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Abstract. The challenge of recovering the topology of massive neuronal
circuits can potentially be met by high throughput Electron Microscopy
(EM) imagery. Segmenting a 3-dimensional stack of EM images into the
individual neurons is difficult, due to the low depth-resolution in exist-
ing high-throughput EM technology, such as serial section Transmission
EM (ssTEM). In this paper we propose methods for detecting the high
resolution locations of membranes from low depth-resolution images. We
approach this problem using both a method that learns a discrimina-
tive, over-complete dictionary and a kernel SVM. We test this approach
on tomographic sections produced in simulations from high resolution
Focused Ion Beam (FIB) images and on low depth-resolution images ac-
quired with ssTEM and evaluate our results by comparing it to manual
labeling of this data.
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1 Introduction

Recent years have seen several large scale efforts to recover the structure of
neuronal networks of various animals’ brains [1, 2]. Detecting every single neu-
ron and its synaptic connections to other neurons in dense neuronal tissues re-
quires both high-resolution and high-throughput imaging techniques. Currently,
the only technology that can potentially meet this challenge is high-throughput
Electron Microscopy (EM) followed by automated image analysis, and finally
manual proofreading [3]. Effective image analysis techniques can greatly speed
up this process by reducing the need for manual labour.

High-throughput Electron Microscopy imagery of neuronal tissues can be
obtained using serial section Transmission EM (ssTEM) technology. In ssTEM,
a fixed and embedded neuronal tissue is sliced into sections of about 50nm in
thickness. Each section is then observed using an Electron Microscope producing
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a 2D projection image of the section with a pixel size of about 10× 10nm2. Al-
though the images obtained with this method are of high quality, due to the thick
sectioning, membranes crossing the section in oblique directions appear blurry
(see examples in Figures 1 and 2). Moreover, the same membrane can appear
displaced in consecutive sections, making it difficult to link the regions belong-
ing to the same neuron from one section to the next. High depth-resolution can
be obtained by Focused Ion Beam (FIB) [4] and serial section electron tomog-
raphy [5]. However, because of low throughput these techniques are currently
limited to small tissue volumes and therefore cannot be used to reconstruct
complete neuronal networks.

Slice thickness: 50 nm Slice thickness: 10 nm

Fig. 1. The figure shows part of a tomographic section produced in simulation from
high resolution FIB data (left) and the corresponding middle section in the original
high resolution image (right). Notice the blurry membranes in the left image, which
appear much sharper in the right image. Such membranes are difficult to detect in the
low depth-resolution data. An example of a blurry membrane is marked with a green
(vertical) arrow, a non-membrane region with similar appearance is marked with a red
(horizontal) arrow. A mitochondrion can be seen at the lower part of the image, it is
surrounded by a blue circle.

Once the EM imagery is collected, a crucial step in reconstructing the under-
lying neuronal circuits is to segment each individual neuron in the 3-dimensional
images [3, 6]. Segmentation of neurons can be difficult since different neurons
usually share similar intensity and texture distributions, requiring one to accu-
rately locate their bounding membranes. As neurons are usually very long, each
segmentation mistake can lead to significant mistakes in the topology of the re-
covered network. Moreover, as current, high throughput EM techniques (such as
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Fig. 2. The figure shows parts of a low depth-resolution serial section Tomographic EM
image (left images) and the corresponding middle section in an image reconstructed
with super-resolution (right images). Again, notice the blurry membranes in the left
images (marked by green arrows), which are somewhat rectified by the super-resolution
reconstruction.
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ssTEM) are limited in their depth resolution, relating the different 2D segments
across different sections can be challenging.

A recent approach proposed to improve the depth resolution of ssTEM by
using “limited angle tomography” [7]. In this technique, one images each section
at only a few angles to maintain the high throughput and uses computational
methods to reconstruct the volume structure with high depth resolution. In
particular, Veeraraghavan et al. [8] used a sparse representation of the volume
using a manually chosen over-complete dictionary [9, 10]. [7] used a dictionary
learned on high-resolution FIB data. After the volume is reconstructed at higher
resolution it can be segmented in 3D.

In this paper we follow up on the work presented in [8] and in [7], and pro-
pose to segment the neuronal cells directly from low depth-resolution EM images,
while by-passing the reconstruction step. We employ two existing methods for
detecting the location of membranes in high resolution. The first method learns
a discriminative, over-complete dictionary to relate between the input tomo-
graphic projections and the high resolution class labels. We use the algorithm
of [11] (for other methods see, e.g., [12, 13]). The second method approaches this
classification task using a Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel. We test these approaches on two sets of images. The first
set includes low depth-resolution images constructed in simulations from high
resolution FIB data of fly larva. The second set of images include low-depth
resolution images of fly larva obtained with ssTEM technology. We evaluate our
results by comparing classification results to manual labeling by proofreaders on
both the high resolution FIB images and on super-resolved ssTEM images. We
further compare our results to results obtained with other classification method-
ologies.

