

Supplementary Figure 1

Principles of persistence clustering with watershed

(a) One-dimensional example of a watershed. The function profile is segmented into three basins (red, blue, orange) by grouping
convex segments associated with the same local minima.

(b) Graphical representation using a dendrogram of how persistence-based clustering (PBC) can establish a hierarchical order for
merging the different regions generated by the watershed in (a). In order to merge two regions, the parameter τ needs to be set to a
value larger than the difference between the function value at the contact point between the two regions and the larger of the two local
minima. Every time two regions in the dendrogram are merged, the τ value for the next merge can change. Thus, the dendrogram
needs to be calculated sequentially. For example, the merging of region 1 (red) and region {2,3} (blue plus orange) is associated with a
τ equal to f1,{2,3} instead of f1,2, since region 3 has a lower local minimum than region 1.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 2

Graphical model for sequential Gaussian mixture models

Graphical model indicating conditional independence between all random variables present in our sequential Gaussian Mixture Model
(GMM). Xt represents the observed intensity values in the image stack at time point t. Zt represents the hidden variables that assign
each Xt to a mixture in the GMM. The grey box indicates that these two random variables are considered independent and identically
distributed (i.i.d.). µt and Ʌt represent the mean matrix and precision matrix, respectively, for each mixture. πt represents the
responsibility for each mixture. The sub-graph defined by variables Xt, Zt, µt, Ʌt and πt is the standard graphical model defining a GMM.
We incorporate binary variable St for each mixture to define the probability that a nucleus is dividing. Finally, we can unroll the model to
perform inference sequentially in time as a dynamic Bayesian network. Thus, values at time point t – 1 act as priors for time point t.

Nature Methods doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 3

Modeling of nuclei intensity profiles as Gaussian distributions

(a) Slices of an image stack in orthogonal planes xy (sliced orthogonally to detection axis) and xz (sliced parallel to detection axis)
passing through the center of a segmented nucleus in a Drosophila dataset recorded with SiMView microscopy.

(b) Gaussian fits (black lines) to the projected intensity levels (green dots) of the stack in (a) along each of three main axes (marginal
projections). The high accuracy of the fits in all three directions validates the assumption that nucleus intensity profiles can generally be
well approximated by a Gaussian Mixture Model.

(c,e,g,i) Same as in (a), but for image slices obtained from a zebrafish data set recorded with SiMView microscopy (c), a mouse data
set recorded with SiMView microscopy (e), a Drosophila data set recorded with a Carl Zeiss Lightsheet Z.1 light-sheet microscope (g)
and a zebrafish data set recorded with a Carl Zeiss LSM 710 confocal microscope (i).

(d,f,h,j) Same as in (b), but for the image data shown in (c) (for (d)), (e) (for (f)), (g) (for (h)) and (i) (for (j)).

Scale bars, 5 µm (xy slices), 10 µm (xz slices).

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 4

Precision-recall curve for background detection module

Precision-recall curve (blue line) for the background classifier trained on spatio-temporal features (Supplementary Note 2). The size of
the training set was 43,500 samples and the size of the test set was 29,000 samples. All samples were annotated using the CATMAID
interface discussed in section “Visualization and manual curation of lineaging results” in the main text. The machine learning classifier is
based on the RUSBoost implementation in Matlab with 600 classification trees as weak classifiers. Each tree is grown and then pruned
such that each leaf contains a minimum of 20 training samples. In order to avoid losing real nuclei, the threshold for detecting
trajectories with background objects (red line) should be set to a value higher than 0.6.

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 5

Parameter sensitivity analysis

Parameter sensitivity analysis for the two tunable parameters of the processing pipeline, the image background intensity threshold and
the PBC threshold τ for watershed agglomeration, with respect to Euclidean distance error metric (a,d), nearest neighbor (NN)
normalized Euclidean distance error metric (b,e) and linkage error metric (c,f). Please see Supplementary Note 3 for details on these
metrics.

Panels (a-c) show results for the Drosophila SiMViev dataset. In this scenario, the image background intensity threshold has a larger
impact on accuracy than τ, owing to the high signal-to-noise ratio (SNR) of the data set. However, sensitivity with respect to this
threshold is low enough to ensure close-to-optimal results for a wide range of parameters values.

Panels (d-f) show results for the zebrafish confocal dataset. In this scenario, τ has a larger impact on accuracy due to the lower SNR.
While the ranges of close-to optimal values for image background intensity are quite different in (a-c) and (d-f), the range of close-to-
optimal values for τ is almost identical. This observation is true for all datasets investigated in this study. Thus, for new datasets, we
generally recommend using τ values between 5 and 15.

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 6

Examples of segmentation and tracking errors

Orthogonal optical slices at different locations in the SiMView recording, each centered on a nucleus representing a different type of
error in the automated segmentation and tracking pipeline. The result of the automated segmentation is indicated using green outlines.

(a,b) Linkage errors due to large displacements of cell nuclei between consecutive time points. Magenta outlines indicate the respective
correct solutions.

(c) Under-segmentation along the optical detection axis, owing to low image contrast.

(d) Under-segmentation within the image plane, owing to proximity of cell nuclei.

(e) Over-segmentation owing to uneven staining of the nuclear fluorescent label. The algorithm interprets the image content as a cell
division.

(f) Over-segmentation owing to uneven staining of the nuclear fluorescent label, and subsequent error recovery. The algorithm recovers
from an error similar to the one shown in panel (e) by ending one of the two tracks and propagating the other one in time with the
correct segmentation solution. Thus, errors do not accumulate over time in the sequential propagation of the Gaussian mixture model.

Scale bar, 10 µm.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 7

Error analysis as a function of developmental stage, signal-to-noise ratio, cell density and imaging depth

Histograms displaying how different factors affect lineage reconstruction accuracy of the automated segmentation and tracking method
presented in this study. All histograms were extracted from n = 5,331 linkage annotations in the SiMView time-lapse recording of
Drosophila embryogenesis. The ranges of the plots span nearly the full physical limits of parameters measured in this data set, which
are as follows: the nuclei nearest neighbor distance ranges from 4 µm to 21 µm, the nuclei distance to the center of the embryo (with a
diameter of ~200 µm) ranges from 0 to 106 µm, centroid displacements range from 0 µm to 44 µm between consecutive time points,
and the 90

th
 percentile of the local image contrast is 33.

(a) The larger the distance between adjacent nuclei, the higher the linkage accuracy.

(b) The shorter the optical detection path length inside the specimen, the higher the image quality and the linkage accuracy.

(c) The quality of the cell lineage reconstruction is independent of the nucleus displacement between two time points, as long as this
displacement is not too large. This is the main assumption in our framework and for very large displacements the method breaks down
(note that the scale of the vertical axis is very different from the other plots). Optical flow techniques can extend this range substantially
and enable successful application of the automated segmentation and tracking framework also in the presence of larger displacements,
if necessary. However, such an extension was not required for the data examples presented in this study.

(d) The higher the local image contrast (ratio of nucleus brightness versus background level), the higher the linkage accuracy.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 8

Disagreement between annotators

Comparison of Euclidean distance accuracy between different annotators for time point 400 of the SiMView time-lapse recording of
zebrafish embryonic development (Supplementary Video 19).

(a) Histogram of Euclidean distances between centroid locations annotated by human annotator 1 (reference) and those obtained
automatically with our automated cell lineage reconstruction framework (Supplementary Table 2). The average centroid distance (i.e.
accuracy of the automated framework) is 1.29 µm (n = 734).

(b) Histogram of Euclidean distances between centroid locations annotated by human annotator 1 (reference) versus human annotator
2. Both annotators independently marked the centroid locations for the same set of cells, using the CATMAID interface and without
knowledge of the other user’s annotation. The average centroid distance (i.e. inter-user accuracy) is 0.89 µm (n = 200).

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 9

Spatiotemporal clustering of tracking and segmentation errors

Analysis of co-localization in space and time of all errors (4,982) found in the automated reconstruction of cell lineages described in Fig.
4. To obtain this histogram we constructed a graph where each error defines one node. A node is connected by an edge to another
node from the same time point if (and only if) this second node is one of the first node’s four nearest neighbors. Two nodes belonging to
different time points are connected by an edge if (and only if) they belong to the same lineage in the automatic reconstruction and are
less than two time points apart. The figure shows the histogram of sizes of the different connected components in the resulting graph.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 10

Image volume read time overhead in cell lineage reconstructions

Time required to read a single three-dimensional image stack for each of the data sets discussed in the main text. For each time point
of a time-lapse data set, the respective image stack is read twice: once for the initial hierarchical segmentation and once in the
sequential GMM tracking module. All image data were stored using lossless compression in three-dimensional JPEG2000 format using
libraries from the PICTools Medical software package. Read time increases quadratically with image size and was measured on a
processing workstation equipped with two Intel Xeon E5-2687W CPUs, six Seagate Savvio 10K.5 ST9900805SS hard disks combined
in a RAID-6 disk array and an Intel RMS25CB080 RAID module (Online Methods).

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 11

Cell lineage reconstructions in the early zebrafish embryo

Proof-of-principle automated reconstruction and manual curation of cell lineages in the early zebrafish embryo. The underlying
automated reconstructions are based on the data set shown in Supplementary Video 19 and are visualized in Supplementary Videos
20 and 21. The entire data set comprises 10.7 million data points (with one data point corresponding to the positions and dimensions of
a cell nucleus at one time point). Manual data curation of the automatically reconstructed cell tracks was performed at a rate of 1,019
data points per hour.

(a) Spinal cord cells were manually identified in the automated cell lineage reconstruction, based on their spatial location at time point
720 in the zebrafish recording shown in Supplementary Videos 19-21. Using the data curation and annotation interface provided as
Supplementary Software 2, the tracks of these cells were then curated backwards in time for the time interval 85-720 (10.6 hours of
live imaging data, recorded at 21.5°C). When encountering a cell division, the respective other daughter cell was followed forwards in
time and its track was fully curated as well. The panels in (a) visualize the resulting cell lineage reconstruction at three different time
points, with yellow spheres indicating cell positions at the given time point and colored lines indicating the tracking information up to the
respective time point.

(b) As in (a), but for a set of cells located in the anterior neural plate.

(c,d) Enlarged view of the boxed regions shown in (a) and (b) at time point 140, with annotation labels for the four spinal cord
precursors (c) and four anterior neural plate precursors (d).

(e) Cell lineage tree representation of the cell lineage reconstructions visualized in (a) an (b). In addition to the start and end points of
the reconstructed time interval, these trees include annotations of cell division time points. Each precursor divided at least once within
the 10.6-hour imaging interval.

SCP = Spinal cord precursor, NPP = Anterior neural plate precursor.

Scale bars, 100 µm (a,b), 20 µm (c).

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 12

Spatial maps of annotated neuroblasts

(a) Spatial map of the neuroblast array from our reconstruction of early Drosophila embryonic nervous system development at 4.4 h
AEL, shortly after neuroblast internalization, using a color code for the manual neuroblast type annotation. Neuroblast coordinates in
this map correspond to those shown in Fig. 5e and Supplementary Fig. 15. The manual annotation of neuroblast types was performed
on the basis of relative positional information within the stereotypic neuroblast array, as previously described.

(b) Spatial map of the neuroblast array at 5.0 h AEL, approximately half an hour after neuroblast internalization. The color code was
propagated from neuroblasts in panel (a) to the corresponding neuroblasts at this later time point, using the tracking information from
the curated cell lineage reconstruction shown in Supplementary Fig. 13. Neighbor relationships are largely preserved over this time
interval.

