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Abstract Establishing visual correspondences is a critical
step in many computer vision tasks involving multiple views
of a scene. In a dynamic environment and when cameras are
mobile, visual correspondences need to be updated on a re-
curring basis. At the same time, the use of wireless links
between camera motes imposes tight rate constraints. This
combination of issues motivates us to consider the problem
of establishing visual correspondences in a distributed fash-
ion between cameras operating under rate constraints. We
propose a solution based on constructing distance preserv-
ing hashes using binarized random projections. By exploit-
ing the fact that descriptors of regions in correspondence
are highly correlated, we propose a novel use of distributed
source coding via linear codes on the binary hashes to more
efficiently exchange feature descriptors for establishing cor-
respondences across multiple camera views. A systematic
approach is used to evaluate rate vs visual correspondences
retrieval performance; under a stringent matching criterion,
our proposed methods demonstrate superior performance to
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1 Introduction

The availability of cheap wireless sensor motes with imag-
ing capability has inspired research on wireless camera net-
works that can be cheaply deployed for applications such
as environment monitoring (Szewczyk et al. 2004), surveil-
lance (Oh et al. 2007) and 3DTV (Matusik and Pfister 2004)
as illustrated in Fig. 1. Indeed, much progress has been
made on developing suitable wireless camera mote plat-
forms which are compact and self-powered, and able to cap-
ture images or videos, perform local processing and trans-
mit information over wireless links (Rahimi et al. 2005;
Teixeira et al. 2006; Downes et al. 2006; Chen et al. 2008).
However, the gaping disconnect between high bandwidth
image sensors (up to 1280 × 1024 pixels @ 15 fps) and
low bandwidth communications channels (a maximum of
250 kbps per IEEE 802.15.4 channel including overhead)
makes the exchange of all captured views across the cam-
eras impractical (Chen et al. 2008).

Many computer vision tasks relevant to camera networks,
such as calibration procedures (Hartley and Zisserman 2000;
Ma et al. 2004), localization (Se et al. 2002), vision graph
building (Cheng et al. 2007), object recognition (Ferrari et
al. 2004; Lowe 2004; Berg et al. 2005), novel view render-
ing (Avidan and Shashua 1998; Shum and Kang 2000) and
scene understanding (Franke and Joos 2000; Schaffalitzky
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Fig. 1 Problem setup. We address a “dense” wireless camera network
that has many cameras observing the scene of interest. In many com-
puter vision applications such as camera calibration, object recogni-
tion, novel view rendering and scene understanding, establishing visual
correspondences between camera views is a key step. In this paper, we

study the problem within the dashed ellipse: cameras A and B observe
the same scene, and camera B sends information to camera A such that
camera A can determine a list of visual correspondences between cam-
eras A and B. The objective of this work is to find a way to efficiently
transmit such information

Fig. 2 Visual correspondences example. In this example, we show
two views taken of the same scene (“Graf”; Mikolajczyk and Schmid
2005). In each view, we have marked out 3 feature points, and a line
is drawn between each pair of corresponding features. A pair of visual
correspondence tells us that the image points are of the same physical
point in the scene. In this work, we address the issue of coding and
transmitting feature descriptors under rate constraints for the determi-
nation of visual correspondences between views

and Zisserman 2002), typically require a list of visual cor-
respondences between cameras. As illustrated in Fig. 2, a
visual correspondence refers to the pair of image points, one
from each camera, which are known to be projections of the
same point in the observed scene. Due to the critical role that
visual correspondences play in a wide variety of computer
vision tasks that are relevant for wireless camera networks,
we focus on the problem of finding visual correspondences
between two cameras, denoted as camera A and camera B,
communicating under rate constraints. Although we use the
two cameras problem as a way to illustrate our approach,
the framework presented in this paper can in fact be directly
extended to a multiple cameras scenario since wireless com-
munications are inherently broadcasts.

Traditionally, computer vision methods assume that im-
ages from all cameras are available at a central processor
with an implicit one-time communications cost. In a mobile
and wireless camera network, these assumptions are called
into question—due to changing camera states and band-
width constraints. For example, consider a calibration or lo-
calization task. If wireless camera motes are attached to the

helmets of security personnel on patrol or if a large group of
self-propelled robots equipped with cameras and radios are
deployed, it would be important to minimize the rate needed
to continuously update the location and orientation of each
camera relative to a reference frame. Even if the camera
motes are designed to be static, environmental disturbance
could affect their pose, thus requiring frequent updating of
calibration parameters. Furthermore, to avoid central coor-
dination and long communication hops from sensor nodes
to a backend server, the calibration procedure should ideally
be distributed (Devarajan and Radke 2004).

In a centralized setup, one typical approach to finding vi-
sual correspondences is to make use of point features and
descriptors. Features, or interest points, are first located in
the images. Descriptors are then computed for each feature;
these describe the image neighborhood around each feature
and are usually high dimensional vectors. Visual correspon-
dences are found by performing feature matching between
all pairs of features between cameras A and B based on some
distance measure between descriptors.

In a distributed setting as shown in Fig. 1, camera B
should transmit information to camera A such that cam-
era A can determine a list of point correspondences with
camera B. A naïve approach would be for camera B to send
either its entire image or a list of its features and descrip-
tors to camera A for further processing (Cheng et al. 2007).
In applications requiring frequent resolution of visual corre-
spondences, such as those described earlier, achieving fur-
ther rate savings would be critical. A key observation is that
in the feature matching process, the Euclidean distance be-
tween descriptors is often used as the matching criterion
(Lowe 2004; Mikolajczyk and Schmid 2005).1 Pairs of fea-

1In Lowe’s seminal paper (Lowe 2004), the matching criterion pro-
posed is the ratio of the distance from the nearest neighbor to the dis-
tance from the second nearest neighbor. However, in the study per-
formed by Mikolajczyk and Schmid (2005), it was shown that using
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tures that are estimated to be in correspondence would there-
fore have descriptors that are highly correlated. One of our
novel contributions is in proposing a distributed source cod-
ing (Slepian and Wolf 1973; Wyner and Ziv 1976) approach
that exploits this observation to reduce the rate needed for
finding visual correspondences.