2 Approach

2.1 Learning a discriminative, over-complete dictionary

We cast the problem of segmenting the EM imagery as a classification problem.
Our objective is to classify the high resolution voxels as either a membrane or
non-membrane given the low depth-resolution input images. Inspired by the suc-
cess of super-resolution methods [8], which demonstrated that neuronal tissues
can be effectively reconstructed by using over-complete dictionary, we first ap-
proach this problem using sparse representations over a learned dictionary. Our
approach is based on the formulation of Mairal et al. [11], adapting their method
to the resolution available at test time and the desired resolution of the output.
We train a dictionary for the low resolution training data, so that our learned
dictionary optimizes a classification loss function over the high resolution labels.
At test we apply the learned dictionary to the input low resolution data. Below
we describe our approach in more detail.

We begin by defining our training objective. The training data includes a
collection of labels for 3D high resolution patches. Let x ∈ Rp denote a vector
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layout of a high resolution patch, and let y ∈ {−1, 0, 1}p contain the label
for each of the voxels in x, where the label 1 denotes a membrane, -1 a non-
membrane, and 0 is unknown. Let z = Px ∈ Rq be a vector layout of tomographic
projections vectors of x, where the (possibly unknown) q × p matrix P denotes
the projection operator. Our task is to learn an association between the low
resolution patches and the high resolution class labels.

We train a classifier by learning an over-complete dictionary, below we review
the method of [11] as applied to our problem. Let D denote the sought dictionary.
D is a matrix of size q×k where k is the number of dictionary elements (typically
k = 2q). Given D we decompose our training patch z over D by optimizing a
functional of the following form,

α?(z, D) = argmin
α∈Rk

1

2
‖z−Dα‖22 + λ1‖α‖1 +

λ2
2
‖α‖22. (1)

The first term in this equation seeks a vector of coefficients α ∈ Rk that encode
the low resolution patch z in terms of the dictionary D. The remaining terms
use the Elastic Net formulation [14] to regularize α. In particular, the second
term is the `1 norm of α, encouraging a sparse encoding over the dictionary.
The final term is the squared `2 norm of α, which is used to provide stability
by convexifying the problem. λ1, λ2 ≥ 0 are constants. We further constrain the
encoding coefficients α to be non-negative.

Given an optimal encoding vector α? we define our loss function using the
logistic loss. Let

L(α?,y,W ) =

p∑
i=1

log
(

1 + e−y
T
i wTi α

∗
)
, (2)

where y = (y1, . . . , yp)
T

is a vector of the provided labels, and the k × p
matrix W = (w1, · · · ,wp) is a set of learned classification weights1. Our training
procedure optimizes this loss function:

f(D,W ) = Ey,x [L(α?,y,W )] +
ν

2
‖W‖2F , (3)

where E denotes expectation taken over the distribution of (y,x). The rightmost
term is a regularization term; ‖.‖F denotes the Forbenious matrix norm, and ν
is a predetermined constant. We seek to optimize f(D,W ) over all choices of
dictionaries D ∈ D and weight matrices W ∈ Rk×p, where

D = {D ∈ Rq×k | ‖di‖2 = 1 ∀i ∈ 1, . . . , k}. (4)

In practice we only learn the labels of a subset p̃ of the labels, 1 ≤ p̃ ≤ p, so W
is k× p̃. Our optimization jointly constructs a dictionary D and a weight matrix

1 In our implementation we extend α? by appending the entry 1 to allow an affine
shift in WTα∗.
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W that achieve optimal classification over the training data. Further details of
the optimization are provided below.

At test time given a low resolution patch, z = Px for some unknown high
resolution patch x, our objective is to recover the labels y that correspond to the
high resolution patch x. To this end we use (1) to find an optimal encoding of z
over the trained dictionary D, and then use the obtained coefficients to recover
the sought label values by setting y = sign(WTα). In general, we set p̃ so as to
obtain overlapping predictions of y from neighboring patches. We average those
predictions for each high resolution voxel to obtain our final classification.

Optimization: The construction of the dictionary D and training weights
W is done using stochastic gradient descent. The gradient of our functional
f(D,W ) (3) can be written as in [11]

∇W f(D,W ) = Ey,x [∇WL(α?,y,W )] + νW (5)

∇Df(D,W ) = Ey,x

[
−Dβ?α? T + (z−Dα?)β? T

]
, (6)

where β? ∈ Rk is a vector defined as follows. Let Λ denote the set of non-zero
coefficients in α? then the Λ entries of β are set to

β?Λ = (DT
ΛDΛ + λ2I)−1∇αΛL(α?,y,W ), (7)

and the rest of the entries are set to zero.
Stochastic gradient descent proceeds iteratively as follows:

1. Select an i.i.d. patch sample z ∈ Rq from the training set, along with its
corresponding labeling y ∈ Rp̃.

2. Compute its sparse coding by solving (1) (e.g. using a modified LARS [15]).
3. Compute the active set Λ.
4. Compute β? (7).
5. Update W and D by subtracting their respective gradients, scaled by a

learning rate ρt.