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 13

Cell lineage reconstruction of the early Drosophila embryonic nervous system

Cell lineage tree for all neuroblasts tracked in our reconstruction of early Drosophila embryonic nervous system development (Fig. 5,
Supplementary Videos 24-28). Green circles indicate lineage origins in the blastoderm, red circles indicate cell division events and
blue circles indicate the end time point of cell tracks for the respective neuroblasts or ganglion mother cells. All neuroblasts identified by
manual inspection are annotated at the end of the respective lineage branch.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 14

Neuroblast division angles

Local coordinate system used to analyze neuroblast division angles (ψ, η). The angles ψ, η define a spherical coordinate system. The
origin corresponds to the center of the ganglion mother cell. The north pole is defined by the normal vector to the surface of the embryo
at the point closest to the ganglion mother cell. The division angle η defines the deviation of the surface normal from the vector
connecting ganglion mother cell and neuroblast. The division angle ψ defines the orientation of the division axis relative to the anterior-
posterior and medio-lateral axes of the embryo. ψ = 0° corresponds to the direction along the germ band facing the anterior end of the
embryo, and ψ = 270° corresponds to a medial direction.

Nature Methods: doi:10.1038/nmeth.3036

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Figure 15

Morphodynamic measurements using neuroblast trajectories

(a) Overview of features of dynamic cell behavior measured for all neural precursors analyzed in the reconstruction of early Drosophila
embryonic nervous system development (Fig. 5, Supplementary Videos 24-28). This overview figure includes the four features shown
in the main text (Fig. 5e). Each feature is represented in the neuroblast array at 4.4 h AEL using an individual color code. These
features were used for the prediction of neuroblast cell types, shown in Fig. 6e,f.

(b) Overview of bilateral symmetry analysis for the features of dynamic cell behavior measured for all neural precursors analyzed in the
reconstruction of early Drosophila embryonic nervous system development. This overview figure includes the plot shown in the main
text (Fig. 6b). Neuroblasts to the left of the midline are represented by red lines, neuroblasts to the right of the midline by blue lines.
Continuity of the plots was achieved by using a Gaussian-weighted average along the midline to convert the discrete neuroblast data
points to a continuous graph (σ = 0.1 rad). The level of feature correlation between the left and right halves of the neuroblast array is
indicated in the form of an R

2
 score above each plot.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 1 | Cell division detection accuracy of the cell lineaging framework

Microscope Model
organism Time point Segmented

objects1

Estimated
number of

cell divisions

True
positives2,3

False positives
(correcting

under-segmentation)2

False positives
(background

objects)2

False
positives
(other)2,4

SiMView

Fruit fly
embryo

30 (3.2 h AEL) 5,664 18 0 11 4 3
80 (3.6 h AEL) 4,597 37 15 15 5 2

130 (4.0 h AEL) 5,593 25 5 15 1 4
180 (4.4 h AEL) 5,882 39 9 23 6 1
230 (4.8 h AEL) 6,799 53 16 24 8 5
280 (5.2 h AEL) 7,302 62 9 33 11 9

Zebrafish
embryo

100 (6.7 hpf) 9,519 20 12 6 0 2
200 (8.3 hpf) 11,823 16 8 7 0 1

300 (10.0 hpf) 13,765 26 15 10 0 1
400 (11.7 hpf) 16,086 45 20 21 0 4
500 (13.3 hpf) 18,255 46 15 31 0 0
600 (15.0 hpf) 19,499 53 15 34 0 4
700 (16.7 hpf) 19,397 53 9 29 0 15

LSM 710
30 (6.0 hpf) 2,982 22 6 4 0 12
60 (7.0 hpf) 3,374 32 10 12 0 10
90 (8.0 hpf) 3,347 22 5 10 0 7

1 This parameter also serves as an estimate of the number of cells imaged by the microscope at the respective time point.
2 These parameters and metrics are defined in Supplementary Note 3.
3 We also manually annotated all cell divisions in the time interval [100 101] of the SiMView zebrafish recording to estimate false

negatives. Out of 22 user-annotated divisions, 17 were correctly identified by the cell lineaging framework (77%). 4 out of the 5
false negative cases corresponded to divisions that were correctly identified by the GMM but then discarded by the spatio-temporal
context rules, as a result of parameter settings required for striking a good balance between false negatives and false positives.

4 This category generally refers to over-segmentation as a result of heterogeneous texture of the nucleus.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 2 | Performance overview of the cell lineaging framework

Microscope Model
organism Time point Segmented

objects1
Ground truth

samples
Processing

time (s)

Linkage
accuracy

(%)2

Euclidian
distance

(µm)2

Normalized
Euclidian

distance (%)2

SiMView

Fruit fly
embryo

30 (3.2 h AEL) 5,664 1,211 25.2 97.7ିଵ.ହା.ଽ 1.51ି.ହା.ହ 23.9ି.଼ା.଼
80 (3.6 h AEL) 4,597 1,718 21.2 95.4ିଵ.ଶାଵ.ଶ 1.44ି.଼ା.଼ 18.6ି.ଽାଵ.

130 (4.0 h AEL) 5,593 2,408 20.2 98.0ିଵ.ା. 1.50ି.ହା. 20.8ି.ା.
180 (4.4 h AEL) 5,882 2,008 21.8 97.2ିଵ.ଶା.ଽ 1.23ି.ହା.ହ 18.8ି.ା.଼
230 (4.8 h AEL) 6,799 2,041 23.0 98.2ିଵ.ା. 1.42ି.ହା.ହ 22.5ି.଼ା.଼
280 (5.2 h AEL) 7,302 1,436 22.9 97.1ିଵ.ାଵ.ଵ 1.45ି.ା. 21.9ି.ଽାଵ.

Zebrafish
embryo

100 (6.7 hpf) 9,519 1,375 29.7 99.3ିଵ.ା.ସ 1.53ି.ହା.ହ 11.3ି.ଷା.ସ
200 (8.3 hpf) 11,823 2,655 32.7 99.1ି.ା.ସ 1.92ି.ା.ଵଽ 14.0ି.ସା.ହ

300 (10.0 hpf) 13,765 2,416 36.5 99.2ି.ା.ସ 1.38ି.ସା.ହ 12.2ି.ସା.ହ
400 (11.7 hpf) 16,086 1,469 49.1 98.9ିଵ.ା.ହ 1.16ି.ହା.ହ 10.6ି.ହା.ହ
500 (13.3 hpf) 18,255 1,210 45.9 98.3ିଵ.ସା.଼ 1.27ି.ା.଼ 12.0ି.ା.଼
600 (15.0 hpf) 19,499 1,369 42.8 99.4ି.ଽା.ସ 1.21ି.ା. 11.2ି.ା.
700 (16.7 hpf) 19,397 1,246 46.9 98.4ିଵ.ଷା. 1.57ି.ା.଼ 14.4ି.ା.଼

Mouse
embryo

0 (t0 = E6.25) 886 715 9.8 91.3ିଷ.ସାଶ.ହ 3.38ି.ଵା.ଵ଼ 33.1ିଵ.ାଵ.ଽ
12 (t0 + 1.0 h) 959 740 9.0 88.9ିଷ.ାଶ.଼ 3.41ି.ଵ଼ା.ଶ 32.7ିଵ.ାଵ.଼
24 (t0 + 2.0 h) 1093 841 9.3 89.8ିଷ.ଷାଶ.ହ 3.21ି.ଵା.ଵ 31.3ିଵ.ାଵ.

Lightsheet
Z.1

Fruit fly
embryo

90 (3.0 h AEL) 3,784 1,330 11.2 96.8ିଵ.ାଵ.ଵ 1.68ି.ହା. 28.4ି.ଽାଵ.
140 (3.4 h AEL) 2,911 1,365 8.6 96.6ିଵ.ାଵ.ଵ 1.50ି.ା. 22.1ି.ଽା.ଽ
190 (3.8 h AEL) 3,499 1,744 9.5 94.7ିଵ.ାଵ.ଷ 1.51ି.ା. 24.1ି.ଽାଵ.
240 (4.3 h AEL) 4,308 1,998 12.9 96.2ିଵ.ସାଵ. 1.50ି.ହା. 25.8ି.ଽା.ଽ
290 (4.7 h AEL) 4,800 1,327 12.2 96.5ିଵ.ାଵ.ଵ 1.53ି.ଽା.ଵଵ 23.8ିଵ.ଵାଵ.ଶ
340 (5.1 h AEL) 5,200 1,594 14.1 98.0ିଵ.ଶା.଼ 1.45ି.ା.ଵଶ 23.2ିଵ.ାଵ.

LSM 710 Zebrafish
embryo

30 (6.0 hpf) 2,982 1,206 5.6 96.8ିଵ.ାଵ.ଵ 1.98ି.ଵଵା.ଵଶ 16.3ି.ଽାଵ.
60 (7.0 hpf) 3,374 1,219 5.2 95.2ିଶ.ାଵ.ସ 2.00ି.ଵା.ଵଶ 18.4ି.ଽାଵ.
90 (8.0 hpf) 3,347 1,202 3.9 94.2ିଶ.ଶାଵ. 2.33ି.ଵଷା.ଵହ 21.8ିଵ.ଵାଵ.ଶ

1 This parameter also serves as an estimate of the number of cells imaged by the microscope at the respective time point.
2 These metrics are defined in Supplementary Note 3. 95th and 5th percentile confidence intervals are provided as sub-/superscripts.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 3 | Segmentation accuracy of the cell lineaging framework

Microscope Model
organism Time point Segmented

objects1
Ground truth

samples
Max. nucleus
radius (µm)2

True
positives2

Over-
segmented

nuclei2

False
detections2

False
negatives2

SiMView

Zebrafish
embryo

100 (6.7 hpf) 9,519 685 4.325 683 0 0 2
101 (6.7 hpf) 9,560 690 4.331 690 0 0 2
200 (8.3 hpf) 11,823 1,332 4.016 1,332 1 0 26
201 (8.3 hpf) 11,857 1,323 4.016 1,323 1 0 24

300 (10.0 hpf) 13,765 1,207 3.890 1,207 2 0 21
301 (10.0 hpf) 13,811 1,209 3.883 1,209 3 0 16
400 (11.7 hpf) 16,086 734 3.801 734 1 0 5
401 (11.7 hpf) 16,125 735 3.808 735 1 0 6
500 (13.3 hpf) 18,255 605 3.780 605 0 0 13
501 (13.3 hpf) 18,307 605 3.780 605 1 0 13
600 (15.0 hpf) 19,499 683 3.815 683 0 0 10
601 (15.0 hpf) 19,475 686 3.822 686 0 0 11
700 (16.7 hpf) 19,397 623 3.883 623 1 0 21
701 (16.7 hpf) 19,361 623 3.890 623 1 0 17

LSM 710

30 (6.0 hpf) 2,982 603 4.340 603 0 0 32
31 (6.0 hpf) 2,980 603 4.327 603 1 0 24
60 (7.0 hpf) 3,374 612 4.184 612 1 0 37
61 (7.0 hpf) 3,378 607 4.184 607 0 0 38
90 (8.0 hpf) 3,347 601 4.104 601 1 0 42
91 (8.0 hpf) 3,327 601 4.094 601 4 0 50

1 This parameter also serves as an estimate of the number of cells imaged by the microscope at the respective time point.
2 These metrics are defined in Supplementary Note 3.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 4 | Comparative performance of cell lineaging methods for SiMView images of the Drosophila blastoderm

Method
Automatic

seed at
t0?1

Method
detects cell
divisions?