In the computer vision literature, many different types of
descriptors exist. The choice of a descriptor is mostly driven
by the task at hand and the statistics of the observed scene.
Thus, we focus on developing an approach for rate-efficient
visual correspondences that works across a broad range of
feature descriptors. This allows the end-user some flexibility
in the choice of descriptors depending on the domain knowl-
edge about the task and the scene.

1.1 Problem Statement

In this paper, we study the problem of establishing visual
correspondences between two cameras in a distributed man-
ner under rate constraints, as illustrated in Fig. 1. Cameras
A and B have overlapping views of the same scene and cam-
era A wishes to obtain a list of visual correspondences be-
tween the two cameras. Camera B should send information
in a rate-efficient manner such that camera A can obtain this
list and use it for any other down-stream computer vision
task.

We assume that both cameras A and B have already ex-
tracted a list of features and computed descriptors for each
of the features from their respective image views. Let Ai

denote the ith feature out of NA features in camera A, with
image coordinates (xA

i , yA
i ) and descriptor DA

i , and Bj de-
note the j th feature out of NB features in camera B, with
image coordinates (xB

j , yB
j ) and descriptor DB

j . We will as-
sume that camera A will determine that Ai corresponds with
Bj if

‖DA
i − DB

j ‖2 < τ (1)

for some acceptance threshold τ . We denote this as the
Euclidean matching criterion.

1.2 Related Work

There has been some work in establishing visual correspon-
dences in camera networks. Lee and Aghajan assume the
availability of a single moving target that is visible from the
cameras that are to be calibrated (Lee and Aghajan 2006),
thus providing a time series of correspondences between
cameras. Barton-Sweeney et al. assume the availability of
beacon nodes that identify themselves by using LEDs to

the distance ratio did not significantly improve upon the matching per-
formance of just using a threshold on the distance from the nearest
neighbor, even in the high precision matching regime.

broadcast modulated light, hence allowing cameras to deter-
mine visual correspondences (Barton-Sweeney et al. 2006).
However, such constrained or controlled environments are
not feasible in a more widespread practical deployment.

Cheng et al. studied a related problem of determining a
vision graph of cameras in a network that have significant
overlap in their field of view (Cheng et al. 2007). A key
component of their proposed approach is the use of Prin-
cipal Components Analysis (PCA) to achieve dimension-
ality reduction by sending only the top principal descrip-
tor components. However, an arbitrary number of bytes (4)
is chosen to represent each coefficient. Chandrasekhar et
al. apply transform coding and arithmetic coding on de-
scriptors to build compressed features for image matching
and retrieval (Chandrasekhar et al. 2009b). More recently,
Chandrasekhar et al. introduced a method based on using
Huffman trees to directly represent quantized histograms of
gradients (Chandrasekhar et al. 2009a). However, in these
works, performance is evaluated on either the detection of
overlapping views between cameras (Cheng et al. 2007),
or object category recognition (Chandrasekhar et al. 2009b,
2009a). In particular, the performance of establishing visual
correspondences is not evaluated directly.

Recent works in image descriptor have also considered
applying learning techniques to improve matching perfor-
mance. Mikolajczyk and Matas proposes a Mahalanobis-
based metric for SIFT descriptors that accounts for non-
isotropic noise in the descriptor dimensions; this is used
to derive the descriptor transform and dimensionality re-
duction (Mikolajczyk and Matas 2007). Cai et al. pro-
poses the use of linear discriminant projections to reduce
dimensionality after de-correlating the descriptors (Cai et
al. 2008). Winder and Brown proposes a general learning
framework for learning good parameters using a training set
of patches (Winder and Brown 2007). In a camera network
where the scenery could be changing with time, such train-
ing methods may not be feasible. Nevertheless, the frame-
work proposed in this work is general enough, such that, if
the scene characteristics are fixed, our framework allows for
the use of the above techniques as a pre-processing step.

Roy and Sun used binarized random projections to build
a descriptor hash (Roy and Sun 2007; Indyk and Motwani
1998); the Hamming distance between hash bits is then
used to establish matching features. More elaborate distance
learning methods can also be applied to improve match-
ing performance, e.g. (Jain et al. 2008; Weiss et al. 2009;
Salakhutdinov and Hinton 2009); however, this requires the
use of a training step to learn hashing parameters from train-
ing data. Martinian et al. proposed a way of storing bio-
metrics securely using a syndrome code to encode the en-
rolled biometric bits (Martinian et al. 2005), while Lin et
al. proposed the use of syndrome codes on quantized pro-
jections for image authentication (Lin et al. 2007). In both
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approaches, the syndrome is decoded using the test biomet-
ric or test image as side-information; a match is signaled by
decoding success. However, the rate of the syndrome code
has to be chosen by trial and error to balance security, false
positive and false negative performance.

In our previous work, we proposed the novel use of dis-
tributed source coding (DSC) in the problem of establishing
visual correspondences between cameras in a rate-efficient
manner (Yeo et al. 2008a). We found that descriptors of
corresponding features are highly correlated, and describe a
framework for applying DSC with transform coding in fea-
ture matching given a particular matching constraint.