We initialize our dictionary by training an unsupervised representation dic-
tionary Dinit.

2.2 SVM Classifier

As an alternative we train a Support Vector Machine (SVM) classifier with both
a linear and a Radial Basis Function (RBF) kernel. For the SVM classifier, let
z1, ..., zN denote the training patches, and let y1, ..., yN denotes the k’th label
(1 ≤ k ≤ p) of each xi (1 ≤ i ≤ N). We train a classifier that optimizes the
standard hinge loss, written in dual form as

min
a

1

2

∑
i,j

aiajK(zi, zj) + c
∑
i

max(0, 1− yi
∑
j

ajK(zi, zj)), (8)

where a ∈ RN are the support weights, c is a constant, and K(.) is a kernel
function. For the linear SVM K(zi, zj) = zTi zj . The RBF kernel is K(zi, zj) =
e−γ‖zi−zj‖, where γ is a scale factor. At test time given a low resolution patch
z we assign the labels yk =

∑
i a
k
iK(zi, z).
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3 Experiments

To test our approach we have evaluated our method on simulated tomographic
projection images constructed from high resolution FIB data. In addition we
show results on low depth-resolution ssTEM data.

3.1 Parameter Selection

For the dictionary based method we achieved similar performance using twice
and thrice over-complete dictionaries and chose to use twice over-complete in all
our experiments. The value of λ1 was set at λ1 = 0.03 for the FIB experiment
and λ1 = 0.05 for the ssTEM experiment. These values were chosen out of the set
{0.15, 0.125, 0.1, 0.075, 0.05, 0.04, 0.03, 0.02} using cross validation. The value of
λ2 was fixed at λ2 = 0.01 in all the experiments. In all the experiments we trained
using mini batches of size η = 200 and ran three epochs of T = 20, 000 iterations
each. In each epoch we decreased the learning rate ρ ∈ {0.5, 0.1, 0.01} and ρt was
then set to min(ρ, ρt0/t), where t0 = T/100. We use the SPAMS toolbox [16,
17] to train the unsupervised dictionary and to find an initial W given the
unsupervised dictionary. We also use it to solve the lasso during training and
testing.

For the SVM with the RBF kernel we used c = 1 and γ = 2−4. These values
were chosen using cross validation on a grid of different (c, γ) values. For the
linear SVM we used c = 0.5 after running cross validation on an extensive set of
possible c values.

3.2 Simulations with FIB Data

Fig. 3. 2D tomographic sections provide voxel averages in a single direction. This
figure illustrates how 2D tomographic sections are produced from a 3D volume in
directions −45◦ (left), 0 (middle), and +45◦ (right) from vertical in the X-Z plane. In
our experiments we used in addition tomographic sections produced in directions −45◦

and +45◦ from vertical in the Y-Z plane.

High resolution 3D images of fly larva were acquired with an Electron Mi-
croscope using the Focused Ion Beam (FIB) protocol. The volume included 5003
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voxels of size 10×10×10 nm3 each. Proofreaders labeled the thin (1 voxel width)
skeletons of the membranes by correcting the results of watershed segmentation.
Additional labels were assigned to mitochondria (an example mitochondrion is
marked in Figure 1). In the FIB data experiments we ignored the voxels marked
as mitochondria. In addition, we ignored voxels of Euclidean distance greater
than

√
2 from marked membranes, as those voxels often are membrane voxels,

but they are not marked as such by the proofreaders. We used half of the data
for training and a disjoint 2003 part of the volume for testing.

We produced tomographic sections of the volume by averaging each 5 Z-
sections in one of 5 directions, parallel the Z-axis and at ±45◦ toward the X
and Y directions, see Figure 3. We then selected block patches of size 9 × 9 ×
15 (obtaining p = 1, 215) from the original high resolution volume and used
the 5 tomographic projections to produce 2D patches. The parallel tomography
sections produced patches of size 9×9×3. The oblique tomography sections were
further intersected with this patch area, producing patches of sizes 5×9×3 and
9×5×3. Concatenating these patches we obtained feature vectors of size q = 783.
With each vector we associate p̃ = 45 labels, marking the center 3×3×5 voxels in
the high resolution patches with the proofreaders’ labels. Overall the test volume
included 662,675 (8.28%) membrane voxels, 5,142,613 (64.28%) non-membrane,
and 2,194,712 (27.43%) unknowns.

