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Recent methods have revealed that cells on planar substrates exert
both shear (in-plane) and normal (out-of-plane) tractions against
the extracellular matrix (ECM). However, the location and origin of
the normal tractions with respect to the adhesive and cytoskeletal
elements of cells have not been elucidated. We developed a high-
spatiotemporal-resolution, multidimensional (2.5D) traction force
microscopy to measure and model the full 3D nature of cellular
forces on planar 2D surfaces. We show that shear tractions are
centered under elongated focal adhesions whereas upward and
downward normal tractions are detected on distal (toward the cell
edge) and proximal (toward the cell body) ends of adhesions, re-
spectively. Together, these forces produce significant rotational
moments about focal adhesions in both protruding and retracting
peripheral regions. Temporal 2.5D traction force microscopy anal-
ysis of migrating and spreading cells shows that these rotational
moments are highly dynamic, propagating outward with the lead-
ing edge of the cell. Finally, we developed a finite element model to
examine how rotational moments could be generated about focal
adhesions in a thin lamella. Our model suggests that rotational
moments can be generated largely via shear lag transfer to the
underlying ECM from actomyosin contractility applied at the in-
tracellular surface of a rigid adhesion of finite thickness. Together,
these data demonstrate and probe the origin of a previously unap-
preciated multidimensional stress profile associated with adhesions
and highlight the importance of new approaches to characterize
cellular forces.
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Understanding how cells generate and respond to mechanical
forces is critical in cell biology. In anchorage-dependent cells,

myosin-II cross-links and contracts actin filaments to generate
tension, which is transmitted to the extracellular matrix (ECM)
via integrin-mediated adhesions (1–4). The traction stresses (force
per area) exerted between adhesions and the ECM drive cell
spreading and migration in morphogenesis (5, 6), wound healing
(7), and tumor metastasis (8, 9). In addition, these stresses in-
duce changes in adhesion signaling, cytoskeletal reorganization,
and gene expression (4, 10–13), thereby regulating functions such
as proliferation (14, 15) and differentiation (16, 17).
Measurements of cellular traction stresses have advanced our

understanding of mechanotransduction and enabled quantitative
modeling of cellular interactions with the ECM (18–20). These
measurements reveal that cells exert inwardly oriented tractions
at their periphery, where focal adhesions grow centripetally
(3, 4, 21). However, the vast majority of methods (collectively
termed traction force microscopy, TFM) have assumed that cells
exert only shear forces (parallel to the plane of the substrate).
Interestingly, recent studies have demonstrated that cells on planar
substrata exert significant vertical (normal) tractions, indicating
that patterns of cellular force generation are more complex than
previously thought (22–25). However, mapping these multidimen-
sional traction stresses with a high spatiotemporal resolution has
been challenging, and there is no clear agreement on the dynamics
and the location of the normal stresses. Thus, how normal and

shear traction stresses are integrated and what type of net forces
are produced relative to focal adhesions and the actin cytoskeleton
remain poorly understood.
In this study, we developed a high-resolution 2.5D TFM [mea-

surement of 3D forces exerted by cells on 2D planar surfaces, as
opposed to cells fully encapsulated within a 3D matrix (26)] to
explore the precise nature of cellular forces applied to the ECM.
After fully characterizing the resolution of both the shear and
normal tractions using numerical simulations, we applied this
approach to mouse embryo fibroblasts (MEFs) expressing EGFP-
tagged paxillin, actin, or plasma membrane to measure the mul-
tidimensional traction stresses associated with focal adhesions
and the actin cytoskeleton. In addition, we generated a finite ele-
ment model (FEM) of the focal adhesion and pliable substrate
and performed 3D super-resolution imaging to explore the most
plausible means by which such moments may be generated sub-
ject to geometrical constraints within a very thin (200–300 nm)
cellular lamella.