Time point Segmented
objects

Ground truth
samples

Processing
time (s)

Linkage
accuracy

(%)2

Euclidian
distance
(µm) 2

Normalized
Euclidian

distance (%)2

This study Yes Yes

90 (2.0 h AEL) 2,877 1,241 19.5 94.4ିଶ.ଵାଵ. 1.32ି.ଽା.ଵଵ 16.5ିଵ.ଵାଵ.ଷ
120 (2.2 h AEL) 3,916 1,435 14.4 84.2ିଷ.ାଶ. 4.12ି.ଵଷା.ଵସ 50.7ିଵ.ଶାଵ.ଷ
150 (2.4 h AEL) 5,899 1,224 15.8 96.5ିଵ.଼ାଵ.ଶ 0.86ି.ସା.ହ 16.0ି.ା.଼
180 (2.6 h AEL) 6,627 1,202 13.9 95.2ିଶ.ାଵ.ସ 1.29ି.ହା. 23.2ି.ଽା.ଽ

Kausler
et al. 2012

(CGT)4
Yes Yes

90 (2.0 h AEL) 2,824 1,241 282.8 84.7ିଷ.ାଶ. 1.56ି.ା.଼ 21.7ିଵ.ାଵ.ଶ
120 (2.2 h AEL) 3,516 1,435 292.1 73.5ିଷ.ହାଷ.ଶ 4.48ି.ଵସା.ଵସ 57.2ିଵ.ସାଵ.ସ
150 (2.4 h AEL) 3,516 1,224 292.1 77.3ିଷ.ହାଷ.ଵ 3.47ି.ଵା.ଵଵ 48.3ିଵ.ସାଵ.ସ
180 (2.6 h AEL) 7,202 1,202 328.5 73.7ିଷ.ାଷ.ସ 2.44ି.ଵଵା.ଵଷ 45.9ିଵ.ାଵ.

Giurumescu
et al. 2012
(NT4D)5

No No

90 (2.0 h AEL) 2,373 1,241 2.9 85.3ିଷ.ାଶ. 4.15ି.ଵସା.ଵହ 43.9ିଵ.ହାଵ.ହ
120 (2.2 h AEL) 3,932 1,435 8.1 83.5ିଷ.ାଶ. 4.29ି.ଵଷା.ଵସ 54.2ିଵ.ଶାଵ.ଷ
150 (2.4 h AEL) 3,858 1,224 7.8 89.4ିଶ.ାଶ.ଶ 3.13ି.ଵଵା.ଵଵ 49.1ିଵ.ାଵ.
180 (2.6 h AEL) 6,871 1,202 21.8 93.8ିଶ.ଶାଵ. 1.75ି.ହା.ହ 34.6ିଵ.ାଵ.ଵ

Tomer
et al. 2012
(NM12)6

Yes Yes

90 (2.0 h AEL) 2,755 1,241 18.4 95.6ିଵ.ଷା. 1.00ି.ହା. 13.0ି.ା.
120 (2.2 h AEL) 3,596 1,435 19.3 85.7ିଶ.ଽାଶ.ହ 4.24ି.ଵଷା.ଵସ 52.3ିଵ.ଷାଵ.ଷ
150 (2.4 h AEL) 5,635 1,224 20.6 97.1ିଵ.ାଵ.ଵ 1.03ି.ା.଼ 18.6ି.଼ା.ଽ
180 (2.6 h AEL) 7,078 1,202 29.2 94.8ିଶ.ଵାଵ.ହ 1.12ି.ସା.ସ 20.7ି.ା.

1 If “No”, manual segmentation is required for the first time point (t0) to initialize the algorithm.
2 These metrics are defined in Supplementary Note 3. 95th and 5th percentile confidence intervals are provided as sub-/superscripts.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 5 | Comparative performance of cell lineaging methods for SiMView images of Drosophila germ band
extension

Method
Automatic

seed at
t0?1

Method
detects cell
divisions?

Time point Segmented
objects

Ground truth
samples

Processing
time (s)

Linkage
accuracy

(%)2

Euclidian
distance
(µm) 2

Normalized
Euclidian

distance (%)2

This study Yes Yes

30 (3.2 h AEL) 5,664 1,211 25.2 97.7ିଵ.ହା.ଽ 1.51ି.ହା.ହ 23.9ି.଼ା.଼
80 (3.6 h AEL) 4,597 1,718 21.2 95.4ିଵ.ାଵ.ଶ 1.44ି.଼ା.଼ 18.6ି.ଽାଵ.

130 (4.0 h AEL) 5,593 2,408 20.2 98.0ିଵ.ା. 1.50ି.ହା. 20.8ି.ା.
180 (4.4 h AEL) 5,882 2,008 21.8 97.2ିଵ.ଶା.ଽ 1.23ି.ହା.ହ 18.8ି.ା.଼
230 (4.8 h AEL) 6,799 2,041 23.0 98.2ିଵ.ା. 1.42ି.ହା.ହ 22.5ି.଼ା.଼
280 (5.2 h AEL) 7,302 1,436 23.0 97.1ିଵ.ାଵ.ଵ 1.45ି.ା. 21.9ି.ଽାଵ.

Kausler
et al. 2012

(CGT)
Yes Yes

30 (3.2 h AEL) 7,334 1,211 489.8 67.5ିଷ.଼ାଷ. 2.29ି.଼ା.ଽ 41.0ିଵ.ଷାଵ.ସ
80 (3.6 h AEL) 6,868 1,718 485.5 51.0ିଷ.ଷାଷ.ଷ 2.16ି.ଵା.ଵଶ 41.3ିଵ.ଷାଵ.ଷ

130 (4.0 h AEL) 7,092 2,408 486.9 54.3ିଶ.଼ାଶ.଼ 2.44ି.ଵା.ଵଵ 44.4ିଵ.ଵାଵ.ଵ
180 (4.4 h AEL) 7,436 2,008 490.5 55.2ିଷ.ଵାଷ. 2.07ି.ା.଼ 43.7ିଵ.ଶାଵ.ଶ
230 (4.8 h AEL) 7,436 2,041 499.0 44.1ିଷ.ାଷ.ଵ 4.29ି.ଵା.ଵଵ 76.3ିଵ.ଵାଵ.ଵ
280 (5.2 h AEL) 7,277 1,436 484.8 54.0ିଷ.ଽାଷ.ଽ 2.67ି.ଵହା.ଵ 46.4ିଵ.ହାଵ.

Giurumescu
et al. 2012

(NT4D)
No No

30 (3.2 h AEL) 5,814 1,211 19.6 86.0ିଷ.ାଶ.ହ 3.77ି.ଵଵା.ଵଵ 61.4ିଵ.ହାଵ.
80 (3.6 h AEL) 4,561 1,718 20.8 79.6ିଶ.଼ାଶ. 4.48ି.ଵଷା.ଵସ 64.3ିଵ.ସାଵ.ସ

130 (4.0 h AEL) 5,652 2,408 18.4 84.1ିଶ.ଶାଶ. 4.06ି.ଽା.ଽ 61.3ିଵ.ଶାଵ.ଵ
180 (4.4 h AEL) 5,716 2,008 18.9 86.2ିଶ.ଷାଶ. 3.45ି.ଽା.ଽ 55.4ିଵ.ଷାଵ.ଷ
230 (4.8 h AEL) 6,686 2,041 23.5 89.6ିଶ.ାଵ. 3.34ି.଼ା.ଽ 54.8ିଵ.ଶାଵ.ଶ
280 (5.2 h AEL) 7,318 1,436 26.4 92.0ିଶ.ସାଵ.ଽ 3.20ି.ଵା.ଵଵ 51.6ିଵ.ହାଵ.

Tomer
et al. 2012
(NM12)

Yes Yes

30 (3.2 h AEL) 8,721 1,211 90.8 88.2ିଶ.଼ାଶ.ଷ 1.61ି.ା.଼ 32.3ି.ଽାଵ.
80 (3.6 h AEL) 9,139 1,718 79.9 74.2ିଷ.ାଶ.଼ 1.65ି.ଵଵା.ଵସ 34.0ିଵ.ଵାଵ.ଶ

130 (4.0 h AEL) 6,285 2,408 39.7 89.1ିଵ.ଽାଵ. 1.90ି.ଵଵା.ଵଷ 30.0ିଵ.ାଵ.
180 (4.4 h AEL) 6,094 2,008 51.9 86.8ିଶ.ଶାଶ. 1.72ି.ଵଵା.ଵଷ 29.2ି.ଽାଵ.
230 (4.8 h AEL) 7,126 2,041 52.1 88.4ିଶ.ଵାଵ.଼ 1.44ି.଼ା.ଵ 26.9ି.ଽା.ଽ
280 (5.2 h AEL) 7,842 1,436 54.5 88.5ିଶ.ାଶ.ଷ 2.14ି.ଵଽା.ଶଷ 30.5ିଵ.ଶାଵ.ଷ

1 If “No”, manual segmentation is required for the first time point (t0) to initialize the algorithm.
2 These metrics are defined in Supplementary Note 3. 95th and 5th percentile confidence intervals are provided as sub-/superscripts.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Table 6 | Comparative performance of cell lineaging methods for confocal images of early zebrafish embryogenesis

Method
Automatic

seed at
t0?1

Method
detects cell
divisions?

Time point Segmented
objects

Ground truth
samples

Processing
time (s)

Linkage
accuracy

(%)2

Euclidian
distance
(µm) 2

Normalized
Euclidian

distance (%)2

This study Yes Yes
30 (6.0 hpf) 2,982 1,206 5.4 96.8ିଵ.ାଵ.ଵ 1.98ି.ଵଵା.ଵଶ 16.3ି.ଽାଵ.
60 (7.0 hpf) 3,374 1,219 4.8 95.2ିଶ.ାଵ.ସ 2.00ି.ଵା.ଵଶ 18.4ି.ଽାଵ.
90 (8.0 hpf) 3,347 1,202 4.3 94.2ିଶ.ଶାଵ. 2.33ି.ଵଷା.ଵହ 21.8ିଵ.ଵାଵ.ଶ

Kausler
et al. 2012

(CGT)
Yes Yes

30 (6.0 hpf) 3,393 1,206 293.6 82.8ିଷ.ଶାଶ.଼ 4.54ି.ଶା.ଶଵ 36.8ିଵ.ହାଵ.
60 (7.0 hpf) 3,511 1,219 297.7 79.1ିଷ.ସାଷ. 4.93ି.ଵଽା.ଶ 42.9ିଵ.ାଵ.
90 (8.0 hpf) 3,433 1,202 300.7 75.9ିଷ.ାଷ.ଶ 5.02ି.ଶଵା.ଶଷ 44.9ିଵ.ାଵ.

Giurumescu
et al. 2012

(NT4D)
No No

30 (6.0 hpf) 2,845 1,206 11.0 89.7ିଶ.ାଶ.ଶ 5.55ି.ଵଽା.ଶ 47.2ିଵ.ାଵ.
60 (7.0 hpf) 3,293 1,219 13.2 89.6ିଶ.ାଶ.ଶ 7.08ି.ଶଶା.ଶଷ 63.0ିଵ.ାଵ.
90 (8.0 hpf) 3,311 1,202 14.1 90.0ିଶ.ାଶ.ଵ 5.24ି.ଵ଼ା.ଵଽ 51.6ିଵ.ାଵ.

Tomer
et al. 2012
(NM12)

Yes Yes
30 (6.0 hpf) 3,854 1,206 65.2 93.7ିଶ.ଶାଵ. 2.56ି.ଵଵା.ଵଵ 19.1ି.଼ା.଼
60 (7.0 hpf) 4,985 1,219 76.4 96.4ିଵ.଼ାଵ.ଶ 2.16ି.଼ା.ଽ 19.0ି.ା.଼
90 (8.0 hpf) 5,680 1,202 78.4 96.0ିଵ.ଽାଵ.ଷ 2.03ି.଼ା.଼ 19.7ି.଼ା.଼

1 If “No”, manual segmentation is required for the first time point (t0) to initialize the algorithm.
2 These metrics are defined in Supplementary Note 3. 95th and 5th percentile confidence intervals are provided as sub-/superscripts.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Note 1 | Sequential Bayesian estimation of Gaussian Mixture Models

Probabilistic model for segmentation and tracking

As explained in the main text, the main idea behind our tracking and segmentation approach is to

take advantage of the temporal coherence between consecutive time points and the relatively

simple shape that fluorescent-labeled nuclei present in light microscopy images. We model the

image intensity at each time point t as a Gaussian Mixture Model (GMM) (Supplementary Fig.

