell segmentation and cell tracking (Fig. 1). Image pre-
processing refers to any image processing task

required to improve the SNR, image contrast or reso-

lution of the recordings to the extent necessary to

facilitate the other two main steps. Typical pre-pro-

cessing steps are image registration to fuse multiview

datasets (Preibisch et al. 2010), deconvolution (Temer-

inac-Ott et al. 2012; Tomer et al. 2012) and filtering

(Perona & Malik 1990). Segmentation refers to any
partitioning or grouping of the voxels in each 3D vol-

ume based on whether they belong to the same cell

or not. Tracking refers to any partitioning or grouping

of the voxels between two consecutive volumes in

time based on whether they belong to the same cell or

not. Thus, segmentation returns image clusters in

space, whereas tracking returns image clusters in

time. Once a complete cell lineage reconstruction has
been obtained, the recorded terabytes of image infor-

mation can be synthesized very efficiently using a tree

structure as shown in Figure 4. Every node in the tree

corresponds to a cell and contains information

extracted from the image such as size, position, move-

ment speed, gene expression levels, etc.

Both segmentation and tracking are long-standing

key problems in image processing, computer vision
and engineering research fields (Stone et al. 1999;

Russ 2011), and it is thus not feasible to provide a

comprehensive review of all approaches presented

through decades of research in the following sections.

We will therefore primarily focus on cell tracking
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approaches tested in the context of cell lineage

reconstructions using light microscopy. We refer the

reader to (Khairy & Keller 2011) for a detailed review

on image pre-processing and segmentation

approaches for light-sheet microscopy datasets.

Finally, it should be noted that, although segmentation
and tracking are traditionally seen as separate prob-

lems, both tasks can be interleaved, since information

from an improved segmentation will simplify tracking

and vice versa (Kausler et al. 2012).

Cell tracking

As discussed in the previous section, advanced light-

sheet microscopes provide exceptionally good perfor-

mance (high spatio-temporal resolution, high SNR,

good physical coverage, etc.) for the purpose of sys-

tematic cell lineage reconstructions in complex multi-

cellular organisms. Nevertheless, many challenges

must be addressed to achieve faithful cell tracking.

First, using typical fluorescent marker strategies
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Fig. 3. Segmentation and cell tracking in the early Drosophila embryo. (a) Quantitative reconstruction of nuclei dynamics in the syncytial

blastoderm. Global nuclei tracking in the entire Drosophila syncytial blastoderm. Raw image data from light-sheet microscopy was

superimposed with automated tracking results using sequential Gaussian mixture model approach. Images show snapshots before the

12th mitotic wave and after the 13th mitotic wave (using a random color scheme in the first time point), which is propagated to daughter

nuclei using tracking information. (b) Enlarged view of a reconstructed embryo in panel (a) with nuclei tracking information (left) and mor-

phological nuclei segmentation (right). (c) SiMView recording of a histone-labeled Drosophila embryo superimposed with manually recon-

structed lineages of three neuroblasts and one epidermoblast for 120–353 min after fertilization (time points 0–400 min); track color

encodes time. (d) Enlarged view of tracks highlighted in (c). Green spheres show cell locations at time point 400. Asterisks mark six gan-

glion mother cells produced in two rounds of neuroblast division. NB, neuroblast; EB, epidermoblast. Scale-bars: 50 lm (a), 10 lm (b),

30 lm (c,d). Credits: Figures reprinted from Tomer et al. (2012), Copyright (2012), with permission from Macmillan Publishers Ltd.
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Fig. 4. Reconstructing neuroblast and epidermoblast lineages in the Drosophila embryo. (a) Raw optical slices from SiMView recording

for key events in the lineage reconstructions visualized in Figure 3c. Optical slices indicate blastoderm origins, delamination, first cell divi-

sion and second cell division for three neuroblasts, as well as blastoderm origin and first cell division for one epidermoblast. Yellow

arrows indicate the locations of the nuclei of the tracked cells. The appearance of stripes in the raw data arises from the column gain

variability typically encountered in first generation sCMOS cameras (such as the Andor Neo detector used in this recording). The SiM-