1.3 Contributions

We make the following contributions in this paper. We pro-
pose the use of coarsely quantized random projections of
descriptors to build binary hashes and the use of Hamming
distance between binary hashes as the matching criterion.
We derive the analytic relationship of Hamming distance be-
tween the binary hashes to Euclidean distance between the
original descriptors, and show that the Hamming distance
has a binomial distribution with a parameter that is deter-
mined by the Euclidean distance. We then show how a lin-
ear code can be applied to further reduce the rate needed.
In particular, the rate to use for the code can be easily de-
termined by the desired Euclidean distance threshold and a
target probability of error.

We also set up a systematic framework for performance
evaluation of establishing visual correspondences by view-
ing it as a retrieval (of visual correspondences) problem un-
der rate constraints. While Mikolajczyk and Schmid con-
sider the relative performance of various descriptors for cor-
respondence (Mikolajczyk and Schmid 2004), and Winder
and Brown consider the problem of learning descriptors for
feature matching (Winder and Brown 2007), here we inves-
tigate an orthogonal direction in which rate constraints are
imposed. Cheng et al. considered the performance of vision
graph building under rate constraints (Cheng et al. 2007);
however, visual correspondences can be used for other vi-
sion tasks as well, so measuring the performance of visual
correspondences retrieval would give better insights into
rate-performance tradeoffs in other vision tasks.

We demonstrate our proposed methods on a particu-
lar choice of feature detector and descriptor, namely the
Hessian-Affine region detector (Mikolajczyk and Schmid
2004) and Scale-Invariant Feature Transform (SIFT) de-
scriptor (Lowe 2004). It is worth noting that the methods
presented in this paper are generally applicable to other
combinations of feature detectors and descriptors, thus al-
lowing the end-user a key flexibility in the choice of de-
scriptors depending on the task at hand the knowledge of
the scene statistics.

The rest of the paper is organized as follows. In Sect. 2,
we cover the necessary background on feature detectors and
descriptors used for determining visual correspondences and
on DSC. The proposed approach for binarized random pro-
jections is discussed in Sect. 3. We present our experimental
results in Sect. 4 before ending with concluding remarks in
Sect. 5.

2 Background

In this section, we discuss relevant background material on
feature detectors and descriptors which are used in finding
visual correspondences. We also discuss distributed source
coding, which is used to reduce the rate needed to transmit
descriptors of corresponding features.

2.1 Feature Detector and Descriptor

In our work, we use Hessian-Affine region detectors to de-
tect and localize features, or interest points, that are invariant
to rotations, scale changes and affine image transformations
in the sense that they can be reliably detected and accurately
localized under such transforms (Mikolajczyk and Schmid
2004). This feature detection is a two step process. First,
a Hessian-Laplace region detector localizes interest points
in space at local maximas of the image Hessian determi-
nant, and in scale at local maximas of the image Laplacian-
of-Gaussian. Then, an affine adaptation step is carried out
to estimate a feature point neighborhood that is invariant to
affine image transformations. These invariances are impor-
tant when there are significant viewpoint changes between
cameras.

After finding interest points to use as features, we com-
pute SIFT descriptors (Lowe 2004) for each of the fea-
tures. SIFT descriptors are 128-dimensional descriptors con-
structed to be invariant to scale and orientation changes
and robust to illumination and affine distortions. They have
been shown to have good performance in practice and are
widely used in computer vision (Lowe 2004; Mikolajczyk
and Schmid 2005). Briefly, the descriptors are computed as
follows. First, the pixel neighborhood of the interest point,
computed during Hessian-Affine region detection, is rotated,
scaled and warped to achieve rotational, scale and affine in-
variance. Next, the area of pixels is divided into a total of
4 × 4 tiles. An 8-bin orientation histogram is constructed for
each tile from the pixels in that tile. The histograms are then
stacked together to form a 128-dimensional vector. Finally,
the vector is normalized to reduce illumination induced ef-
fects.

2.2 Distributed Source Coding

In this work, to enable distributed coding of physically sep-
arated but correlated descriptors of corresponding features,
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Fig. 3 Source coding models. (a) DSC model, where side-information
Y is available only at the decoder; (b) “Oracle” model, where the same
side-information Y is available at both encoder and decoder

we rely on and are inspired by both information-theoretic
and practical results in a particular setup of distributed
source coding: lossy source coding with side-information
(Cover and Thomas 1991), depicted in Fig. 3(a). In this set-
up, {Xi,Yi}ni=1 are i.i.d. random variables with known joint
probability distribution pX,Y (x, y), and X̂n is the decoder
reconstruction of Xn. In the context of establishing visual
correspondences, Xn and Yn could be the descriptors of cor-
responding features. The objective is to recover X̂n to within
distortion D for some per-letter distortion d(x, x̂), i.e., we
want

∑N
i=1 d(Xi, X̂i) ≤ D. Note that in the DSC set-up, Yn

is only available at the decoder. In contrast, in Fig. 3(b),
the side-information Yn is available at both encoder and de-
coder. This is as if an oracle told the encoder what the de-
scriptor of the corresponding feature is, something that is
clearly not possible when cameras are physically separated.

In designing distributed source coding scheme, two
pieces of information are needed. First, the desired distor-
tion criteria between the source and decoder reconstruction
needs to be specified by the user. Second, the correlation
model between X and Y needs to be known (or estimated).