As a preprocessing step we linearly stretch the values of the input volume
after cropping to the range between the 0.001 and 0.999 quantiles of the observed
values. We further center each patch by subtracting its mean and scale to have
unit `2 norm. To reduce the dimension of the learning we applied Principal
Component Analysis (PCA) to the feature vectors. We chose the number of
vectors to account for 95% of the energy in the feature vectors, reducing the
dimensionality to 173.

Figure 4 shows a recall-precision plot of our results. These results are also
summarized in Table 1, which shows the maximal F-measure (harmonic mean
of the recall and precision values) obtained with each method. Our proposed
dictionary-based and kernel SVM methods (denoted as DIC-LR and SVM-RBF)
achieve F-measures of 90.07% and 88.26% respectively. These values are very
close to classification results on the original high resolution data (91.28%, marked
by DIC-HR), which can be thought of as a ceiling for our method. We further
compare these results to running the dictionary method on super-resolved data
(denoted DIC-SR), which achieves an F-measure of 88.68%. This indicates that
we can achieve similar or even better classification values if we skip the step
of super-resolution reconstruction by classifying the low depth-resolution data
directly. Finally, as a base-line we show the results of classifying the membranes
using linear SVM (SVM-LIN) and using Linear Discriminant Analysis (LDA).

Method DIC-HR DIC-LR DIC-SR SVM-RBF-LR SVM-LIN-LR LDA-LR

Score 91.28% 90.07% 88.68% 88.26% 78.16% 76.76%

Table 1. Best F-measure achieved by each method on the FIB data.
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3.3 ssTEM Data

Low depth-resolution 3D images of fly larva were acquired using the serial section
Transmission EM technique. Each section, of width 50nm, was photographed
5 times from roughly the same directions that were simulated with the FIB
data (Section 3.2). Each of the obtained 5 volumes included 558 × 558 × 16
voxels of size 10× 10× 50 nm3. To label this data we applied a super resolution
reconstruction using an over-complete dictionary. Proofreaders then labeled the
membrane voxels, by marking their skeletons (again, by correcting the results
of watershed segmentation). No labeling of mitochondria were available for this
data. We used half of the data for training and a disjoint block of size 200 ×
200× 65 for testing.

As before, from the 5 tomographic sections we extracted patches of sizes
9× 9× 3 (for the parallel tomographic section) and 5× 9× 3 and 9× 5× 3 for
the other sections, obtaining feature vectors of size q = 783. With each vector
we associate p̃ = 45 labels, marking the center 3 × 3 × 5 voxels in the high
resolution patches as either membranes, non-membranes, or unknowns. Overall
the test data included 340,104 (13.08%) membrane voxels, 1,646,992 (63.34%)
non-membrane, and 612,974 (23.58%) unknown.

We applied the same preprocessing as for the FIB data (described in Sec-
tion 3.2). Applying PCA, we reduce the dimension of the feature vectors to
170.

Figure 5 shows a recall-precision plot of our results. The results are also
summarized in Table 2, which shows the maximal F-measure obtained with each
method. Both our proposed methods (denoted as DIC-LR and SVM-RBF-LR)
achieve similar F-measures at 87.38% and 85.75% respectively. These values are
slightly lower than the score obtained by running SVM on the super-resolved
data (denoted SVM-RBF-SR), which was 88.23%. Note however that the label-
ing in this experiment is done on the super-resolved data, so it may be biased
toward this approach. Finally, as a base line we show the results of classifying
the membranes using linear SVM and LDA.

Figure 6 shows an example of the classification scores obtained with the
dictionary based and SVM with RBF kernel methods.

Method SVM-RBF-SR DIC-LR SVM-RBF-LR SVM-LIN-LR LDA-LR

Score 88.23% 87.38% 85.75% 64.28% 64.5%

Table 2. Best F-measure achieved by each method on the ssTEM data.

4 Conclusion

We presented a system for membrane classification for segmentation of neuronal
tissues in low depth-resolution EM imagery. We showed that both a classifica-
tion method that learns a discriminative, over-complete dictionary as well as
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Fig. 4. Results obtained on the FIB data. The figure shows a recall precision plot of
our methods, compared to membrane classification on the high resolution and super
resolved data.
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Fig. 5. Results obtained on the ssTEM data. The figure shows a recall precision plot
of our methods compared to baseline methods and membrane classification on super
resolved data.
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Fig. 6. A classification example. The figure shows part of a section of a ssTEM image
(top left), ground truth labeling by a proofreader (top right), and labeling scores ob-
tained with the dictionary-based method (bottom left) and the SVM with RBF kernel
(bottom right).
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SVM with RBF kernel trained over the low depth-resolution EM data with high
resolution labeling, can achieve accurate classification of membranes, bypassing
the need for an additional step of super-resolution reconstruction. These tech-
niques, therefore, can potentially reduce the amount of manual labor required
for reconstructing the topology of the observed cells.
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