View processing pipeline contains a module for measuring column gain factors and correcting these stripes. (b) Lineage trees for the

neuroblast/epidermoblast lineage reconstructions visualized in Figure 3c (1st div. = first division, 2nd div. = second division). Four blas-

toderm cells and their respective daughter cells were manually tracked from time point 0 to 400 (120–353 min post fertilization, 35 s

temporal resolution), using Imaris (Bitplane) and ImageJ (http://rsbweb.nih.gov/ij/). Tracks start in the blastoderm (time point 0). The neu-

roblasts delaminate between time points 227 and 251, and subsequently produce ganglion mother cells in two division cycles (first cycle

between time points 310 and 332, second cycle between time points 368 and 390). The epidermoblast remains in the outer cell layer

and divides once at time point 313. Manual tracking was performed until time point 400 for all cells. Scale-bar: 10 lm (a). Credits: Figure

reprinted from Tomer et al. (2012), Copyright (2012), with permission from Macmillan Publishers Ltd.

ª 2013 The Authors

Development, Growth & Differentiation ª 2013 Japanese Society of Developmental Biologists

6 F. Amat and P. J. Keller



involving ubiquitously-expressed labels with nuclear or
membrane localization, most of the tens of thousands

of nuclei/cells in the specimen look very much alike.

Each nucleus or cell occupies only a small number of

voxels in the volume and they are typically very close

to each other, especially in advanced developmental

stages. As an analogy, imagine following tens of thou-

sands of cars of the same exact model and color in a

traffic jam. Separating them from one another at each
time point and keeping track of the correct identity of

each vehicle over time proves challenging, owing to

the lack of visual cues. The closer the objects are to

each other, the more challenging the problem

becomes. Second, cells usually divide at different time

points, which greatly increases the number of possible

linking hypotheses that need to be considered and

leads to a non-constant number of tracking targets
over time (Fig. 5). In a temporally well-sampled data-

set, cell divisions are typically rare events. This compli-

cates their systematic detection owing to the risk of

introducing false positives. At the same time, however,

the correct identification of divisions is the single most

important step needed to correctly reconstruct com-

plete cell lineages. Third, it is important to keep in

mind the requirement of scalability of the computa-
tional approaches, since typically on the order of tens

of thousands of objects need to be tracked over thou-

sands of time points. Finally, compared to other track-

ing applications, considerably higher accuracy is

required to achieve a satisfactory result, since any sin-

gle tracking mistake will affect an entire branch of the

cell lineage tree. For example, even with an accuracy

of 99.9% in linking nuclei between consecutive time
points (and thus a random error rate of only 0.1%),

10% of all cell lineages are affected by a tracking mis-

take after only 100 time points, which corresponds to

<1 h of development in a typical Drosophila SiMView

recording. None of the approaches presented in the

following paragraphs are close to this level of accuracy
and the problem is thus still effectively unsolved. How-

ever, the advances discussed here indicate that, in

coming years, a complete reconstruction of develop-

ment will be within reach for several key biological

model organisms.

Contour evolution methods

Nuclei tracking algorithms can be divided into the fol-

lowing two categories: contour evolution and data

association (Fig. 6). Contour evolution methods

assume a contour (or segmentation) is available for

each nucleus at the initial time point. If temporal reso-

lution is high enough with respect to the time scales

involved in the cellular dynamics, those initial contours

can be used as an initial segmentation for the next
time point (Fig. 6). The correct contours for the current

time point are then obtained by minimizing an energy

function. Once the solution is found for time t, the pro-

cedure is repeated sequentially for time t + 1. Two key

advantages of such methods are that they perform

segmentation and tracking simultaneously and can

also be applied to membrane labels. However, suffi-

ciently high temporal sampling is a key prerequisite. As
a rule of thumb, nucleus displacements between con-

secutive time points should be less than the nucleus

diameter to guarantee spatial overlap. This condition

depends on many factors and the required time inter-

val can range, for example, from 30 s in early Dro-

sophila embryogenesis (Tomer et al. 2012) to several

minutes in mouse embryonic development (Nowots-

chin et al. 2010).