Results
To observe the distribution of 3D substrate deformations relative
to cytoskeletal structures, we investigated MEFs expressing EGFP-
actin cultured on arginine-glycine-aspartic acid-serine (RGDS)–
conjugated PEG hydrogels containing fluorescent beads (Fig. 1A
and Movie S1). The elastic modulus of hydrogels used in this
study was 6,500 Pa, unless specified otherwise. MEFs on PEG
hydrogels assumed morphologies comparable to those on tradi-
tional culture substrates (e.g., glass or plastic), exhibiting anisotropic
protrusions and polarization. Cells were flat; super-resolution
structured illumination microscopy (SIM) showed that lamellae
are ∼180–280 nm tall, whereas the primary increase in height (up
to 2–3 μm) occurs only near the nucleus (SI Appendix, Fig. S1).
The 3D displacement field within the substrate was determined
by tracking beads before and after lysing the cell with detergent.
We observed significant in-plane and out-of-plane displacements
underneath the thin cell periphery, whereas no displacements
(neither in-plane nor out-of-plane) could be detected under the
cell nucleus (Fig. 1 B and C and Movie S2). In agreement with
previous implementations of 2D traction force microscopy (2D
TFM), the shear components of the displacements were also
present only at the cell periphery (3, 21). Closer inspection of
the vertical displacements revealed that cells pull the hydrogel
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upward under the leading edge and push downward ∼10 μm
behind the leading edge (Fig. 1D).
To quantify the traction stress from the displacement field, we

followed a previously described procedure (26). Briefly, a tetra-
hedral mesh of the hydrogel volume under the cell was generated.
Unit tractions were then applied in each of the Cartesian direc-
tions at each facet on the surface, and the induced displacement
fields were recorded after solving the forward problem for stress
equilibrium (Fig. 1E). These traction-displacement mappings
were then used to generate a discretized Green’s function for the
hydrogel volume that can be inverted and regularized [through
use of the L-curve criterion (27)] to solve for cell tractions. We
characterized both the resolution and sensitivity limits of the
shear and normal traction reconstructions under experimentally
relevant levels of noise, bead density, and material properties
(SI Appendix, Figs. S2–S12). Our approach was able to capture
spatially isolated loadings with a full-width half-maximum of
∼10 μm and traction magnitudes down to 300 Pa. Tractions dis-
tributed over smaller spatial regions were significantly under-
estimated and spatially averaged (SI Appendix, Figs. S5–S8). We

also investigated our ability to recover sinusoidally oscillating
loadings with wavelengths between 5 and 20 μm (SI Appendix, Figs.
S9–S12) and were able recover oscillatory loadings of 130 Pa at
wavelengths of 14 μm. Although the average element area of the
grid on which tractions are computed is significantly smaller (∼0.9
μm2), this information does not fully capture the traction resolution
(analogous to how the pixel size of a camera does not necessarily
reflect the resolution to optically resolve two point sources in an
image). In contrast, the combination of simulated loadings and an
experimentally relevant recovery process accurately captures both
the spatial resolution and sensitivity of the reported tractions. It
should be noted that for sinusoidally oscillating loadings the
traction resolution is anisotropic; recovered normal tractions and
shear tractions that are directed orthogonal to the spatial axis of
variation had ∼25% lower errors than shear tractions directed
parallel to the axis of spatial variation (SI Appendix, Fig. S10).
Finally, reported tractions in the range of 100–300 Pa that are near
the 10-μm resolution limit likely represent an underestimated and
spatially blurred description of the true traction field but are still
statistically significant (as confirmed by a bootstrap analysis of the
reported tractions) (SI Appendix, Fig. S13). SI Appendix contains
a complete discussion of resolution, sensitivity, and significance.
Applying this approach to cell-induced displacement fields, we