3):

௧ሾ݊ሿܫ ∝

ୀଵ

;ݔ௧ࣨሺߨ ௧ߤ Σ௧ ሻ (1)

where ܭ௧ is the number of nuclei at time ݔ ,ݐ are the three-dimensional (3D) coordinates for the

nth voxel, and ߨ௧ ௧ߤ , and Σ௧ define the kth Gaussian mixture at time ݐ. The temporal coherence

allows us to estimate the parameters sequentially using the solution at time ݐ as initialization for

time ݐ 1. The main challenge in the parametric model from Eq. (1) is a strategy for updating

the value of ܭ௧ during cell division and apoptosis (or loss of cells owing to constraints in the

imaging process). De novo cell “birth” events are not considered explicitly, since we assume

consistent physical sample coverage in the imaging experiment. Below we describe in detail how

we address the challenge by solving Eq. (1) for different values of ܭ௧ and by adding a priori

probabilities for the loss of cells. Although non-parametric models for contour evolution, such as

multi-level-sets7, handle topology changes automatically, the challenges associated with live

image data of complex multicellular specimens (Fig. 2, Supplementary Videos 5, 6, 10, 11, 15,

18, 22 and 23) make level-sets boundaries unreliable. Moreover, the number of possible topology

changes in cell lineage reconstructions is highly constrained (irrespective of the occurrence of

cell divisions). The parametric model allows setting a constrained combinatorial problem to

avoid biologically unrealistic solutions. For example, a cell is not allowed to divide into three or

more objects at a given time point.

The intuition presented above can be formalized as a full Bayesian framework by inferring the

following posterior distribution:

Nature Methods: doi:10.1038/nmeth.3036

ܲሺદ, ,܁ ۷ሻ (2)|܈

where ۷ ൌ ሼܫଵ, … , ሽ is the set of image stacks for time points 1 to T, and દ்ܫ ൌ ሼΘଵ, … , Θ்ሽ with

Θ௧ ൌ ሼߠଵ௧ ߠ…
௧ ሽ represents the GMM parameters for each time point (ߠ௧ ൌ ሼߨ௧ , ௧ߤ , and ܁ .(௧ሽߪ

-are two sets of hidden random variables that allow decomposing the problem into easier sub ܈

problems. ܈ ൌ ሼܼ௩௧ሽ for ݐ ൌ ݒ ,ܶ…1 ൌ ௧ represents the standard assignment variable in aݒ…1

mixture model setting. ܼ௩௧ is the probability that the vth sample (in our case the vth super-voxel at

time point ݐ) belongs to the kth mixture, and can take any value between 1 and ܭ௧. Aside from

simplifying the solution to the problem, knowing the probability of ܼ௩௧ directly returns a

probabilistic segmentation for each time point, since it indicates which super-voxels belong to

which nuclei. Finally, ܁ ൌ ሼܵ௧ሽ for ݐ ൌ 1…ܶ, ݇ ൌ ௧ is a vector of binary random variablesܭ…1

representing the probability that the kth mixture (or cell nucleus, in our case) is dividing at time

point ݐ.

Once we have defined all random variables in our problem we can use the graphical model

presented in Supplementary Fig. 2 to factorize Eq. (2) as follows:

ܲሺદ, ,܁ ۷ሻ|܈ ∝ ܲሺદ, ,܁ ,܈ ۷ሻ (3)

ൌෑ
்

௧ୀଵ

ܲሺܫ௧|ܼ௧, ,௧ߪ ,௧|ܵ௧ߨ௧ሻܲሺߨ|௧ሻܲሺܼ௧ߤ ,௧ߪ|௧ߤ௧ିଵሻܲሺߨ ,௧ߪ|௧ିଵሻܲሺܵ௧ߪ|௧ߪ௧ିଵሻܲሺߤ ௧ሻ (4)ߤ

ൌෑ
்

௧ୀଵ

ෑ

௩ୀଵ

ܲሺܫ௩௧|ܼ௩௧, ,௧ߪ ௧ሻෑߨ|௧ሻܲሺܼ௩௧ߤ

ୀଵ

ܲሺߨ௧ |ܵ௧, ௧ߤ௧ିଵሻܲሺߨ ,௧ߪ| ,௧ߪ|௧ିଵሻܲሺܵ௧ߪ|௧ߪ௧ିଵሻܲሺߤ ௧ߤ ሻ (5)

Eq. (3) is obtained using Bayes’ formula. Eq. (4) applies the conditional independence

information contained in the graphical model in Supplementary Fig. 2 (in particular, the

solution at time point t depends on the solution at time point t – 1, following a Markovian

process). Finally, Eq. (5) introduces independence assumptions between mixtures and image

super-voxels.

If we ignore the random variable ܁ and consider only a single time point in the graphical model

(Supplementary Fig. 2), we obtain a standard graphical model to describe a GMM. Each sample

(intensity level of a voxel, in our case) is considered independently of the others1. Eq. (5) adds

three extensions to the standard GMM. First, priors to the mixture parameters are added based on

Nature Methods: doi:10.1038/nmeth.3036

values from the previous time point. These priors account for the fact that object shape, position

and intensity are correlated in consecutive time points. Second, all voxels belonging to the same

super-voxel share the same hidden variable ܼ௩௧ and are assigned to the same mixture, although the

likelihood of the model is computed over all voxels (Eq. (1)). Third, we include a second set of

hidden variables (܁) in order to account for cell divisions. Instead of including the number of

Gaussians in the mixture (ܭ௧) as a random variable in the model and using hyper-parameters to

infer the value of (ܭ௧)8, 9, we add the binary variable ܁ to restrict topological changes to

biologically feasible processes. Finally, to simplify the notation we omitted the fact that we do

not have priors for ݐ ൌ 0. We assume that an initial segmentation is provided for this first time

point ݐ ൌ 0. As explained in the main text, we use the super-voxels as an initial segmentation for

ݐ ൌ 0 in our pipeline. Our strategy for performing approximate inference in Eq. (5) is to fit

different GMMs at each time point, depending on the value of ܵ௧. The following sections

describe each individual step of this procedure in detail.

Variational inference for approximate inference in GMM

If we fix (or assume that we know) the value of ܵ௧ for each object we can solve the GMM for

each time point efficiently. We follow the exposition by Bishop (chapter 10)1 to use a variational

inference procedure to perform approximate inference on the mixture model. Here, we

summarize the key points and insights that are relevant for our implementation.

We choose the following (conjugate) priors, which allow defining an analytical solution to the

inference problem:

ܲሺߨ௧|ߨ௧ିଵሻ ൌ Cሺߙሻෑ
ݐܭ

݇ൌ1

ሺݐ݇ߨሻ
ఈ,݇
ݐ ିଵ (6)

ܲሺΛ௧|Λ௧ିଵሻ ൌෑ
ݐܭ

݇ൌ1
ଷܹሺΛ݇ݐെ1, ݐ݇,ߥ ሻ (7)

ܲሺߤ௧|Λ௧, ௧ିଵሻߤ ൌෑ
ݐܭ

݇ൌ1

ܰሺݐ݇ߤെ1, ሺݐ݇,ߚ Λ݇ݐ ሻ
ିଵሻ (8)

Nature Methods: doi:10.1038/nmeth.3036

Eq. (6) represents a Dirichlet distribution with hyper-parameter ߙ,௧ ሺߨ௧ିଵሻ, Eq. (7) is a Wishart

distribution with three degrees of freedom and hyper-parameter ߥ,௧ ሺΛ௧ିଵሻ, and Eq. (8) is a

Normal distribution with hyper-parameter ߚ,
௧ ሺߤ

௧ିଵሻ. Λ௧ is the precision matrix, which is the

inverse of the covariance matrix Σ௧. We use Λ௧ since it makes it easier to define a conjugate prior

distribution.

Following Eqs. (1) and (5) our likelihood for a single time point is:

ܲሺܫ௧|ܼ௧, ,௧ߪ ௧ሻߨ|௧ሻܲሺܼ௧ߤ ൌෑ
ே

ୀଵ

ୀଵ

;ݔ௧ࣨሺߨ ௧ߤ Σ௧ ሻ

ூ

 (9)

Note that in Eq. (5) all voxels (n) belonging to the same super-voxel (v) share the same hidden

variable ܼ௩௧ , but the likelihood is still evaluated over all voxels.

In variational inference, we pose inference for Eq. (5) when the value of ܁ is known as an

optimization problem over probability distributions as follows:

,௧|ܼ௧ܫሺܲሺܮܭ݊݅݉݃ݎܽ ,௧ߪ ,௧|Λ௧ߤ௧ିଵሻܲሺΛ௧|Λ௧ିଵሻܲሺߨ|௧ߨ௧ሻܲሺߨ|௧ሻܲሺܼ௧ߤ ሻ (10)ݍ||௧ିଵሻߤ

,ሺܼ௧ݍ	ݐ	ݐ݆ܾܿ݁ݑݏ Λ௧, ,௧ߤ π௧ሻ ൌ ,ሺΛ௧ݍሺܼ௧ሻݍ ,௧ߤ ௧ሻ (11)ߨ

where ܮܭ indicates the Kullback-Leibler distance between two probability distributions. The

main assumption in Eq. (11) is the fact that the hidden variables ܼ௧ are independent from the

parameters. This assumption returns an iterative optimization strategy very similar to the

expectation-maximization (EM) algorithm, which alternates between updating the hidden

variables and the mixture model parameters. However, we chose variational inference instead of

the traditional expectation-maximization (EM) approach because it handles prior probabilities

more naturally and in practice avoids singularities in the covariance matrices that can affect

numerical stability in the implementation. Moreover, the computational cost is very similar and

the three hyper-parameters in Eq. (6-8) (ߙ௧ ௧) allow easy control of the behavior of theߚ,௧ߥ,

algorithm with only few degrees of freedom. Formally, the main difference between EM and

variational inference is that EM returns a single optimal value as a solution to the fitting of the

mixture model, while in variational inference the parameters are treated as random variables to

Nature Methods: doi:10.1038/nmeth.3036

obtain a probability distribution as a solution. In our case, we take the mean of the distribution as

the final solution and use the standard deviation as a confidence estimate.

The complete solution to Eq. (11) can be found in Bishop (chapter 10, section 2)1. For our

purposes, the key insight is that the three hyper-parameters ߙ௧ ௧ allow us to control theߚ,௧ߥ,

influence of the priors from the previous time point seamlessly. In particular, ߥ௧ controls the

extent to which object shape (precision matrix) can change from time point to time point; ߚ௧

controls the extent to which object centroids can move between two consecutive time points, and

௧ߙ controls the likelihood for objects to disappear. Setting ߙ,௧ to high values makes sure that the

kth component does not disappear in the next time point, while setting ߙ
௧ to low values makes

the disappearance or apoptosis of cells more likely. Even if a Dirichlet distribution is only

formally defined for ߙ,௧ 0, we can artificially set negative values for the priors to indicate

that a particular cell nucleus is likely to disappear unless the likelihood indicates otherwise. All

hyper-parameters depend on ܰ
௧, which represents the sum intensity of the voxels corresponding

to the kth mixture at time point ݐ. Thus, by defining all three hyper-parameters relative to ܰ
௧,

constant values can be assigned to these hyper-parameters for all objects at all time points in the

configuration file needed to run the software framework.