Non-parametric contour evolution

Within the contour evolution methods, two main sub-

categories can be distinguished: non-parametric and
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parametric methods. The first category encompasses

classic image processing methods such as level-sets

and active contours (Sethian 1999; Mosaliganti et al.
2009; Delgado-Gonzalo et al. 2012). Briefly, the con-

tour of each object is described as a set of boundary

voxels without any specific shape. The boundary is

found by minimizing an energy function that balances

shape constraints, such as average curvature, with

image constraints, such as absolute intensity or

intensity gradients. Li et al. presented work on cell

lineage reconstruction from two-dimensional (2D)

images of stem cells (Li et al. 2008) using phase con-

trast time-lapse microscopy data in different cell popu-
lations with different densities (from 100 to 5000 cells

per frame). They achieved on average 90% of pairwise

linkage accuracy between consecutive time points and

88% cell division detection accuracy, which translated

to a fraction of 68% correct lineages. The authors also

developed fast algorithms in order to be able to pro-

cess each frame with thousands of cells in under a

(a)
Solution Prediction Observation

(b)

(c)

(d)

Update

Time t+1Time t

Fig. 6. Tracking algorithms. Illustration of different tracking algorithms. Rows correspond to different algorithms, columns show common

conceptual steps. Images show a sub-region of the recording from Figure 1c. (a) Non-parametric contour evolution method. Each

nucleus is segmented using a set of points defining a closed contour. The contour at time t + 1 is predicted based on the solution at

time t and a cell motion model (second column). Based on the image gradient, each of the points of the contour is then pulled to an

edge (third column, yellow arrows). Thereby, the prediction is updated to properly fit the nucleus at time t + 1. This scheme is sequen-

tially performed over consecutive time points to track all objects. (b) Parametric contour evolution method. The same principles as in (a)

apply. The only difference is that the contour is defined by a parametric shape (in this case an ellipsoid), which constrains the possible

set of contours. (c) Kalman filter. The position of each nucleus is defined by a centroid (mean, orange cross) and a measure of the

uncertainty of its location (covariance, red gradient ellipsoid). The measure of uncertainty is a key difference with respect to methods in

(a) and (b). The mean and covariance define a normal distribution that needs to be updated for every time point. As in (a) and (b), the

position at time t + 1 is predicted based on the solution at time t using a cell motion model. This prediction is compared to the likelihood

that a nucleus is located at a certain point based on image features (third column, pink gradient ellipsoid), in order to obtain the final

solution (fourth column, red gradient ellipsoid). (d) Particle filter. This is a generalization of the Kalman filter to extend the method beyond

normality assumptions (process cannot be modeled just with a mean and covariance). A set of particles (orange crosses) is associated

with each nucleus. The weighting of these particles (cross size) indicates how likely they are to represent the center of the nucleus. Each

of the particle positions is updated as in (c). Then, centroid and uncertainty are updated using a weighted histogram of all particles.

Scale-bars: 5 lm (a–d).
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minute. One of the main advantages of non-parametric
approaches is that cell divisions are directly integrated

into the framework, since curves or surfaces are

allowed to merge and split if the image content seems

to indicate such geometrical arrangements. Unfortu-

nately, when objects are too densely packed, they

tend to merge too much and additional heuristics are

required to correct this bias (Li et al. 2008). Another

potential drawback of this sequential approach is that
errors can accumulate over time, since time point t is

used as an initialization for time point t + 1. For this

reason, most of the related computational approaches

include some mechanism that attempts to correct

obvious mistakes before analyzing the next time point.