found that both shear and normal cellular traction stresses were
limited to the cell periphery, whereas negligible tractions were
detected in the perinuclear and nuclear regions (Fig. 2A andB and
Movie S3). Maximum shear tractions (550 Pa) occurred at the
termini of stress fibers (Fig. 2C); however, highest upward and
downward normal tractions were concentrated ∼5 μm distal (to-
ward the cell periphery) and 5 μmproximal (toward the cell center)
to the stress fiber ends, respectively (Fig. 2D andMovie S3). These
normal tractions (±250 Pa) were typically 30–50% of shear values.
Variation of the regularization parameter used for traction re-
construction changed the overall magnitude of both shear and
normal forces but did not alter the general conclusions (SI Ap-
pendix, Fig. S14). These findings suggested that torque was being
applied to the substrate in the vicinity of focal adhesions, which
anchor the ends of stress fibers and serve as the primary force-
transmitting structure to the ECM. To investigate this possibility,
we transfected MEFs with paxillin-EGFP, an adapter protein that
localizes to integrin-mediated adhesions (28). We observed pax-
illin-EGFP–containing focal adhesions near the cell periphery and
maximal shear tractions directly under the adhesions (Fig. 2 E and
G).Moreover, we detected upward and downward traction stresses
just distal and proximal of the adhesions, respectively, indicating
that focal adhesions indeed served as pivot points for rotational
moments (Fig. 2 F and H). These moments were present at focal
adhesions in both the leading lamella and in retracting extensions
of cells (Fig. 2 E and F), and their magnitudes mirrored changes in
adhesion density (number of adhesions per unit area) due to
growth and disassembly (Movies S4 and S5). Taken together, these
results reveal that shear tractions and rotational moments are
generated under and around focal adhesions, respectively, dem-
onstrating a more complex and intrinsic force distribution than
described previously (3, 19, 29).
To examine how rotational moments around focal adhesions

evolved during dynamic cellular processes, we acquired time-lapse
volumetric stacks duringmigration and initial spreading.MEFswere
transfected with mEGFP-farnesyl to visualize cell morphology dy-
namics (Movie S6). Similar to stationary cells, both migrating and
spreading cells generated rotational moments localized to both
protruding and retracting regions with normal tractions reaching
∼±350 Pa. In migrating cells, we found that both shear and normal
tractions moved with the extending leading edge (Fig. 3 A and B
and Movies S7 and S8). This dynamic colocalization of force dis-
tributions at the cell periphery was also observed during cell
spreading. Cells spread initially in an isotropic manner and flatten
against the substrate as they become polarized, similar to what has

Fig. 1. Experimental setup and computational methods. (A) Volume render-
ing of an EGFP-actin–expressing mouse embryonic fibroblast (MEF) fully spread
and polarized on a planar PEG hydrogel with fluorescent beads imbedded
(magenta). (B and C) Shear and normal components of bead displacement
trajectories color-coded by magnitude. (D) Inset outlined in C magnified
showing the normal component of bead displacement trajectories. The bottom
figure is the cross-sectional view of the inset outlined above showing the
multidimensional bead displacement trajectories. (E) Schematic of the finite
element model to reconstruct the Green’s function. (All scale bars, 20 μm.)
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been previously described (30). We observed the simultaneous
emergence of both shear and normal tractions shortly (∼20 min)
after cells adhered to the substrate (Fig. 3 C andD). Both the shear
and normal tractions were restricted to the leading lamella and in-
creased substantially during thefirst hour of spreading. In contrast to
previous studies that showed substantial downward compression
under the nucleus, we found no tractions under the cell nucleus, but
observed instead the presence of outward “waves” of rotational
tractions that perhaps emerged initially in the perinuclear region but
quickly propagated outward, remaining localized with the leading
edge (Fig. 3D and Movies S9 and S10).
Because it was not immediately apparent how focal adhesions in

a thin (∼200 nm tall) cellular lamella could generate substantial
out-of-plane moments, we generated a FEM derived from our
current knowledge of cell adhesions. Based on a recent in-
terferometric photoactivated localization microscopy (iPALM)
study (31) and our SIM data (SI Appendix, Fig. S1), the focal
adhesion was set at 150 nm in height and physically coupled to the
elastic PEGhydrogel, which wasmodeled as aNeo-Hookean solid
(SI Appendix, Fig. S15). In the simplest scenario, we applied
a uniform shear load to the top surface of the adhesion plate to
mimic actin-myosin filaments pulling on adhesions (1, 4, 12, 20)
(Fig. 4A). The magnitude of this load was then scaled to induce
a lateral ECM displacement of similar magnitude (∼0.5 μm) to
what was observed experimentally. We found that rotational
moments could be generated only if the adhesion were signifi-
cantly stiffer than the underlying substrate (SI Appendix). In this
setting, as the material adjacent to the adhesion is compressed,
shear lag from the top of the adhesion to the substrate causes the
plate to rotate, thereby generating a moment (Fig. 4B). With this
model, a lateral ECM displacement of 0.5 μm corresponded to
∼200 nm vertical displacements generated at the distal and
proximal ends of the adhesion (Fig. 4 B and C). These vertical
displacements matched well with the experimentally observed
results (averaged over 120 focal adhesions in 10 different cells),
consistent with a model in which the focal adhesion rotation is
generated primarily by horizontal tension transmitted by actin
stress fibers at the intracellular surface of adhesions. Interestingly,
the experimental vertical displacements recovered slowly at the
proximal end, which may indicate that other cytoskeletal struc-
tures, such as cortical actin, are also contributing to the compres-
sion into the ECM, a phenomenon that was not modeled. The
nature of shear and normal traction stresses relative to the focal
adhesion was highly consistent. Compiling the data from the
multiple adhesions, we found that the maximum shear traction is
applied symmetrically about the adhesion center (Fig. 4 D and E).
In addition, the maximum upward and downward tractions local-
ized to the distal and proximal ends of adhesions, respectively,
demonstrating the characteristic rotational moment. Both the
shear and normal tractions spread slightly beyond the adhesion
boundaries, although it is currently unclear whether this spread is
mediated by additional adhesions in the lamellipodium distal to
focal adhesions, and/or whether it is due to the smoothing nature of
the Green’s function that relates substrate displacements to sur-
face tractions (Discussion and SI Appendix).