3 Distance Preserving Hashes Using Binarized Random
Projections

Inspired by work from Roy and Sun, we use coarsely quan-
tized random projections to build a descriptor hash (Roy

and Sun 2007); the Hamming distance between hash bits
can then be used to determine if two features are in corre-
spondence. For a feature point with descriptor D ∈ Rn, we
construct a M-bit binary hash, d ∈ {0,1}M , from D using
random projections as follows (Roy and Sun 2007). First,
randomly generate a set of M hyperplanes that pass through
the origin, H = {H1,H2, . . . ,HM} and denote the normal
vector of the kth hyperplane, Hk , by hk ∈ Rn. Next, the kth
bit of d , d(k) ∈ {0,1}, is computed based on which side of
the kth hyperplane D lies. In other words,

d(k) = I[hk · D > 0] (2)

The intuition for using such a hash is that if two descrip-
tors are close, then they will be on the same side of a large
number of hyperplanes and hence have a large number of
hash bits in agreement (Roy and Sun 2007). Therefore, to
determine if two descriptors are in correspondence, we can
simply threshold their Hamming distance. This also has the
advantage that computing Hamming distances between de-
scriptor hashes is computationally cheaper than computing
Euclidean distances between descriptors.

3.1 Analysis of Binarized Random Projections

To pick a suitable threshold, we need to understand how
Hamming distances between descriptor hashes are related
to Euclidean distances between descriptors. In this section,
we assume that descriptors are normalized to unit length.
This is not unreasonable; for example, SIFT descriptors are
normalized in the last step of descriptor computation (Lowe
2004) (see Sect. 2.1). With this assumption, we can show the
following theorem about how a single hash bit relates to the
distance between two descriptors and then use it to show the
relationship between Hamming distance between the binary
hashes and the Euclidean distance between the descriptors.
After performing this work, we subsequently found that a
similar theorem was used in similarity estimation (Charikar
2002, Sect. 3) and in approximate maximum cuts computa-
tion (Goemans and Williamson 1995, Lemma 3.2).

Theorem 1 Suppose n-dimensional descriptors DA
i and

DB
j are separated by Euclidean distance δ, i.e. ‖DA

i −
DB

j ‖2 = δ. Then, the probability that a randomly (uni-
formly) generated hyperplane will separate the descriptors
is 2

π sin−1 δ
2 .

Corollary 1 Suppose n-dimensional descriptors DA
i and

DB
j are separated by Euclidean distance δ, i.e. ‖DA

i −
DB

j ‖2 = δ. If we generate M-bit binary hashes, dA
i and dB

j ,
from DA

i and DB
j respectively, then their Hamming distance,

dH (dA
i ,dB

j ), has a binomial distribution, Bi(M,pAB
ij ),

where pAB
ij = 2

π sin−1 δ
2 .
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Fig. 4 Graphical illustration of proof for Lemma 1. A general
multi-dimensional case can always be reduced to a 2-D case, in the
plane formed by DA

i , DB
j , and the origin. The angle subtended by the

rays from the origin to DA
i and DB

j in this plane can be found using

simple trigonometry to be θ = 2 sin−1(δ/2). If a hyperplane orientation
is chosen uniformly at random, then the probability of the hyperplane
separating DA

i and DB
j is just θ/π

Proof of Corollary 1 dH (dA
i ,dB

j ) is just the number of
times a randomly generated hyperplane separates the two
descriptors. Since the hyperplanes are generated indepen-
dently, the Hamming distance has a binomial distribution
with the Bernoulli parameter given by Theorem 1. !

To prove Theorem 1, we need the following lemma.

Lemma 1 Suppose 2-dimensional descriptors DA
i and

DB
j are separated by Euclidean distance δ, i.e. ‖DA

i −
DB

j ‖2 = δ. Then, the probability that a randomly (uni-
formly) generated hyperplane will separate the descriptors

is
2 sin−1 δ

2
π .

Proof In the simple case of 2 dimensions as illustrated in
Fig. 4, DA

i and DB
j lies on a unit circle with center at the

origin since descriptors have unit-norm. A randomly (uni-
formly) generated hyperplane in this case is just a line pass-
ing through the origin with equal probability of being in any
orientation. Observe that the hyperplane (line) separates the
descriptors (denoted by event E ) if and only if it intersects
the shorter of the arcs connecting DA

i and DB
j . Hence, by

simple trigonometry,

P(E ) =
Arc length between DA

i and DB
j

π
= 2 sin−1 δ

2

π

!

Now, we can easily prove Theorem 1.

Proof of Theorem 1 We will show the result by reducing to
the 2-D case as in Lemma 1. DA

i , DB
j and the origin de-

fines a plane, S . A hyperplane H passing through the origin

separates the descriptors if and only if the line intersection
between H and S also separates the projections of DA

i and
DB

j on S (almost surely). Since this line has equal probabil-
ity of being in any orientation, the result follows by applying
Lemma 1. !

Using Theorem 1, we convert the distance testing prob-
lem from a deterministic and continuous-valued problem to
a probabilistic and binary-valued one. Specifically, we can
model dA

i (k) and dB
j (k) as being related by a binary sym-

metric channel (BSC) with parameter ρ(δ) given by:

ρ(δ) = 2
π

sin−1 δ

2
(3)

when ‖DA
i − DB

j ‖2 = δ.

3.2 Numerical Demonstration of Theorem 1

To demonstrate Theorem 1, we ran the following experiment
on descriptors obtained from a separate set of training image
pairs. We consider the set of all possible pairs of descriptors,
and pick at random equal number of corresponding and non-
corresponding pairs. We then compute the Euclidean dis-
tance between the pair, and estimate the probability that a
randomly generated hyperplane separates the two points by
performing a Monte-Carlo simulation with 5 × 104 trials.