Practical implementation

As explained above, we perform sequential inference in the dynamic Bayesian network

(Supplementary Fig. 2), where we test different GMM models at each time point using

variational inference to account for cell divisions. The main reason for performing such a greedy

inference across time points is that each cell division changes the number of possible states and

the dimensionality of the probability distribution in Eq. (2), which makes global inference

intractable even when considering jumps between probability spaces. Moreover, the fact that our

image data sets are correlated in consecutive time points (more specifically, nucleus centroids

tend to not move further than the average nearest neighbor distance between time points) allows

us to solve the problem using a parametric contour evolution method. As explained in the main

text (Fig. 1), we first evolve the ellipsoids without changing the number of elements. Thus, only

loss of cells can occur in the first round of variational inference. Then, we look for nuclei that

Nature Methods: doi:10.1038/nmeth.3036

group non-connected super-voxels and split them, effectively increasing Kt. Thus, in the second

round of variational inference loss of cells and cell divisions are allowed.

In practice, we have to make sure that our images are as close to the model represented by Eq.

(1) as possible. However, raw light microscopy data sets usually contain uneven background

levels, a circumstance that is in conflict with the assumption that the Gaussian probability

distributions tend to approach zero in their tails. We use the super-voxel partition of the images

to perform local background estimation and subtract this estimate from the original image. Since

our super-voxel segmentation is a full partition of the image, each super-voxel contains voxels

belonging to a nucleus and to background, respectively (Fig. 1). Thus, for each super-voxel, we

calculate the background level using Otsu’s method10. Before subtracting the background, we

smooth the background estimate with a Gaussian kernel to avoid sharp transitions between

super-voxel boundaries.

Another important consideration in the final pipeline is the strategy for setting the hyper-

parameters ߙ௧ ௧. We define all of these parameters relative to ܰߚ ,௧ߥ ,
௧ିଵ and keep them fixed

across all experiments presented in this work. However, it is possible to change the settings in

the advanced parameters section of the software configuration file. In our case, ߥ,௧ is set equal

to ܰ
௧ିଵ. Thus, the shape prior carries as much weight as the image data, since we do not expect

sudden shape changes and ܰ
௧ିଵ should be similar to ܰ

௧. We set ߚ௧ ൌ 0.1 ܰ
௧ିଵ, since we need to

account not only for average cell movements, but also for exceptionally large, local

displacements during fast developmental processes. If, in a particular experiment, one can

incorporate a good motion predictor for each cell, it would be possible to increase the value of

this prior to reflect higher certainty in predicting nucleus centroid location. Finally, we set ߙ,௧ ൌ

0.8 ൈ 10ିହ ∑షభ
ୀଵ ௧ିଵ, such that only mixtures where ܰߙ

௧ contributes less than 0.0002% to the

total value of ߙ௧ are allowed to disappear. In practice, aside from the priors, we also set absolute

boundaries on the size and eccentricity of each Gaussian mixture to avoid biologically unrealistic

results. These constraints are easily implemented by calculating the eigenvalues of the precision

matrix after each iteration. Again, these parameters were kept constant across all biological

model systems and imaging methods (we set a maximum radius of 10 pixels in each principal

direction and a maximum eccentricity of 3 between each pair of principal directions) but they

can be modified in the advanced parameters section of the software configuration file.

Nature Methods: doi:10.1038/nmeth.3036

Finally, it is important to keep in mind that high computational efficiency (i.e. fast processing

speed) is crucial when processing time-lapse imaging experiments with thousands of time points,

each comprising up to hundreds of millions of voxels and tens of thousands of cell nuclei. We

therefore take advantage of GPU computing to implement variational inference. Kumar et al.

previously demonstrated a 100-fold speed-up for the EM algorithm using GPU computing11. We

implemented our variational inference algorithm using Nvidia CUDA obtaining similar speed-

ups and improved memory scalability by sparsifying the matrix of responsibilities. Thereby, our

implementation solves the variational inference problem for over 10,000 Gaussians in less than

one second on a single computer workstation.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Note 2 | Spatio-temporal features for the background detector

In order to detect background objects we trained a machine learning binary classifier using

several features calculated in a sliding temporal window for each object track. The classifier

predicts the probability that the object at the center of the temporal sliding window does not

represent a cell nucleus. The features, which include object shape, object intensity, and dynamic

and temporal characteristics of each object track, are described below in detail. We used our

CATMAID interface to generate a training set of object tracks for real cell nuclei and

background objects obtained from different automatic reconstructions. Then, we generated a

classifier with the Matlab implementation of Random UnderSampling Boost (RUSBoost)12 with

classification trees. RUSBoost is designed to handle class imbalance problems and was chosen

because our training set contains fewer background annotations than foreground annotations.

Supplementary Fig. 4 shows the precision-recall curve for the test set. The same classifier was

used for all model organisms and microscope types and is provided together with the source

code.

Below we provide a detailed list of the features used for background classification. All features,

except for the temporal features, are calculated over branches in the tracks without cell divisions.

These features are based on the intuition that cell nuclei exhibit coherent behavior within short

time intervals (sliding window), whereas object tracks corresponding to background structures

exhibit incoherent behavior.

 Straight line fit to x, y and z positions (dynamic feature). We use the least-squares method

to fit a straight line trajectory to the x, y and z positions of all centroids in the

spatiotemporal window. We then determine the mean and standard deviation (SD) of the

distance from each point to the fitted line. Using these features, we expect cell nuclei to

exhibit more robust movement directions within the sliding window, compared to

background objects. We also recalculate the mean and SD after removing the point

furthest from the fitted line.

 Constant velocity model (dynamic feature). We measure the displacement in x, y and z

between all consecutive time points. We define the SD along all three axes as a feature.

Nature Methods: doi:10.1038/nmeth.3036

In contrast to background objects, we expect cell nuclei to follow a constant velocity

model within the sliding window.

 Change in relative size (shape feature). We calculate the relative change in number of

voxels (object size) between all consecutive time points. We use the SD of this metric as

a feature.

 Offset Jaccard distance (shape feature). We calculate the Jaccard distance between

segmented objects in consecutive time points. In order to eliminate a possible

contribution to the distance measure arising from object movement, we translate the

daughter object in x, y and z to maximize object overlap. We use the mean and SD of this

metric as a feature.

 Number of holes inside an object (texture feature). For each object, we count the number

of holes (background voxels) within the segmented volume. We use the mean of this

metric as a feature. If the segmented object is a fluorescently labeled cell nucleus, it

usually does not enclose background voxels. In contrast, background objects frequently

contain background voxels within the segmented volume.

 Normalized k-nearest neighbor distance (spatial feature). For each nucleus, we calculate

the distances to its first six nearest neighbors. We then normalize these distances to the

distance to the nearest neighbor and use them as features (disregarding the first

normalized distance since it is always 1). If the segmented object is a fluorescently

labeled cell nucleus, it tends to be surrounded by nearest neighbors at similar distances.

This distribution is typically less even for autofluorescent background objects.

 Cell activity recognition (temporal feature). Inspired by the “bag-of-words” approach of

Bettadapura et al.13, we calculate multiple histograms to determine the frequencies of

different types of events within siding windows for each object track. Specifically, we

count the number of track deaths, track divisions and track displacements, and we also

determine histograms of the lengths of intervals between events.

The background detector is provided as an optional post-processing step that is usually helpful in

samples with high levels of auto-fluorescence. The time-lapse recordings of Drosophila

Nature Methods: doi:10.1038/nmeth.3036

embryogenesis presented in this study are a good example of such a scenario. During early

developmental stages, auto-fluorescent regions of the fruit fly embryo can represent up to 15% of

the total recorded signal. Since we model each 3D image as a Gaussian mixture model (GMM),

the entire intensity content of the image needs to be accounted for. Thus, without the background

detector’s ability to eliminate tracked objects that do not represent real cells, the automated

reconstruction would contain a significant number of false positive detections.

The background detector introduces only three advanced parameters in the tracking framework:

the size of the temporal window used to calculate the spatio-temporal features described above

and the upper and lower thresholds that are applied to the result of the machine learning classifier

in order to produce a temporal filter with hysteresis. The features themselves are not parameters.

Rather, they are internally calculated in the code and needed for the machine learning classifier

to determine the probability of a detected object to represent a real cell. In this regard, the

precision-recall curve provided in Supplementary Fig. 4 shows that by setting the right

threshold, we can detect most of the background objects (recall) without falsely classifying true

cells as background objects (precision). Thus, in cases like the fruit fly embryo, this post-

processing step is critical to eliminate large numbers of trajectories that do not represent real

cells. In other cases, such as zebrafish embryos, this post-processing step is less critical, owing to

the low level of auto-fluorescence.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Note 3 | Estimation of segmentation and tracking accuracy

Obtaining a comprehensive ground truth annotation for our data sets is practically impossible,

since we estimate the time required for manually drawing all nuclei boundaries and connecting

them across all time points to be on the order of at least several years. The accuracy of the

algorithm can thus not be practically evaluated on this basis. Moreover, since cells in the

developing embryo frequently move over long distances and image quality and reconstruction

challenges vary dramatically across the embryo (Fig. 2), it is also challenging to obtain an

exhaustive, unbiased subset of ground truth annotations for a significant fraction of embryonic

development. For example, if the sampled region only contains superficial cells, the accuracy

analysis will overestimate global accuracy. Thus, we devised four types of metrics that reflect

different properties of the accuracy of the cell lineage reconstruction and can be calculated by

random sampling of the data. The random sampling furthermore allows us to establish

confidence intervals for each metric. We have incorporated a random annotation function in our

CATMAID interface (accessible by pressing Q from within the Tracing Tool) that enables users

to efficiently generate random samples in the image space for unbiased annotations.

The first metric is linkage accuracy. The annotator marks the centroid of a random nucleus at

time point t and links it to the correct centroid location at time t + 1. Using this pairwise

annotation, we can determine if the algorithm connected the correct objects between consecutive

time points. For each annotated centroid, we determine which nucleus it was assigned to in the

automatic reconstruction. Then, we check if both nuclei are connected in time. Thus, the linkage

accuracy measures tracking accuracy. However, it does not measure under-segmentation

accuracy (imagine constructing a single ellipsoid encompassing the entire image, which would

always lead to a perfect success rate of 1 in the linkage accuracy metric).

The Euclidean distance metric aims to provide a precise measure of under-segmentation and

uses the same annotations as the linkage accuracy. For each annotated centroid, we again

determine which nucleus it was assigned to in the automatic reconstruction. Then, we measure

the Euclidean distance between the annotated centroid and the centroid of the nucleus from the

automatic reconstruction. The Euclidean distance metric is the average of all Euclidean distances

for all annotated time points. Thus, a good algorithm will have a Euclidean distance metric

Nature Methods: doi:10.1038/nmeth.3036

smaller than the expected radius of a nucleus. However, this metric could be made exactly zero

by assigning one centroid to each voxel in the image. In other words, it does not account for

over-segmentation.

The nearest neighbor (NN) normalized distance metric measures over-segmentation and uses the

same annotations as the linkage accuracy. For each annotated data point, for which we have

calculated the Euclidean distance metric explained above, we normalize the distance measure by

the distance to the nearest neighbor in the automatic reconstruction. Thus, if the region is over-

segmented by the algorithm, the NN normalized distance metric measure will increase

significantly. In fact, we limit the maximum value to 1, in order assign comparable weight to

correct reconstructions versus incorrect reconstructions. The closer the NN normalized distance

metric measure is to zero, the higher the quality of the automatic reconstruction.