Parametric contour evolution

As the name indicates, parametric approaches define

the surface (or contour) of each object explicitly using

a set of parameters. Since nuclei have a blob-like

shape, an ellipsoid (nine parameters in 3D) is a good

compromise between shape information and degrees

of freedom (Tomer et al. 2012). In the case of mem-

brane markers, where shapes can be much more

irregular, spherical harmonics can be used to parame-
terize irregular closed surfaces with a few dozen

parameters (Khairy et al. 2008). The advantage of this

family of approaches versus non-parametric ones is

that it is typically easier to find the optimal set of val-

ues to fit each shape to an object in the image. Unfor-

tunately, it is considerably harder to handle topological

changes (such as cell divisions), since the framework

does not directly allow changing the number of
objects from time point to time point. We previously

presented a method that models each time point as a

mixture of Gaussians (Tomer et al. 2012), that is, each

nucleus in the volume is an ellipsoid, and the maxi-

mum likelihood solution is found by variational meth-

ods (Bishop 2007). In order to handle cell divisions, a

machine learning classifier based on image features

was used to detect when a single Gaussian volume
contained multiple nuclei. In that case, the Gaussian

was split into two ellipsoids to account for both

daughter cells. The method was tested in early stages

of Drosophila embryogenesis to track over 3000 cells

for 140 time points (Fig. 3). The reported pairwise link-

age accuracy between consecutive time points was

94% and the cell division detection accuracy was also

94%, which provided approximately 70% of correct
lineages through two cycles of mitotic waves. The

algorithm was implemented on a general purpose

graphics processing unit (GPGPU), allowing 100-fold

speed up and the possibility of tracking and segment-
ing more than 6000 nuclei in under a minute. As is

the case with non-parametric methods, individual

Gaussians tend to encompass multiple nuclei when

these are too close to each other, owing to the effec-

tively missing intensity separation between the nuclei

in such cases.

Parametric contour evolution approaches can also be

seen as a subset of state-space models. Classical track-
ing approaches such as Kalman filters (Kalman 1960)

and particle filters (Doucet et al. 2010) fall into this cate-

gory. In the case of nuclei labels, the state can include

variables such as position, speed, intensity, cell phase,

etc. The main idea is to define a set of values that

describe a state for each existing nucleus at a given time

point and recursively update the state for each time point

based on the previous estimate (Markovian assumption).
The algorithm proceeds in two steps: prediction and

update. The prediction step tries to guess where the

object will be in the next time point based on a motion

model supplied by the user. The update step adjusts the

guessed state from the prediction based on the

observed image data in the new time point. However, in

general, the update and prediction steps do not have a

closed analytical form (the Kalman filter is an exception)
and computationally expensive probabilistic methods

have to be employed to find a solution. Lack of computa-

tional scalability to thousands of objects has been one of

the main reasons why these methods have not been

applied to cell lineage reconstructions yet, since heuris-

tics or restrictive independence hypotheses between

objects are required in order to avoid exponentially large

global state spaces. Another reason is the fact that cellu-
lar motion models in complex multicellular organisms are

hard to define in mathematical terms and can lead to

guesses in the prediction step too remote from the true

state, effectively making the update lose the object. Gen-

erally, Interacting Multiple Models (IMM) are used in order

to try to model cellular dynamics without increasing

complexity. Briefly, a set of possible motion models are

described, and the algorithm then switches between
these models according to a set of transition probabili-

ties and observations at different time points. However, if

switches between dynamics occur too fast (such as dur-

ing mitosis), the algorithm might lack behind and the pre-

diction step might not be sufficiently accurate. Meijering

et al. (2012) and Smal et al. (2008) proved the power of

these methods in particle tracking for fluorescent

microscopy, especially in low SNR environments, since
models can be very flexible and can easily incorporate

a priori knowledge about a particular dataset and the

noise characteristics in the data.
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Data association

Tracking methods of the second class, which we here

refer to as data association, approach the tracking

problem from a combinatorial perspective and they do

not integrate segmentation and tracking in a single

step as contour evolution methods do. Given a set of

objects at time t (obtained by some segmentation

method) and a set of objects at time t + 1, these
methods try to find the best possible match between

the two sets. Thus, they only solve the linkage problem

between time points. Figure 5 illustrates the typical

hypotheses considered in this scenario for each object

at time t: displacement, division, death, birth and

merging or splitting due to errors in the segmentation.