A scatter plot of the estimated probability vs Euclidean
distance is shown in Fig. 5. We also plot the theoretical prob-
abilities as derived in Theorem 1. Figure 5 shows that the
simulation results agree with our analysis as expected. Fur-
thermore, the plot also verifies that good separation between
corresponding and non-corresponding pairs can be obtained
with an appropriately chosen Euclidean distance threshold.

3.3 Choosing the Number of Hash Bits

Denote dA and dB to be binary-valued M-tuples formed by
taking the M-bit binarized random projections hash of DA

and DB respectively. Note that we have dropped the sub-
scripts for clarity but we will use it when it is necessary to
distinguish between various features. From Corollary 1, the
hamming distance between dA and dB , dH (dA,dB), fol-
lows the binomial distribution and can be used as a test sta-
tistic in a hypothesis testing framework to decide if DA and
DB satisfy the distance criterion.

Let p denote the probability of a randomly generated hy-
perplane separating DA and DB and let pτ = ρ(τ ) (see (3)).
The hypotheses are:

H0 : p > pτ + µ/2 (i.e. ‖DA − DB‖ > τ )

H1 : p < pτ − µ/2 (i.e. ‖DA − DB‖ < τ )

where µ specifies an “insensitive” region around pτ for
which we would not measure performance. Since
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Fig. 5 (Color online) Simulation results demonstrating Theorem 1. We
show the scatter plot of Euclidean distance between a pair of descrip-
tors and the estimated probability of a randomly chosen hyperplane
separating the pair for a randomly chosen subset of pairs of features.
The x-axis is the actual Euclidean distance between the pair of de-
scriptors, and the y-axis is the estimated probability of a randomly

chosen hyperplane separating the descriptors. The blue circles repre-
sent pairs in correspondence, while green crosses represent pairs not
in correspondence. The theoretical relationship between the two quan-
tities is plotted as a red solid curve. Note the close adherence to the
theoretical result, and the good separation between corresponding and
non-corresponding pairs

dH (dA,dB) has a binomial distribution, it is a monotone
likelihood ratio (MLR) statistic (Bickel and Doksum 2000).
Therefore, we can construct a uniformly most powerful
(UMP) test of level α based on thresholding dH (dA,dB)

with the following properties: the probability of falsely
declaring a pair satisfying the distance criterion is always
less than α while the probability of missing a pair satisfying
the distance criterion is not more than any other tests of level
α (Bickel and Doksum 2000). One reasonable choice for the
threshold is:

γM = M · pτ = 2M

π
sin−1 τ

2
(4)

To understand how many projections are needed for a test
to satisfy a given error bound, we apply a Chernoff bound
on the probability of false detection (declaring H1 given H0)
and missed detection (declaring H0 given H1) of the hypoth-
esis test. For example, given that p > pτ + µ/2 (i.e. H0),

P(Ĥ1|p,H0) ≤ exp (−MD(pτ ||p)) (5)

≤ exp (−MD(pτ ||pτ + µ/2)) (6)

where D(p||q) is the Kullback-Leibler divergence between
two Bernoulli sources with parameter p and q , (5) follows
from applying Chernoff bound and (6) follows from con-
sidering the worst case in H0, which is when p = pτ +

µ/2. In this analysis, we assume the choice of threshold
γM = Mpτ . A similar analysis also shows that P(Ĥ0|H1) ≤
exp (−MD(pτ ||pτ − µ/2)). These bounds can then be used
to determine a suitable number of projections to use given a
desired error bound.

Qualitatively, the above bounds tell us that the less strin-
gent the matching criteria, i.e. the larger τ and hence pτ is,
the larger the number of projections needed to satisfy a tar-
get error, given the same absolute size of the “insensitive”
region.

3.4 Using Linear Codes for Distributed Source Coding

In a related work, Körner and Marton (1979) showed that if
dA and dB are generated by binary symmetric sources re-
lated by a BSC with known cross-over probability p, then
to recover the flip pattern, Z = dA ⊕ dB , with probability
of failure less than ε, both A and B need to use a rate of at
least H(p) bits respectively (asymptotically). The achiev-
able strategy uses a linear code and is as follows (Körner
and Marton 1979): Let f (Z) be a linear encoding function
of the binary vector Z that returns K output bits from M in-
put bits. Letψ(·) be the decoding function of this linear code
such that P (ψ(f (Z)) '= Z) < ε. A and B then construct and
transmit f (dA) and f (dB) respectively. A receiver can then
construct f (dA) ⊕ f (dB) = f (dA ⊕ dB) = f (Z), since
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f (·) is a linear code, and reconstruct Z with probability of
failure less than ε. Thus, we can use this scheme as a way to
apply distributed source coding for obtaining rate savings,
using a rate of H(p) instead of 1.

While the above scheme recovers the flip pattern Z,
Ahlswede and Csiszár showed that the above rate region
in fact holds even if only the hamming distance is desired
(Ahlswede and Csiszár 1981). This also suggests that if we
want to recover the hamming distance only when p < pτ
(but p is otherwise unknown), the best we can hope to do
in a one-shot scenario, i.e. B just sends one message to A
with no other interaction, is to use a rate of H(pτ ) and the
method described earlier is an achievable strategy. The op-
timality of this scheme when we just want to know if the
hamming distance is smaller than some threshold is an open
question.