To complement the segmentation metrics described above, we estimate true positive and false

positive rates using a surrogate based on our centroid annotations performed in CATMAID

(Supplementary Table 3). For each time point, we estimate the maximum nucleus radius by

calculating the radius of a sphere of equal volume for each segmented nucleus and determining

the 75th percentile of this radius across all nuclei for this time point. We then count the number of

centroids in the automated segmentation that are located within this radius for each ground truth

annotation. If no centroids are found within the radius, we consider the annotated object a false

negative. In our results, most false negatives correspond to under-segmented nuclei, i.e. the

centroid has been placed in between two neighboring nuclei. If only one centroid is found within

the radius, we consider the annotated object a true positive. If two centroids or more are found

within the radius, the annotated object is considered an over-segmented nucleus. We only present

results for zebrafish embryos because this approximation is less accurate in other specimens,

such as Drosophila embryos, where nuclei can have elongated shapes that differ significantly

from a sphere. Finally, we measure the number of false positives by visual inspection of the

automated reconstruction results in CATMAID: two different annotators visited all centroid

locations returned by the automated pipeline and evaluated if these locations corresponded to a

background object instead of a true cell.

We also evaluate cell division accuracy (Supplementary Table 1). For each analyzed time

point, we visually inspected all cell divisions returned by the automated pipeline and classified

Nature Methods: doi:10.1038/nmeth.3036

these as true or false positives. For false positives, we distinguished between (1) cases, in which

the algorithm recovered from under-segmentation, (2) false divisions detected in background

objects and (3) other cases. We made this distinction because the first category of false positives

listed above tends to dominate and is in fact required to avoid propagating errors in our

sequential approach. Finally, we inspected 3D image stacks in the SiMView and confocal

microscopy recordings of zebrafish embryogenesis and manually annotated all cell divisions at

specific time points. These annotations allowed us to measure the number of false negatives for

these time points.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Note 4 | Morphodynamic features of cell trajectories

For each neuroblast cell lineage, we calculated the following morphodynamic features

(Supplementary Fig. 15) as a basis for the analysis presented in the section “Reconstruction of

early Drosophila nervous system development at the single-cell level” in the main text.

 Internalization time: at each time point, we estimate the distance of the nucleus to the

surface of the embryo (depth). In the case of neuroblasts, depth as a function of time

follows approximately a sigmoidal shape due to the internalization process (data not

shown). We therefore fit a sigmoid to each time-vs.-depth profile and use the half rising

time as an estimate of the cell’s internalization time point.

 Final depth: using the same sigmoidal fit as above, we estimate the resting depth of the

neuroblast in the embryo.

 Division time: we note the time points, at which each cell undergoes a cell division.

 Frequency of division: for neuroblast lineages with more than one division of the

neuroblast in the time window of the curated reconstruction, we determine the time

difference between divisions.

 Angles of division: for each cell division event, we determine the two division angles (ψ

and η) using a local spherical coordinate system (Supplementary Fig. 14).

 Depth at division: for each cell division event we note the current depth of the nucleus

prior to division.

 Path length to division: we integrate all displacements between consecutive time points to

calculate the total distance a neural precursor cell travels from its origin in the blastoderm

up to the first cell division event.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Note 5 | Comparative performance of cell lineaging methods

We compared our cell lineage reconstruction pipeline to three other recently published

algorithms: Chain Graph Tracking (CGT)4, Nuclei Tracker 4D (NT4D)5 and our own previous

tracking pipeline (NM12)6 for cell dynamics in the Drosophila syncytial blastoderm. All

methods were specifically developed for cell lineage reconstructions from time-lapse light

microscopy images of fluorescently labeled nuclei. In the case of CGT and NT4D, we used the

code made publicly available by the authors. For CGT, the available code is a slightly simplified

version of the method published in Kausler et al.4, since it uses a constant prior probability to

determine whether a detection is a true cell nucleus or not, instead of a random forest classifier

for object detection to establish this prior probability. For NT4D, we modified basic data

structures from the original Matlab code to improve data throughput rates when working with

data sets containing thousands of cells per time point.

CGT is a data-association method using linear programming to perform inference in a graphical

model connecting detections between time points. These detections are created using a

segmentation module that assigns to each pixel the probability of belonging to a nucleus based

on a trained random forest classifier. The probability map is then thresholded, and each resulting

connected component represents a detected object that can be linked in time. This approach

performs well in early developmental stages, such as the Drosophila blastoderm and the early

zebrafish embryo, where nuclei are well separated (Supplementary Tables 4 and 6). In later

developmental stages, cells are very close to each other, and after thresholding a single

connected component can encompass tens of cells. Thus, the detection step contains too many

merged cells and precludes the return of a meaningful solution in the data-association step

(Supplementary Table 5). However, when attempting to set a higher threshold to better separate

nuclei, the detection misses too many objects located in parts of the image with lower contrast.

Moreover, since the segmentation step has to calculate features and apply a random forest

classifier for each voxel, it is computationally slower than our watershed approach. Inference in

the graphical model for the linkage step seems to scale quadratically with the number of objects,

which makes it harder to scale this approach to tens of thousands of objects (Supplementary

Table 5).

Nature Methods: doi:10.1038/nmeth.3036

NT4D was devised as a semi-automatic cell lineaging program, which propagates the solution

sequentially from the previous time point to the next, using blob detection techniques for

segmentation and nearest neighbor assignments for linkage. Prior to each propagation of the

solution, the user verifies the proposed solution at the current time point using a well-designed

Matlab user interface. The user is required to manually annotate all cell divisions as well as the

segmentation of the initial time point. In the original paper, the authors tracked and validated

cells in C. elegans and zebrafish at a rate of 4,000 data points per day. In order to evaluate the

accuracy of the automatic sequential propagation, we initialized NT4D using the solution

provided by our own algorithm ten time points before the time point where we sample ground

truth. For those ten time points, we accepted every proposed move by the NT4D algorithm and

then evaluated the linkage accuracy and Euclidean distance at the time point with ground truth

(Supplementary Tables 4-6). Due to the simplicity of assumptions in the sequential propagation

of the solution, accuracy metrics degrade much faster in NT4D than in our approach, even after

only ten time points, although both methods require comparable computation time. Similarly to

CGT, this method performs better in early developmental stages (Supplementary Tables 4 and

6), where the data sets match the conditions the authors developed the algorithm for.

Our previous tracking pipeline (NM12) was designed to reconstruct cell behavior in early

developmental stages in Drosophila, specifically the synchronized mitotic waves in syncytial

blastoderm stages. Since nuclei are well separated in these early stages, the Gaussian Mixture

Model can be applied on a per voxel basis (instead of per super-voxel) and still produce results

comparable to those of our new method (Supplementary Table 4). However, in later stages, the

boundaries between cell nuclei are less clear and the Gaussians tend to under-segment, producing

single mixtures explaining multiple nuclei. In addition, more iterations of the variational

inference approach are required to converge to a solution. Finally, more pixels are part of the

foreground in later stages, and the GPU-based approach runs out of memory trying to save

multiple responsibility values per voxel (Supplementary Table 5). Thus, to be able to run

NM12 at all in later stages of Drosophila embryogenesis, we had to raise the image background

threshold at the expense of losing lower contrast cell nuclei. All of these issues (under-

segmentation, scalability and convergence speed) are overcome by our hierarchical segmentation

approach based on super-voxels as the basic image unit. Finally, the addition of data-association

rules in a local spatio-temporal window further improves tracking and segmentation results in

Nature Methods: doi:10.1038/nmeth.3036

our new method, and enhances the detection of mixtures that do not represent cell nuclei

(Supplementary Table 5).

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Software 1 | Automated modules of the cell lineaging framework

This section contains basic instructions for installing and running the cell lineaging software

package “Tracking with Gaussian Mixture Models” (TGMM). The code provided here has been

tested with the 64-bit version of Windows 7 and with the 64-bit version of Ubuntu Linux 12.04

LTS, using a variety of CUDA-compatible NVIDIA GPUs.

1. Contents of the software archive

We assume that the user has uncompressed the file “Supplementary_Software_1.zip” in a folder

of their choice, referred to here as $ROOT_TGMM. The subfolders in $ROOT_TGMM contain

the following components:

 src: All source code files. This folder also includes a CMakeList.txt file that can be used

to generate a Visual Studio solution (using CMake) and compile the source code.

 doc: Documentation of the TGMM software.

 build: A Visual Studio C++ 2010 project generated from src using CMake. This

subfolder also contains precompiled binaries, suitable for running the code without the

need for re-compiling the source code.

 data: Contains a three-dimensional time-lapse data set with 31 time points

(corresponding to a cropped sub-region of the Drosophila SiMView recording presented

in the main text), for testing the TGMM code and ensuring that the software is running as

expected.

Note: The Visual Studio project will not compile unless the folder “build” is copied to the same

absolute path as that used to generate the project. We provide the full project folder primarily as

a reference for the final structure of a successful Visual Studio solution.

2. Installation and software requirements

In order to run the precompiled binaries, the following auxiliary software package must be

installed as well:

Nature Methods: doi:10.1038/nmeth.3036

 CUDA Toolkit 5.5: required to run algorithms on an NVIDIA GPU

Download: https://developer.nvidia.com/cuda-toolkit-archive

We provide precompiled binaries for the 64-bit version of Windows 7. The folder with the

precompiled binaries also contains all required DLLs, and thus no external software packages

other than the CUDA drivers mentioned above need to be installed. The software can effectively

be run out-of-the-box, as detailed below in section 3.

For Linux, compilation of the source code is required (see detailed instructions in section 2.1).

For compiling the source code, any software version equal to or above the CUDA Toolkit

software version listed above should suffice.

For possible common runtime errors and solutions see section 5.

2.1 Source code compilation in Linux

 Make sure CMake is installed (http://www.cmake.org/). For Ubuntu distributions, you

can simply use the following command:

sudo apt-get install cmake cmake-gui

 Go to the folder $ROOT_TGMM and create a new folder called “build”, where the

binaries will subsequently be generated:

cd $ROOT_TGMM

mkdir build

cd build

 In the build folder, execute the following commands:

cmake -D CMAKE_BUILD_TYPE=RELEASE ../src/

make

The first command locates all libraries (for example, from the CUDA Toolkit) and generates all

necessary makefiles to compile the code. The second command calls these makefiles. After

executing the second command, you should see messages in the terminal commenting on the

compilation progress. If the progress report reaches 100%, the program has compiled

successfully. After successful compilation, the following executables should be present:

Nature Methods: doi:10.1038/nmeth.3036

$ROOT_TGMM/build/nucleiChSvWshedPBC/ProcessStack

$ROOT_TGMM/build/TGMM

You can use cmake-gui or cmake options to change different parameters in the makefiles (for

example, final destination folder or CUDA architecture level).

3. Running the TGMM software

We provide a test data set that allows the user to test the code and familiarize themselves with

software configuration before applying the code to their own data sets. Currently, 2D + time and

3D + time datasets with 8-bit or 16-bit unsigned integer TIFF stacks are supported as the input

data format. The two-dimensional or three-dimensional image data recorded for each time point

should be provided as a single TIFF file.

3.1 Configuration file

The file “$ROOT_TGMM\data\TGMM_configFile.txt” serves as a template for the

configuration file and contains all parameters required to run the TGMM code. In principle (and

for all results presented in this study), only parameters listed under “main parameters” need to be

modified for each new experiment. Access to parameters listed under “advanced parameters” is

provided as well and is intended for experienced users who wish to experiment further with the

code.

Each parameter is accompanied by a description of its functionality (see section “Overview of

advanced framework parameters” below for more details). In order to process a new data set,

simply copy the configuration text file and adjust parameters as needed.

Important note: Before applying the TGMM software to the test data set, the variables

debugPathPrefix and imgFilePattern in the configuration file need to be adjusted, so the

software can locate the image stacks (imgFilePattern) and save the results (debugPathPrefix).

Nature Methods: doi:10.1038/nmeth.3036

3.2 Watershed segmentation with persistence-based agglomeration

Windows

In order to generate the hierarchical segmentation for each time point, follow these three steps:

1. Open a Windows command line terminal (run “cmd.exe”).

2. Go to the folder “$ROOT_TGMM\build\nucleiChSvWshedPBC\Release”.

3. Execute the command:

ProcessStackBatchMulticore.exe $ROOT_TGMM\data\TGMM_configFile.txt 0 30

The program automatically detects how many processing cores are present in the workstation

and parallelizes the image segmentation task accordingly. The last two arguments are the first

time point and the last time point of the time-lapse image data set.