The total number of hypotheses to consider for each

object is large and one has to be careful in designing
the algorithm to avoid exponential complexity growth

of the combinatorics, considering that thousands of

objects need to be matched. A simple first step

towards avoiding this effect is to limit the number of

possible matches per object. Since nuclei have a max-

imum velocity and the temporal resolution of the data

is known, a sphere can be drawn around each cell

defining the maximum displacement. Any object at
time t + 1 outside this sphere will not be considered

for matching.

The program StarryNite represents one of the first

successful computational attempts in this area, recon-

structing Caenorhabditis elegans cell lineages up to

the 350-cell stage (Bao et al. 2006). The authors

matched objects using spatial nearest neighbors and

some ad hoc rules to handle cell divisions, such as
customized shape and intensity descriptors during

mitotic events. The approach is very fast and success-

ful during the initial stages, where linkage accuracy

higher than 99% is achieved up to the 194-cell stage.

However, the accuracy of this approach decreases

rapidly for later stages when cell density increases,

dropping to 97% at the 350-cell stage. Recently, the

open-source software NucleiTracker4D by Giurumescu
et al. (2012) increased the accuracy to >99% at the

350-cell stage by combining automatic tracking with a

user-friendly Graphical User Interface (GUI), which

allows curating �4,000 nuclei tracking linkages per

day. Thus, a complete accurate C. elegans lineage

reconstruction can be obtained in three weeks.

The idea of nearest neighbor and shape descriptors

can be formalized and extended using well-established
graph-matching algorithms and convex optimization

techniques. Bise et al. (2011) and Kausler et al. (2012)

presented work using this formalism. The main idea is

sketched schematically in Figure 5. Briefly, a cost f is

assigned to each possible hypothesis for each object.

Then, the assignment that minimizes the added cost
of all selected hypotheses needs to be found while

ensuring compatibility of these hypotheses. For exam-

ple, a cell cannot die and divide at the same time, so

only one of these hypotheses can be selected at any

given time. The advantage of these methods is that

neighboring objects share hypotheses, and decisions

made in one object affect the set of possible decisions

made in a neighboring object. Thus, these algorithms
effectively use spatial contextual information to make

linking decisions. Another advantage is that they can

be formulated as convex linear integer problems,

which have been studied for decades in the optimiza-

tion literature (Schrijver 1998) and freely available effi-

cient solvers exist for academic institutions (such as

the ILOG CPLEX Optimization Studio, IBM). Kausler

et al. (2012) used this framework in early Drosophila

stages and tuned the model to tolerate a large number

of false detections due to autofluorescence. They

tracked approximately 256 cells over 40 time points

that comprised two mitotic waves, achieving 96%

accuracy in tracking and 92% accuracy in cell division

detection. The total run time was on the order of

minutes.

Learning the best match

Aside from the list of hypotheses, one of the key con-

siderations in graph-matching algorithms is the defini-

tion of costs f, since these effectively determine the

optimal solution. However, the optimal solution in the

model will not agree with the true solution unless the

costs are set appropriately. Many studies manually
define and tune the costs based on observations of

the person analyzing the data (Bao et al. 2006; Jaq-

aman et al. 2008). The most common choice is some

type of weighted average between cell displacement,

shape descriptors and/or expression levels. If temporal

sampling is high enough, displacement is certainly the

most useful feature. For more complex scenes, Lou

and Hamprecht presented a machine learning
approach in order to learn the optimal cost values

based on annotated data (Lou & Hamprecht 2011).

The idea is to define a cost as a weighted linear com-

bination of all possible features and to use a machine

learning algorithm similar to support vector machines

to calculate the optimal weight for each feature. As

with all machine learning techniques, the caveat is that

the training set has to be representative of all types of
dynamics present in the data. This task can demand a

significant effort in 3D+t datasets of complex multicel-

lular organisms. Moreover, when exploring the data

not all the dynamics might be known a priori and the

training set might thus miss certain types of dynamics.
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Following similar concepts, Huh et al. (2011) and Liu
et al. (2012) presented a machine learning approach

specifically target at detecting mitotic events based on

temporal and image features. For example, when

nuclei divide, the chromatin becomes compacted and

fluorescence levels increase. Again, mitosis is typically

a rare event, which makes it hard to identify with high

confidence, but it is the most important event in the

context of cell lineage reconstructions. The authors
showed that the machine learning approach improved

cell division detection accuracy from 88 to 96% in 2D

phase contrast time-lapse microscopy datasets of

stem cells.