Discussion
In this study, we developed high-resolution 2.5DTFM to investigate
the multidimensional nature of cellular tractions. The spatial reso-
lution and traction sensitivity are inherently interdependent in
TFM, and we performed an extensive analysis of this key relation-
ship, including a sensitivity curve that characterizes our method
under multiple different loading conditions (SI Appendix, Fig. S8).
We anticipate that providing such a curve for eachTFMmethodwill
allow for comparisons of resolution and sensitivity across methods.
We use our 2.5D TFM to demonstrate that cells exert dynamic
rotational moments at focal adhesions and associated actin stress
fibers. Cells exerted upward forces that were distal and downward

forces proximal to focal adhesions, which thereby served as pivots
to mediate a torque on the ECM. The locations, magnitude, and
dynamics of these tractions were consistent in polarized cells,

Fig. 2. Multidimensional traction stress and cytoskeletal localization. (A and B)
Shear and vertical traction stress vectors generated by a MEF expressing EGFP-
actin. The vectors are color-coded by magnitude. Both components of traction
stresses are localized to the cell periphery. (C andD) Inset outlined inAmagnified
showing traction stress vectors color-coded by shear and normal components.
Maximum shear tractions are detected at the termini of actin stress fibers,
whereas the upward and downward normal tractions are applied in front of and
behind the fiber ends, respectively. (E and F) Shear and normal traction stress
vectors generated by a MEF expressing paxillin-EGFP are localized to focal
adhesions in broadperipheral regions and anarrow retracting tail. (G andH) Inset
outlined in Emagnified showing shear and normal traction stress vectors relative
to focal adhesions. Maximum shear stresses are detected directly over elongated
focal adhesions, whereas the upward-to-downward gradient of normal stresses
forms a rotational moment around the adhesions. (All scale bars, 20 μm.)
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migrating cells, and spreading cells. Moreover, the normal tractions
occurred at focal adhesions both in protrusions and retracting tails,
suggesting that the rotationalmoment about adhesions is intrinsic to
the structural organization of the cell–matrix interface.
Previous studies have reported downward pushing forces into the

substrate that suggested a role for nuclear compression (22, 25), but
we find minimal forces exerted in the nuclear and perinuclear
regions. This discrepancy may result from differences in cell type
(fibroblasts vs. endothelial cells or Dictyostelium), cell shape
(spread vs. round), hydrogel rigidity (∼6.5 kPa in this study vs. 400
Pa, ∼4 kPa for previous studies), or spatial resolution of the dif-
ferent TFM methods. Indeed, we observed that downward trac-
tions are localized in the nuclear region in cells that are in the early
phase of spreading (i.e., cells that are relatively round). A similar
pattern of substrate deformation has been reported from a round
fluid droplet adhered to a flexible substrate (32, 33), suggesting that
surface tension could contribute to this type of deformation.
However, as cells spread and flatten out against the substrate, their
shape departs dramatically from that of a fluid droplet and normal
tractions propagate outward to localize to the cell periphery.When
substrate rigidity was decreased, we found that both shear and
normal tractions also decreased. Interestingly, the relative magni-
tude of the normal tractions compared with the shear tractions
increased on less rigid hydrogels, indicating that substrate rigidity
may modify how the two traction components are transmitted. On