For a practical implementation used in this work, we
use the parity-check matrix of a low-density parity-check
(LDPC) code (Gallager 1963) as the linear encoding func-
tion (Lin et al. 2007; Martinian et al. 2005); thus, the output
f (dA) is just the LDPC syndrome of dA. To decode, we ap-
ply belief-propagation (BP) decoding (Richardson and Ur-
banke 2001) on the XOR sum of the syndromes of dA and
dB , i.e. f (dA)⊕f (dB). We choose a code with blocklength
M and rate r such that it has a threshold corresponding to
γM
M (Richardson and Urbanke 2001). To determine if the dis-

tance criterion is satisfied, decoding must converge2 and the
hamming weight of Z is less than γM .

3.5 Algorithmic Summary

To summarize, the procedure for performing distributed dis-
tance testing is as follows. The user parameters are: n, the
dimensionality of the real-valued source; M , the number of
projections desired; and τ , the Euclidean distance thresh-
old (or equivalently γM = Mρ(τ )). From these parameters,
we generate a suitable LDPC code with K syndrome bits,
i.e. with rate (1 − K

M ), such that it has threshold γM
M , and ob-

tain its parity check matrix H ∈ GF(2)M×K . We also gen-
erate a random projection matrix L ∈ Rn×M with the kth
column denoted by lk . Both H and L are shared by the en-
coder and decoder.

The encoder is described in Algorithm 1. For the j th de-
scriptor, mB

j is its encoded message.
The decoding process is described in Algorithm 2. We

assume that the same encoding process described in Algo-
rithm 1 has already been applied to the descriptors from
camera A.

2We determine that it converges if the reconstruction satisfies the parity
check matrix within 50 iterations.

Algorithm 1 Encodes descriptors from camera B using RP-
LDPC
Input: NB , {(xB

j , yB
j ),DB

j }NB
j=1

Output: {(xB
j , yB

j ),mB
j }NB

j=1
for j = 1 to NB do

Compute the binary random projections, dB
j , with the

kth element being dB
j (k) = I[lk · DB

j > 0]
Compute the syndrome of dB

j , mB
j = HT dB

j

end for

Algorithm 2 Decode transmissions from camera B and find
visual correspondences between camera A and camera B us-
ing RP-LDPC

Input: NA, {(xA
i , yA

i ),mA
i }NA

i=1
Input: NB , {(xB

j , yB
j ),mB

j }NB
j=1 {received from camera B}

Output: List of visual correspondences between cameras
A and B
for j = 1 to NB do

for i = 1 to NA do
Compute mz = mA

i ⊕ mB
j .

Perform BP decoding on the syndrome mz to obtain
reconstruction Ẑ ∈ GF(2)M .
if BP decoding converges and dH (Ẑ) < γM then

Add (i, j) to the list of visual correspondences
end if

end for
end for

4 Experimental Evaluations

4.1 Setup

We evaluate our proposed approaches on a standard bench-
mark dataset made publicly available3 by Mikolajczyk and
Schmid (2005). In particular, we consider the most chal-
lenging case of viewpoint changes where shots are taken of
the same scene from different viewing angles with a view-
point change of about 20 degrees between neighboring cam-
era views. These are the “Graf” and “Wall” scenes, shown
in Fig. 6. Each image has dimensions of about 840 × 660.
In “Graf”, the images are taken of a planar scene, while
in “Wall”, the images are taken by a camera undergoing
pure rotation. Due to geometric constraints in each of these
cases, the image views are related by a homography (Ma et
al. 2004). The dataset also includes computed ground-truth
homography which allows for ground-truth correspondence
pairs to be extracted based on overlap error in the regions
of detected features (Mikolajczyk and Schmid 2005). This

3http://www.robots.ox.ac.uk/~vgg/research/affine.

http://www.robots.ox.ac.uk/~vgg/research/affine
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Fig. 6 Test dataset
(Mikolajczyk and Schmid
2005). The data used for our
tests are shown above:
(a) “Graf”; and (b) “Wall”. In
“Graf”, the different views are
of a mostly planar scene, while
in “Wall”, the views are
obtained by rotating the camera
about its center. In both cases,
the views are related by a
homography (Ma et al. 2004)

leads naturally to a systematic performance evaluation of the
task of establishing visual correspondences.

Our evaluation procedure is as follows. We first run the
Hessian-Affine feature detector to obtain a list of features in
each image and then compute the SIFT descriptor for each
feature. We set the feature detector threshold such that it
returns a maximum of 2000 features per image. Using the
ground-truth homography and given the list of detected fea-
tures in each image, we find the list of Ctotal ground-truth
correspondences between those features. We encode and de-
code the descriptors from camera B using the following four
procedures:

Baseline This consists of using transform coding to de-
correlate the descriptor, and then applying entropy coding on
the quantized coefficients using an arithmetic coder. Decod-
ing simply consists of undoing the above steps. Matches are
found using the target Euclidean matching criterion. Differ-
ent rate constraints can be satisfied by varying the quantiza-
tion step size used.

DSC Descriptors are encoded using the encoding proce-
dure outlined in our earlier work on using distributed source
coding with transform coding (Yeo et al. 2008a). The re-
ceived messages are decoded using descriptors from camera
A as side-information. Matches are found when decoding
is successful and meets the target Euclidean matching cri-
terion. As in the baseline scheme, different rate constraints
can be satisfied by varying the quantization step size used.

RP Descriptors are encoded using the binarized random
projections discussed in Sect. 3 but without applying the
linear code, i.e. the random projection bits are sent as is.
Matches are found using a hamming distance threshold
computed from the target Euclidean matching criterion us-
ing (4). Different rate constraints can be satisfied by varying
the number of projections used.

RP-LDPC Descriptors are encoded and decoded using the
procedure described in Sect. 3.5. The received messages are
decoded using the hashed descriptors from camera A as
side-information. Recall that matches are found when BP

decoding is successful and satisfies the target hamming dis-
tance threshold. As in the RP scheme, different rate con-
straints can be satisfied by varying the number of projections
used.