Global tracking: beyond pairwise matching

Up to this point, we discussed approaches to match-
ing individual objects between two consecutive time

points. The same idea can be extended to the match-

ing of partial lineages (known as tracklets in the com-

puter science literature), where the end of one partial

lineage and the beginning of another partial lineage are

in neighboring time points (Jaqaman et al. 2008; Bise

et al. 2011). In this scenario, the matching cost f

applies between two partial lineages instead of two
objects. This adds temporal contextual information,

making the approach more global and robust. One of

the main advantages is that the number of tracklets is

much smaller than the number of cells. Thus, algo-

rithm complexity and run-time is lower. However,

defining the matching cost might be more complex

and it will require larger training datasets if using

machine learning approaches. Finally, the tracklets can
be constructed with any of the algorithms reviewed in

this manuscript for tracking in consecutive time points.

The user simply needs to set the parameters in a con-

servative manner, such that only obviously associated

nuclei are linked together. Bise et al. (2011) presented

work based on tracklets, improving their tracking

accuracy by 28% with respect to their previous work

in the same 2D stem cell phase-contrast microscopy
time-lapse datasets.

Visualization and editing

Complementing the automated computational

approaches to synthetizing image data into digital

reconstructions of cellular dynamics, visualization and

editing tools are required to study specific biological
processes and to validate and correct errors in the

computational results. A good approach to data visual-

ization is essential to interpreting the data and deter-

mining the main sources of errors in the computational

reconstruction, which in turn allows improving the

algorithms. Previous projects that required sorting
through large amounts of data, such as connectomics

datasets (Bock et al. 2011; Peng et al. 2011), cellular

atlases of model organisms (Long et al. 2009) or com-

plete cell lineage reconstructions, showed that inter-

acting with the data can often become the main

bottleneck. In other words, it is crucial to identify the

most suitable strategy to visualize terabytes of 3D+t
data, and to superimpose the computational results
with raw data such that important information does

not become occluded and results can be efficiently

edited and annotated.

Very efficient interfaces exist for 2D+t datasets, since
2D images can be easily stacked or displayed as mov-

ies without losing information. Cordeli (2004) and Win-

ter et al. (2011) provide freely available software tools

for effective visualization and editing of cell tracking
and cell lineage results. However, the extension to

3D+t is not straight-forward for two main reasons.

First, four-dimensional (4D) datasets are difficult to

visualize efficiently in a 3D world. Second, the amount

of data easily increases by several orders of magni-

tude, which pushes the performance limits even of the

most advanced computer workstations. The different

approaches described in the following paragraphs try
to solve these problems using different models (Fig. 7).

Megason developed an open source project, GoFig-

ure 2 (Megason 2009), which is specifically aimed at

the analysis of cell lineages using 3D time-lapse light

microscopy (Fig. 7j). The system uses a database to

store and retrieve all lineage information (contours,

shapes, volumes, linkages, etc.) and defines a hierar-

chy between objects in order to make data navigation
more user-friendly. 2D contours for each nucleus or

membrane are grouped into 3D meshes. These 3D

meshes are grouped into tracks and each set of tracks

is grouped into a lineage. Murray et al. (2006) devel-

oped an open-source software for 3D lineages named

AceTree, which has been used in combination with

StarryNite to build complete cell lineages for C. ele-

gans (Fig. 7i). The software Simi Biocell is also specifi-
cally designed for manual cell lineage reconstruction

using a graphical interface (Schnabel et al. 1997).

Vaa3D (Peng et al. 2010) (Fig. 7a) and Icy (Chau-

mont et al. 2012) (Fig. 7b–h) offer powerful visualiza-

tion engines for 3D+t datasets with plug-in frameworks

that allow users to develop their own tools for interact-

ing with the data. These engines also offer the option

of overlapping and interacting with 3D geometrical
objects that can be used to represent segmentation

data and tracking information between time points.