Once processing is complete, new files “$ROOT_TGMM\data\TM?????_timeFused_blending\

SPC0_CM0_CM1_CHN00_CHN01.fusedStack_?????_hierarchicalSegmentation_conn3D74_

medFilRad2.bin“ should have been generated (one for each time point). These binary files store

all information required to restore the hierarchical segmentation for each time point. If the binary

files were not created, an error occurred during execution of “ProcessStackBatchMulticore.exe”

and a corresponding error message is displayed in the terminal.

Linux

In order to generate the hierarchical segmentation for each time point, follow these three steps:

1. Open a terminal.

2. Go to the folder “$ROOT_TGMM/build/nucleiChSvWshedPBC”.

3. Execute the command:

parallel -j8 ./ProcessStack $ROOT_TGMM\data\TGMM_configFile_linux.txt -- {0..30}

The option -j8 indicates how many cores should be used in parallel (in this case 8). The last

option, {0..30}, indicates that the program ProcessStack should be executed for time points 0 to

30.

Nature Methods: doi:10.1038/nmeth.3036

Important note: The command parallel is part of the GNU software (http://www.gnu.org/

software/parallel/). The program presents an easy interface to call programs in parallel. If this

software is not already installed, it can be downloaded from the GNU website or installed from

official repositories. For example, in Ubuntu you can simply use the following command: “sudo

apt-get install moreutils”.

Important note: Make sure to use the configuration file TGMM_configFile_linux.txt instead of

TGMM_configFile.txt, since the latter contains Windows end-of-line symbols that will lead to a

failure during code parsing in Linux. You can also use the tool dos2unix to ensure that any given

text file can be used as a config file.

3.3 Bayesian sequential tracking with Gaussian Mixture Models

In order to track cell nuclei and reconstruct cell lineages, follow these three steps (the same

instructions are valid for Windows and Linux):

1. Open a Windows command line terminal (run “cmd.exe” in Windows).

2. Go to the folder “$ROOT_TGMM\build\Release”

3. Execute the command:

TGMM.exe $ROOT_TGMM\data\TGMM_configFile.txt 0 30

The command line will display notifications about the progress of the tracking and segmentation

algorithm. Since the hierarchical segmentation results from step 3.2 are saved separately in the

“.bin” files, different tracking parameter settings can be tested without the need for recalculating

or changing the segmentation data. The output data format of the tracking module is explained in

section 4.

3.4 Verifying successful program execution

In order to simplify the verification of successful TGMM software execution, we provide the

output for the test data set in “$ROOT_TGMM\data\TGMMruns_testRunToCheckOutput”. The

output generated by your execution of the program should be very similar to the contents of this

folder.

Nature Methods: doi:10.1038/nmeth.3036

4. Tracking and segmentation output data format

The folder “debugPathPrefix\GMEMtracking3D_%date“ contains the output of the TGMM run.

The final result can be found in the subfolder “$debugPathPrefix\GMEMtracking3D_%date\

XML_finalResult_lht” or “$debugPathPrefix\GMEMtracking3D_%date\XML_finalResult_lht_

bckgRm”. The latter directory is used if the user applied the background classifier. The output

subfolder contains one XML file and one “.svb” file per time point.

The XML file contains the main tracking and segmentation information. Each object is stored

under the tag <GaussianMixtureModel> with the following attributes:

 id [integer]: unique id of the object in this particular time point.

 lineage [integer]: unique id of the cell lineage the object belongs to.

 parent [integer]: id of the linked object at the previous time point. Following the chain of

“parent” objects reconstructs the track. A value of -1 indicates the birth of a track.

 splitScore [float]: confidence level for the correct tracking of this particular object. A

value of 0 indicates very low confidence and a value of 5 indicates very high confidence.

Sorting elements by confidence level can guide the user in the data curation process and

facilitate more effective editing of the TGMM results (see main text and Fig. 4).

 scale [float[3]]: voxel scaling factors along the x-, y- and z-axis.

 nu, beta, alpha [float]: value of the hyper-parameters for the Bayesian GMM.

 m [float[3]]: mean of the Gaussian Mixture (object centroid, in pixels).

 W [float[3][3]]: precision matrix of the Gaussian Mixture (object shape).

 *Prior: same as before, but for prior values obtained from the previous time point. These

values are used during the inference procedure.

 svIdx [integer[]]: list of indices of the super-voxels clustered by this Gaussian. Together

with the “.svb” file, this information can be used to obtain precise segmentation regions

for each object.

The “.svb” file is a binary file in a custom format that can be read with the constructor

“supervoxel::supervoxel(istream& is)”. Briefly, it contains information about all super-voxels

Nature Methods: doi:10.1038/nmeth.3036

generated at a particular time point. Thus, using the “svIdx” attribute, the precise segmentation

mask for each object can be recovered.

5. Troubleshooting common runtime errors

1. Program execution starts and one of the following error messages is displayed in the

terminal: “no CUDA- capable device is detected” or “CUDA driver version is insufficient

for CUDA runtime version”.

First, confirm that the workstation is equipped with an NVIDIA CUDA-capable graphics

card. This is a hardware requirement for running the software. If such a card is installed,

you most likely need to update the driver in order to be compatible with CUDA Toolkit

5.5. Go to https://developer.nvidia.com/cuda-downloads and download the current

toolkit. The toolkit will also install an updated NVIDIA driver.

2. When you try to run the program from the terminal, a Windows dialog pops up with the

following message “The program can't start because msvcp100.dll is missing from your

computer”.

For some reason, the provided DLL from the Microsoft Visual C++ 2010 SP1

Redistributable Package (x64) is not compatible with your windows version. Delete the

DLL from the TGMM software folder and go to http://www.microsoft.com/en-

us/download/confirmation.aspx?id=13523 to download and install the appropriate

version of the Microsoft Visual C++ 2010 SP1 Redistributable Package.

3. Note that the program needs to be called from a “cmd.exe” terminal in Windows. Cygwin

or MinGw terminals cause the program to fail.

4. “ProcessStackBatchMulticore.exe” requires paths to be provided using absolute path

names. The use of relative path names also causes the program to fail.

5. Note that the parameter “imgFilePattern” in the configuration file

“TGMM_configFile.txt” requires the use of forward slashes in path names (since the

image library used to read TIFF files follows the Unix convention), whereas the

parameter “debugPathPrefix” in the same file requires the use of double backslashes in

path names (since backslashes are special characters that are interpreted by the operating

system). On Linux systems, always use forward slashes in both parameters.

Nature Methods: doi:10.1038/nmeth.3036

6. Program execution starts and one of the following error messages is displayed on the

terminal: “invalid device symbol in C:/ROOT_TGMM/src/nucle/iChSvWshedPBC/

CUDAmedianFilter2D/medianFilter2D.cu at line 230”

The provided binaries were compiled for CUDA compute capability 2.0 or higher. If your

NVIDIA GPU card has a lower CUDA compute capability (this information is available

from https://developer.nvidia.com/cuda-gpus), the provided binaries will not work.

However, you can recompile the source code, which should allow you to run the

software. Before compiling, you need to edit the CMakeLists.txt file and modify the line

at the top: set (SETBYUSER_CUDA_ARCH sm_20 CACHE STRING “CUDA

architecture”). Adjust the flag sm_20 to the appropriate CUDA compute capability of

your NVIDIA GPU (for example, sm_13 for CUDA compute capability 1.3).

Key configuration parameters: intensity threshold and persistence agglomeration threshold

Across all computational reconstructions and data sets presented in this study, two parameters

were modified: the threshold for persistence-based agglomeration of watershed regions

(persistenceSegmentationTau) and the intensity threshold for defining the background level in

each recording (backgroundThreshold). Both of them refer to image properties and are straight-

forward to determine by visual inspection of the image volume at a late time point of the time-

lapse recording. In general, inspecting late time points is more useful, since (depending on the

experiment) intensity levels are often slightly dimmer and cell densities higher. Measurements in

this scenario provide a lower bound constraint for both values.

To determine the background threshold, simply inspect a region in the image volume outside the

specimen (for example, by using the open-source software ImageJ) and determine the mean

intensity level in this background region. It is preferable to be conservative, i.e. to set a lower

value so as not to miss cell nuclei, since false negatives can alter the coherence between time

points. Moreover, we compute a local threshold for each super-voxel using Otsu’s method (see

section “Detection of Cell Divisions” in the Online Methods) and, thus, even if background

regions are included in the foreground estimate, this will not affect the final shape of the super-

voxels (Supplementary Fig. 5). The only drawback of a lower background threshold is a small

increase in computation time.

Nature Methods: doi:10.1038/nmeth.3036

To determine the threshold for persistence-based agglomeration of watershed regions (τ, see also

Fig. 1), plot the intensity profile across the line connecting two of the dimmest nuclei centroids

in the image stack (for example, by using the open-source software ImageJ). The profile should

have two peaks (nuclei centroids) and a valley (nuclei borders) (Supplementary Fig. 1). The

threshold τ should be set to a value smaller than the difference between the intensity values of the

peaks and the valley, such that the corresponding nuclei are not merged into a single super-voxel

(under-segmentation). In our experience, a value of τ between 5 and 20 tends to be sufficient to

compensate for the watershed over-segmentation of noisy regions, without risking merging of

dim cell nuclei.

We note that, although care should be taken to set these parameters appropriately, one can obtain

close-to-optimal results for a fairly wide range of parameter values (Supplementary Fig. 5). For

images with lower signal-to-noise ratio (SNR), such as confocal microscopy images, the value of

τ is more critical than the background intensity because watershed regions fragment the image

into smaller regions. In contrast, in images with high SNR, such as most light-sheet microscopy

images, the intensity background is more relevant because the watershed algorithm already

produces super-voxels that follow nucleus morphologies fairly well.

Overview of advanced framework parameters

In this section, we provide an overview of all advanced framework parameters. Note that these

parameters were not changed across the computational reconstructions and data sets presented in

this study. To complement the descriptions below, we also provide the default parameter values

in the configuration file “$ROOT_TGMM\data\TGMM_configFile.txt”, which is included in

“Supplementary_Software_1.zip”.

betaPercentageOfN_k

Non-negative floating point scalar, described in Eq. (8) in Supplementary Note 1.

betaPercentageOfN_k defines the prior probability for the centroid position of a nucleus based

on its position in the previous time point. No motion model is used, unless the optical flow

module is activated. Thus, if cells are moving fast this parameter should be set close to zero. If

Nature Methods: doi:10.1038/nmeth.3036

cells are moving very little, and the position at time t is a good prediction for the position at time

t + 1, this parameter should be set to 1 or greater.

nuPercentageOfN_k

Non-negative floating point scalar, described in Eq. (7) in Supplementary Note 1. Follows the

same concept as betaPercentageOfN_k, but for shape variation between consecutive time points.

If objects change shape rapidly between two consecutive time points this parameter should be set

close to zero. If object shapes change very little between time points this parameter should be set

to 1 or greater.

alphaPercentage

Floating point scalar, described in Eq. (6) in Supplementary Note 1. alphaPercentage controls

the prior probability of death for a track. The more likely nuclei are to disappear from the image

or undergo apoptosis, the lower the value of this parameter should be.

maxIterEM

Integer positive number. maxIterEM defines the maximum number of iterations of variational

inference allowed each time a Gaussian mixture model is fitted. In general, very few rounds are

needed (less than 10), since the model is initialized with the solution from the previous time

point. Thus, this parameter is implemented as a precaution. The terminal output of TGMM.exe

can be used to obtain an estimate of the typical number of iterations needed and maxIterEM can

then be set accordingly.

tolLikelihood

Floating point positive number. tolLikelihood is used as a stopping criterion for variational

inference of the Gaussian mixture model. Optimization is stopped if the relative increase in

likelihood between two consecutive iterations is less than the value of this parameter. Thus, the

lower the value, the more iterations of variational inference are run.