In all cases, we note the rate, R, that is used. Each
approach would return a list of Cretrieve retrieved corre-
spondences and we compute Ccorrect, the number of cor-
rectly retrieved correspondences, using the ground-truth cor-
respondence pairs obtained earlier. From these, we compute
both the recall value, Re = Ccorrect/Ctruth, and the precision
value, Pr = Ccorrect/Ctotal, of the scheme. The recall indi-
cates how many of the correspondences present (given the
list of detected features) can be found and the precision in-
dicates how good the retrieved correspondences are. For ex-
ample, when performing calibration, it is important to main-
tain high precision of the retrieved correspondences to en-
sure that outliers do not break the calibration procedure. To
jointly quantify recall and precision, we use the balanced
F -score, F1 = 2×Re×Pr

Re+Pr , which is commonly used in the in-
formation retrieval literature (Larsen and Aone 1999).

In our experiments, we consider both τ = 0.195 (ρ(τ ) =
0.0623) and τ = 0.437 (ρ(τ ) = 0.1401). The former corre-
sponds to a more stringent matching criteria, thus we will
expect that retrieved visual correspondences would have
higher precision. For both the baseline and DSC schemes,
we consider quantization step sizes ranging from 1.95 ×
10−3 to 6.25 × 10−2. In the DSC scheme, we use α = 1.718
and a 24-bit CRC (Yeo et al. 2008a). For both the RP and
RP-LDPC schemes, we vary the number of random pro-
jection used from 64 to 1024 (per descriptor). In the RP-
LDPC scheme, we use a rate (1 − 0.50) LDPC code when
τ = 0.195 and a rate (1−0.73) LDPC code when τ = 0.437.

4.2 Results

We present results averaged over all 5 pairs of neighboring
views for each scene type. Figure 7 shows the rate-recall
tradeoffs of the various schemes under consideration for an
Euclidean Distance Criterion of τ = 0.195 and τ = 0.437
respectively. From Figs. 7(a) and 7(b), at a lower threshold
of τ = 0.195, we see that in the baseline and DSC schemes,
the number of correct correspondences retrieved increases
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Fig. 7 Rate-recall tradeoff. The above plots show how the average
number of correctly retrieved correspondences (Ccorrect) varies with
rate. The results for “Graf” are shown in (a) and (c); that of “Wall” are

shown in (b) and (d). In (a) and (b), a threshold of τ = 0.195 is used,
while in (c) and (d), a threshold of τ = 0.437 is used

with the amount of rate used. Furthermore, the DSC scheme
always requires less rate than the baseline scheme to obtain
the same performance since it requires less rate to describe
each descriptor. On the other hand, the number of correctly
retrieved correspondences stay relatively stable over a wide
range of rates in the RP and RP-LDPC schemes.

At a larger threshold of τ = 0.437, Figs. 7(d) and 7(d)
shows that the baseline scheme now requires less rate than
the DSC scheme. This is due to corresponding descriptors
satisfying this larger threshold being less correlated. RP-
LDPC still requires slightly less rate than RP due to the use
of the linear code to further compress the binarized random
projections. However, the baseline scheme outperforms both
RP and RP-LDPC. As suggested by our analysis in Sect. 3.3,
with a larger threshold, we would expect that more hash bits
are needed to satisfy the same error bound.

Figure 8 shows how the F1 score, a joint measure of re-
call and precision, varies with rate. At a low threshold, the

DSC scheme performs better than the baseline scheme in
requiring smaller rate for the same performance but this re-
verses at a higher threshold. In addition, the F1 score is rel-
atively stable over a range of rates for both the RP and RP-
LDPC schemes at a low threshold—this implies that when
a stricter criterion is necessary, one can get by with spend-
ing as little as 64 bits per descriptor. With a larger threshold,
however, all the schemes appear to have a relatively simi-
lar F1 performance over a wide range of rates. At very low
rates, RP-LDPC still requires slightly less rate than RP for
the same performance.

We have also experimented with using the Portable Net-
work Graphics (PNG) image format to compress the entire
image losslessly prior to sending it. However, the rate used
is about an order of magnitude more than any of our pro-
posed approaches and so we do not show it in our above
plots. Thus, all of our proposed approaches do better at uti-
lizing bandwidth to establish correspondences than simply
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Fig. 8 Rate-F1 tradeoff. The above plots show how the F1 score, a
measure that takes into account both recall and precision performance,
varies with rate. The results for “Graf” are shown in (a) and (c); that

of “Wall” are shown in (b) and (d). In (a) and (b), a threshold of
τ = 0.195 is used, while in (c) and (d), a threshold of τ = 0.437 is
used

sending a lossless compressed version of the captured im-
age.

In addition, recall that feature descriptors are usually high
dimensional. For example, the SIFT descriptors used in our
experiments are 128-dimensional. Since we use PCA to es-
timate the linear de-correlating transform needed in both
the baseline and DSC schemes, the coefficients are already
ordered according to their variances. Therefore, a possible
way of further reducing rate is to perform dimensionality
reduction by discarding the transformed descriptors coeffi-
cients with lower variance (Cheng et al. 2007). Since the
number of dimensions is changed, there is a need to ad-
just the threshold as well. Here, we adjust the threshold
proportionally to the fraction of remaining noise variances,

i.e. (τ ′)2 =
∑D′

i=1 σ
2
i∑D

i=1 σ
2
i

τ 2, where τ ′ is the adjusted threshold,

D = 128 is the original dimensionality of the descriptor
and D′ is the new dimensionality of the dimensionality
reduced descriptor. Figure 9 shows results when we keep

only the most dominant 64 coefficients of the transformed
descriptor for the case when τ = 0.195. Using DSC still
gives significant performance gains over the baseline encod-
ing. This suggests that the DSC framework can be success-
fully used in conjunction with dimensionality reduction via
PCA.