Both tools are open source and freely available for all

platforms. These approaches are less specialized since

their visualization engines can be used in the context
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of many different applications. Unfortunately, no plug-

ins exist yet to handle entire cell lineages. Tools such

as Imaris (Bitplane) (Fig. 3c) and Volocity (Perkin Elmer)

represent commercial alternatives. Both feature 3D+t

visualization engines and incorporate specific segmen-

tation and lineage editing tools in 3D that enable the

reconstruction of partial lineages in localized areas in

time and space (McMahon et al. 2008). However,

(c)

(a)

(b)

(j)(i)

(d) (e) (f)

(g) (h)

Fig. 7. Visualization and editing software. (a) Segmentation, annotation and quantitative measurement of gene expression levels in a

Caenorhabditis elegans confocal microscopy image with Vaa3D. (b–h) Displaying microscopy images, segmentation masks and tracking

information with the Icy visualization interface. (i) Editing cell lineages with AceTree. The panel shows the “Editing”, “Lineage” and “Add

One” windows. (j) Screenshot of manual segmentation and tracking tools in GoFigure 2. Credits: Panel (a) was reprinted from Peng et al.

(2010), Copyright (2010), with permission from Macmillan Publishers Ltd. Panels (b–h) were reprinted from Chaumont et al. (2012),

Copyright (2012), with permission from Macmillan Publishers Ltd. Panel (i) was reprinted from Murray et al. (2006), Copyright (2006), with

permission from Macmillan Publishers Ltd. Panel (j) was kindly provided by and used with permission from Sean Megason (Harvard

Medical School).
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these software packages tend to load all data into the
memory of the workstation at once, which substantially

limits the size of the dataset that can still be pro-

cessed.

Originating from the connectomics field, where mas-

sive amounts of microscopy data need to be seg-

mented and tracked, the open-source platform

Collaborative Annotation Toolkit for Massive Amounts

of Image Data (CATMAID) is designed to navigate,
share and collaboratively annotate very large image

datasets of biological specimens (Saalfeld et al. 2009).

The interface is inspired by Google Maps, which stores

data at different levels of resolution and loads only the

currently analyzed spatio-temporal region into memory,

such that datasets of unlimited size can be browsed

efficiently. Currently, CATMAID is being extended to

support time-lapse image data as well. One of its most
important features is the possibility of editing and visu-

alizing the same dataset by multiple users at the same

time through a browser connecting to a centralized

server that handles most of the computational load.

Sharing tools and ground truth annotations of key

datasets will be crucial for the future progress of the

entire field (Cardona & Tomancak 2012). At the same

time, it is important to note that almost each micros-
copy technique and each model system are accompa-

nied by their own specific challenges and optimal

results can only be obtained by customizing and

adapting approaches to the respective data.

Conclusions and future work

We discussed the main steps required for systematic
large-scale analyses of cellular dynamics and cell lin-

eages in complex multi-cellular organisms. The suc-

cess of such studies requires that each step in the

pipeline, from microscopy, via image processing to

data visualization, is carefully designed and optimized

for the respective task. As far as data collection is

concerned, light sheet-based microscopy is emerging

as the technology of choice for the problem at hand.
Low photo-toxicity and photo-damage, combined with

high recording speeds and high SNR, make light sheet

microscopes the ideal tool for in toto imaging of the

development of complex multicellular organisms at sin-

gle-cell resolution. Image data quality will improve even

further in the near future, as a result of ongoing efforts

towards the development of new strategies for

addressing optical aberrations in complex specimens,
improving optical penetration and increasing spatio-

temporal resolution with minimal energy load on the

specimen.