Nature Methods: doi:10.1038/nmeth.3036

regularizePrecisionMatrixConstants_lambdaMax

Floating point positive number. This parameter provides the maximum allowed value for any of

the eigenvalues (in pixels) of the covariance matrix defining each object in the Gaussian mixture

model. Thus, the larger the value of regularizePrecisionMatrixConstants_lambdaMax, the larger

the ellipsoids fitting each nucleus can grow. This parameter is used during regularization of the

variational inference results.

regularizePrecisionMatrixConstants_lambdaMin

Floating point positive number. This parameter provides the minimum allowed value for any of

the eigenvalues (in pixels) of the covariance matrix defining each object in the Gaussian mixture

model. Thus, the lower the value of regularizePrecisionMatrixConstants_lambdaMin, the

smaller the ellipsoids fitting each nucleus can shrink. This parameter is used during

regularization of the variational inference results.

regularizePrecisionMatrixConstants_maxExcentricity

Floating point positive number. This parameter provides the maximum eccentricity between any

two principal axes of the ellipsoid defining a nucleus. This parameter is used during

regularization of the variational inference results.

temporalWindowForLogicalRules

Positive integer number. This parameter provides the radius of the temporal window (total

window length is [2 × temporalWindowForLogicalRules + 1] time points) used to apply spatio-

temporal heuristic rules for fixing tracking errors. The larger the value, the more memory is

required, since the program will keep the image data of all concerned time points in memory to

be able to calculate the features needed to apply the various heuristics.

thrBackgroundDetectorHigh and thrBackgroundDetectorLow

Floating point non-negative numbers. These parameters provide the thresholds applied to the

results of the background track detector for removing trajectories representing non-nuclei

Nature Methods: doi:10.1038/nmeth.3036

objects. They control the behavior of a hysteresis filter applied over time to the background

probability scores of multiple data points belonging to the same lineage. When the program

detects a data point with a background probability above thrBackgroundDetectorHigh it

proceeds with deleting its descendants until the probability falls below

thrBackgroundDetectorLow. Thus, the higher the value of thrBackgroundDetectorHigh, the

fewer objects are removed. If thrBackgroundDetectorHigh is above 1, then no background track

removal is applied.

SLD_lengthTMthr

Non-negative integer number. Any daughter branch that ends within less than SLD_lengthTMthr

time points after division is considered a spurious over-segmentation event and is deleted.

radiusMedianFilter

Positive integer number. This parameter provides the radius (in pixels) of the median filter

applied before the watershed hierarchical segmentation is performed. The noisier the images, the

larger this value should be.

minTau

Non-negative floating point value. This parameter provides the minimum value of τ used for the

hierarchical segmentation using persistence-based clustering of watershed regions. The higher

minTau, the larger the minimum super-voxel size that can be generated at the lower level of the

hierarchical segmentation. This value should be kept low so as not to compromise the

framework’s capability to recover from under-segmentation.

conn3D

Values allowed are 6, 28 and 74. This parameter defines the 3D local neighborhood used to run

watershed for generating super-voxels. Values of 6 and 28 define traditional 3D neighborhoods,

whereas a value of 74 generates cubes of 5 x 5 x 3 around each point to address the anisotropy of

the point-spread-function typically encountered in 3D microscopy images.

Nature Methods: doi:10.1038/nmeth.3036

estimateOpticalFlow

Values allowed are 0, 1 and 2. This parameter activates/deactivates the use of optical flow

calculations between time points for the purpose of compensating for large object displacements.

A value of 0 deactivates optical flow calculations. A value of 1 indicates that pre-calculated

optical flow files are available and can be used to apply local motion displacements between

time points. A value of 2 indicates that the program will calculate optical flow on-the-fly, using a

routine provided by the user.

maxDistPartitionNeigh

Floating point positive number. It is only used if estimateOpticalFlow is equal to 2 and the

routine called is the one described in F. Amat et al., “Fast and robust optical flow for time-lapse

microscopy using super-voxels” (Bioinformatics, 2013). The parameter provides the maximum

allowed distance (in pixels) between super-voxels for them to be considered neighbors in the

calculation of the optical flow (coherence constraint).

deathThrOpticalFlow

Integer number. If positive, the optical flow module will be activated automatically when the

number of deaths at a specific time point is larger than the value of this parameter. Usually, when

large motions occur (larger than one nucleus diameter from one time point to the next), many

Gaussians in the model disappear, since the solution from the previous time point is not well-

suited for initialization of the current time point. Thus, monitoring deaths can be used as a trigger

to activate optical flow only when needed.

minNucleiSize

Positive integer number. If the number of voxels belonging to a super-voxel is less than

minNucleiSize the super-voxel is deleted. This parameter is useful to delete spurious super-

voxels representing background intensity.

Nature Methods: doi:10.1038/nmeth.3036

maxNucleiSize

Positive integer number. This parameter defines the maximum allowed size (in voxels) of a

super-voxel after applying Otsu's threshold. If Otsu's threshold generates an object larger than

maxNucleiSize the threshold is increased until the objet size falls below maxNucleiSize.

maxPercentileTrimSV

Floating point number between 0 and 1. This parameter defines the maximum allowed

percentage of voxels in a super-voxel belonging to foreground. If Otsu's threshold generates an

object larger than maxPercentileTrimSV the threshold is increased until the percentage of

foreground voxels falls below below maxPercentileTrimSV.

conn3DsvTrim

Values allowed are 6, 28 and 74. The final super-voxel generated after trimming the initial super-

voxel partition to detect foreground and background is guaranteed to have this connectivity.

maxNumKNNsupervoxel

Positive integer number. This parameter defines the maximum number of nearest neighbors to

consider for each super-voxel when building the spatio-temporal graph for tracking. The shorter

the nuclear displacement between time points, the lower the parameter value can be.

maxDistKNNsupervoxel

Floating point positive number. This parameter defines the maximum distance (in pixels) to

consider for each super-voxel when building the spatio-temporal graph for tracking. The shorter

the nuclear displacement between time points, the lower the parameter value can be.

thrSplitScore

Floating point number. If 3D Haar features are used for cell division classification, this

parameter sets the threshold for the machine learning classifier to decide whether a cell is

dividing or not. The higher the threshold, the fewer divisions are going to be called by the

Nature Methods: doi:10.1038/nmeth.3036

classifier. In order to activate 3D Haar features, the code needs to be recompiled with

preprocessor directive CELL_DIVISION_WITH_GPU_3DHAAR.

thrCellDivisionPlaneDistance

Floating point positive number, defining the threshold of a feature for disregarding cell division

false positives. The feature calculates the distance (in pixels) between mother cell and the

midplane defined by the two daughter cells. If the value is above thrCellDivisionPlaneDistance,

the cell division is considered a false positive and the linkage between mother and furthest

daughter is removed. The default value of 3.2 was determined empirically from a small training

set to maximize precision while maintaining a high recall of true cell divisions. The lower the

value, the lower the recall of cell divisions and the higher the precision.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Software 2 | Modified CATMAID module for visualizing image and cell
lineage data, manually curating cell lineage data and annotating
cell lineage reconstructions

The file “Supplementary_Software_2.zip” provides all files necessary to set up a CATMAID

server for image data and cell lineage data visualization as well as for editing cell lineage

reconstructions. This code is a branch from the master repository found at http://catmaid.org/ and

users can simply follow the detailed documentation located in the CATMAID master repository

to set up the server. However, we recommend downloading the source code by using the

following GIT command to obtain the latest version of the CATMAID server for cell lineage

reconstructions:

“git clone https://fernandoamat@bitbucket.org/fernandoamat/catmaid_5d_visualization_annotation.git”

Importantly, this branch of the CATMAID server contains a TGMM importer option on the

administrator site that allows importing the output data of the automated TGMM segmentation

and tracking framework (Supplementary Software 1) into CATMAID.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary Data 1 | Cell lineage reconstruction of early Drosophila embryonic nervous
system development

The Matlab file “NervousSystem.mat” contains the complete curated and annotated cell lineage

data set from our reconstruction of early Drosophila embryonic nervous system development

(Fig. 5, Supplementary Videos 24-28). We included the following variables:

 trackingNeuroblastCurated: main data array containing all cell lineage information. Each

row represents a nucleus at one time point. Contents of the columns are detailed below.

 stackResolution: three-dimensional vector containing information about the pixel size (in

micrometers) along each direction. This information is required to convert pixel

coordinates to positions in micrometers.

 stackSize: three-dimensional vector containing information about the size of each three-

dimensional image stack at each time point.

 tagcell: cell array of length ten, required to convert the integer identities of the annotated

neuroblast types to readable labels.

 mapLineageToNBType: array for associating each cell lineage with a neuroblast type.

The first column contains a unique set of integer IDs that can be mapped to the first

column of trackingNeuroblastCurated. The second column contains an integer number

from 1 to 10 that can be mapped to the neuroblast identity using tagcell.

The variable trackingNeuroblastCurated contains six columns with the following information for

each nucleus data point:

1. Unique ID (large integer number) in the CATMAID database for identifying each

nucleus data point.

2. x coordinate (in pixels) of the nucleus.

3. y coordinate (in pixels) of the nucleus.

4. z coordinate (in pixels) of the nucleus.

5. Parent ID in the cell lineage tree. This ID is equal to -1 if the data point is a root node.

Otherwise, it contains the unique ID of the parent (see description of column 1).

6. Time point. Note that the reconstruction starts at time point 0, which corresponds to 2.9 h

AEL (shortly before onset of gastrulation). The time interval is 30 seconds.

Nature Methods: doi:10.1038/nmeth.3036

Supplementary References

1. Bishop, C.M. Pattern recognition and machine learning. (Springer, 2007).

2. Amat, F., Myers, E.W. & Keller, P.J. Fast and robust optical flow for time-lapse

microscopy using super-voxels. Bioinformatics 29, 373-380 (2013).

3. Broadus, J. et al. New neuroblast markers and the origin of the aCC/pCC neurons in the

Drosophila central nervous system. Mech Dev 53, 393-402 (1995).

4. Kausler, B.X. et al. A discrete chain graph model for 3D+t cell tracking with high

misdetection robustness. ECCV 7574, 144-157 (2012).

5. Giurumescu, C.A. et al. Quantitative semi-automated analysis of morphogenesis with

single-cell resolution in complex embryos. Development 139, 4271-4279 (2012).

6. Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Quantitative high-speed imaging of entire

developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods

9, 755-763 (2012).

7. Li, K. et al. Cell population tracking and lineage construction with spatiotemporal

context. Med Image Anal 12, 546-566 (2008).

8. Fearnhead, P. Particle filters for mixture models with an unknown number of

components. Stat Comp 14, 11-21 (2004).

9. Figueiredo, M.A.T. & Jain, A.K. Unsupervised learning of finite mixture models. PAMI

24, 381-396 (2002).

10. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man

Cy 9, 62-66 (1979).

11. Kumar, N.S.L.P., Satoor, S. & Buck, I. Fast parallel expectation maximization for

Gaussian mixture models on GPUs using CUDA. IEEE HPCC, 103-109 (2009).

12. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J. & Napolitano, A. RUSBoost: improving

classification performance when training data is skewed. Int C Patt Recog, 3650-3653

(2008).

13. Bettadapura, V., Schindler, G., Plötz, T. & Essa, I. Augmenting Bag-of-Words: data-

driven discovery of temporal and structural information for activity recognition. CVPR

(2013).

Nature Methods: doi:10.1038/nmeth.3036