Overall, in retrieving visual correspondences, all our pro-
posed schemes outperform the baseline approach when a
stringent matching criterion is used. Depending on the quan-
tization used, the DSC scheme achieves a 6% to 30% rate
savings over the baseline scheme with almost the same re-
trieval performance. Furthermore, the RP and RP-LDPC
schemes respectively use up to 10× and 15× less rate than
the baseline scheme. On the other hand, when a less strin-
gent matching criterion is desired, our experimental results
indicate that the baseline scheme would be the method of
choice.
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Fig. 9 Rate-performance tradeoff with dimensionality reduction. We
can also apply the baseline and DSC schemes in conjunction with di-
mensionality reduction. Here, we keep only the first 64 coefficients
after PCA. The above plots show how the average number of correctly

retrieved correspondences (Ccorrect) varies with rate. The results for
“Graf” are shown in (a) and (c); that of “Wall” are shown in (b) and
(d). In (a) and (b), we show the rate-recall tradeoff, while in (c) and
(d), we show the rate-F1 tradeoff. A threshold of τ = 0.195 is used

4.3 Effect on Homography Estimation

While a performance evaluation of visual correspondences
retrieval is interesting in its own right, the retrieved list is
typically used for some higher-level computer vision task
such as camera calibration. We now briefly consider the per-
formance of various schemes in homography estimation for
two camera views.

The setup is almost the same as above. For each pair of
neighboring views, we first find the list of correspondences
between them using each of the methods under considera-
tion. We then attempt to robustly fit a homography matrix
by applying RANSAC4 on the list of putative correspon-
dences (Hartley and Zisserman 2000). Using the final list of

4RANSAC stands for “RANdom SAmple Consensus”, which is an it-
erative procedure used to robustly estimate model parameters from a
set of observed data that contains outliers (Fischler and Bolles 1981).

“good” matches, we first find a linear minimum mean square
error estimate of the homography, followed by a non-linear
optimization of the Sampson distance to arrive at the final
estimate (Hartley and Zisserman 2000).

To quantify how good the homography estimate is, one
could use the Frobenius norm of the difference between the
estimate and the groundtruth. However, in our preliminary
experiments, we found that it is not always a good indica-
tion of the goodness of the homography estimate. Instead,
we use a measure inspired from the comparison of Funda-
mental matrices (Zhang 1998) that is aimed at capturing the
mapping difference between the groundtruth homography,
H , and the estimated homography, Ĥ . We will refer to the
mapping error by dmaperr(H, Ĥ ).

We measure dmaperr(H, Ĥ ) for all schemes listed in
Sect. 4.1. For comparison, we also use JPEG compression to
reduce the rate of images before sending it, where rates are
varied by changing the quality factor of the compression. All
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Fig. 10 Effect of visual correspondences on homography estimation (using τ = 0.195)

Fig. 11 Effect of visual correspondences on homography estimation (using τ = 0.437)

schemes use 2000 features with the highest “corneredness”
score to first find visual correspondences before estimating
homography.

Figure 10 shows the results when a stringent threshold
of τ = 0.195 is used. We see that both the RP and RP-
LDPC schemes achieve smaller mapping errors than the
other schemes, particularly under severe rate constraints. In
addition, RP-LDPC achieves the same mapping errors using
a lower rate than RP. On the other hand, using JPEG, the
baseline scheme or the DSC scheme gives similar homog-
raphy estimation performance, although at low rates, JPEG
does a little worse.

Figure 11 shows the results when a threshold of τ =
0.437 is used. In part because more correspondences are re-
trieved, the mapping errors are on average smaller than when
a more stringent threshold is used. While the JPEG scheme
shows significantly worse performance at very low rates, all
other schemes seem to have very similar performance. It ap-

pears that the effectiveness of RANSAC at eliminating out-
liers has leveled the field for all the schemes.

5 Concluding Remarks

We have presented an approach for determining in a distrib-
uted fashion and under severe rate constraints if two normal-
ized real vectors satisfy a given Euclidean distance criterion.
This is an important step in performing camera calibration in
a wireless camera network where communication costs are
significant. The transmission of descriptors instead of com-
pressed images in a distributed setting also prevents redun-
dant computations since each camera only needs to perform
feature extraction for the images that it captures. While we
use a two terminal setup for sake of discussion, both pro-
posed frameworks can be easily extended to a multiple cam-
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eras scenario. Furthermore, they can be generally used with
any combination of feature detector and descriptor.

Our scheme uses binarized random projections to con-
vert the problem into a binary hypothesis testing problem
and then obtain rate savings by applying distributed source
coding using a linear code on the computed bits. The rate
to use for the code can be easily determined by the desired
Euclidean distance threshold. Our experiments show that in
determining visual correspondences, the binarized random
projections approach often gives a better rate-performance
tradeoff than a baseline scheme when using a stringent
matching criterion. The same also holds when we consider
the task of homography estimation. We have not explored
any security properties of the binarized random projections
scheme, but we think that it offers some inherent security
due to the data obfuscation performed by both the bina-
rized random projections and the syndrome coding (Mar-
tinian et al. 2005). This would be important if the system
operator wants to prevent eavesdroppers from learning about
the scene under observation by the deployed cameras.
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