Several computational processing and visualization

tools designed specifically for the systematic recon-

struction and quantitative analysis of cell lineage infor-
mation are under development. High computational

accuracies can already be achieved with existing

methods in specific scenarios, and further efforts in

computational tool development are needed to finally

achieve the accuracy required to perform complete

lineage reconstructions for different model systems

and throughout their development. The most important

metric that has to be minimized is the proof-reading
time required to maximize the quality of reconstruc-

tions comprising millions of database entries. One of

the major challenges towards this goal is the efficient

handling and visualization of the vast amount of infor-

mation in the raw microscopy recordings and the

resulting computational reconstructions.

Considering the performance of state-of-the-art tech-

niques and the current trajectory of their development,
we believe that complete cell lineage reconstructions in

complex multicellular organisms, such as the fruit fly,

zebrafish and mouse, are within reach in coming years.

The availability of such data and technology will

open the door to fundamentally new approaches and

questions in quantitative developmental biology.
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Box 1

Summary of technical terms

Point spread function: mathematical description of the

image formed by a microscope when the observed object

can be considered a single point in space. The point spread

function (PSF) characterizes the resolution of the microscope.

Dwell time: time interval, over which the microscope detects

and integrates signal in the currently recorded volume element.

For example, in point-scanning confocal or two-photon

microscopy, the dwell time corresponds to the amount of time

the laser beam illuminates the focal volume corresponding to a

single pixel in the final image, before moving on to the next vol-

ume element. Longer dwell times lead to higher signal-to-noise

ratio, but also reduce speed and increase photo-damage.

Multi-photon fluorescence microscopy: optical micros-

copy technique that uses a non-linear fluorescence excitation

ª 2013 The Authors

Development, Growth & Differentiation ª 2013 Japanese Society of Developmental Biologists

Comprehensive cell lineaging with light-sheet microscopy 13



mode to achieve optical sectioning as well as deeper penetra-

tion into biological tissues.

Structured illumination: optical microscopy technique that

uses patterns of light for specimen illumination. Two common

types include incoherent structured illumination, which allows

enhancing image contrast in light-scattering samples, and

coherent structured illumination, which can be used to

increase resolution beyond the diffraction limit.

Bessel beam: beam with a central peak surrounded by a

concentric ring system. The central peak of the Bessel

beam is thinner than the Gaussian beam typically used in

light-sheet microscopy. When suppressing the contribution

of the Bessel beam’s ring system to the recorded image,

for example, by multi-photon excitation or structured illumi-

nation, a Bessel beam light-sheet microscope can achieve

higher axial resolution than a conventional light-sheet

microscope.

Image registration: computational task of aligning two or

more images with respect to each other by finding com-

mon features.

Deconvolution: computational task of correcting for the

blurring effect arising from the point spread function of the

microscope.

Segmentation: computational task of associating pixels in

the same image that represent the same object.

Tracking: computational task of associating pixels or

objects across different time points.

Parametric shape: mathematical description of the shape

of an object based on an analytical formulation with few

parameters. For example, an ellipsoid is a parametric

shape in 3D with nine parameters.

Non-parametric shape: mathematical description of the

shape of an object based on an exhaustive instead of an

analytical formulation. For example, enumerating all the vox-

els in an image that belong to an ellipsoid.

Contour: type of non-parametric shape for 2D closed

objects, such as cell membranes and nuclei. In this case,

the user enumerates all the points along the boundary of

the object in order to describe it.

Energy function: in image processing, this refers to a

mathematical equation to model the problem at hand. The

extremum (minimum or maximum) of this equation should

correspond to the correct biological solution.

Level sets: non-parametric shape representation. The

shape is described by all the points equal to a given value

(usually zero) of a mathematical function, which allows

great flexibility with respect to the type of shapes that can

be represented.

Active contours or snakes: computational technique for

fitting contours to images using an energy minimization

approach.

Image feature: any information that can be extracted from

the image and that can be represented by a single real

number in order to compare its value in different regions of

interest.

Machine learning classifier: mathematical function that,

based on some input such as image features, predicts the

correct output for a given task. For example, deciding if a

cell is dividing or not. The function has free parameters

that can be adjusted using examples given by the user

(training data), effectively learning to model the given task.

Support vector machine: specific type of machine learn-

ing classifier, which has become very popular due to its

ease of use and its applicability to a large spectrum of

problems.
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