all substrate rigidities, however, shear and normal tractions were
exerted primarily near the cell periphery (SI Appendix, Fig. S16).
We also found in multiple cell types that the shear and normal
tractions are exerted at focal adhesions, demonstrating the cou-
pling of focal adhesions and multidimensional traction stresses (SI
Appendix, Figs. S17 and S18).
The measurements of rotational moments around focal adhe-

sions suggest a more complex pattern of stresses at the cell–ECM
interface than is currently appreciated. Cell-generated tension at
adhesions has been described largely as in-plane, whereby adhe-
sion growth, actin flow, and traction stresses are coupled and ex-
hibit correlated directional dynamics (2, 3, 21, 34). As a result,
mechanotransduction processes at adhesions are proposed to be
regulated predominantly by shear forces that stretch adhesion
proteins and induce protein–protein interactions and signaling
events (13, 19, 20, 29). Our analysis of subadhesion, multidimen-
sional traction stress introduces additional factors to consider.
These distinctmechanical loads within a single focal adhesion could
contribute to the spatial structure of adhesions, for example by
differentially regulating protein binding, conformational changes,
and force-induced signaling (35). Tension in the distal end could
promote protein unfolding and interactions (e.g., between vinculin,
talin, and actin) to mediate a molecular clutch (36–39) or phos-
phorylation (40), whereas shearing and compression in the proximal
end may induce the rapid protein exchanges that mediate focal

Fig. 3. Dynamic measurements of 2.5D traction stress. (A) Time-lapse images depicting traction stress vectors color-coded by the normal component generated
by amigratingMEFexpressingmEGFP-farnesyl. As the cellmoves (toward right), rotationalmomentsareapplied in theprotruding front aswell as the sides. (B) Time-
lapse cross-sectional viewsof the inset outlined inA showingdynamic rotationalmoments thatmovewith the thinprotruding cellularbodyduringcellmigration. (C)
Time-lapse images of mEGFP-farnesyl–expressing MEF undergoing spreading. No significant vertical traction stresses are detected until the cell extends thin pro-
trusions and flattens against the substratum. Minimal tractions are detected under the nucleus. (D) Time-lapse cross-sectional views of the inset outlined in C.
Comparable to migrating cells, rotating moments progress outward with the leading edge and remain localized to the cell periphery. (All scale bars, 20 μm.)
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adhesion elongation (41–44). Adhesion dynamics (turnover and
lifetime) and strengthening may also be regulated differently by
vertical extension, shear, and compression, depending on the
size and the molecular composition of adhesions (4, 20, 45, 46).
Thus, in addition to the magnitude and the rate of applied
force, knowing how molecules respond to different types of
stress will lead to a more complete understanding of adhesion-
mediated mechanotransduction.
It is interesting to note that rotational moments have not been

observed in cells encapsulatedwithin a 3Dhydrogel (26), suggesting
that the moments about focal adhesions are characteristic phe-
nomena induced by a 2D ECM. Actin is a key cytoskeletal element
that transmits tension to the cell–ECM interface to generate trac-
tion stress, and its architecture is dramatically different in 2D and
3D ECMs (47). More recently, 3D super-resolution, stochastic
optical reconstruction microscopy showed directly that the dorsal
and ventral actin layers have dramatically different architectures in
the vicinity of focal adhesions (48). This study also shows the ventral
cortex can be buckled, whereas the dorsal layer is relatively smooth.
These findings support a model of ventral buckling under com-
pressive loading due to a dorsal contractile element and would
agree with the slower ECM displacement recovery observed in our
data (compared with our FEMmodel) measured near the proximal
end of focal adhesions. In addition, subresolution nascent adhe-
sions assemble in the lamellipodium andmediate attachment to the
substratum at the leading edge (42). These structures may also
serve as traction point sources near the distal edge of focal
adhesions as actin ruffles and polymerizes, but resolving precise
tractions resulting from these structures is beyond our current
resolution limits. This 2D-specific organization could contribute
to mechanotransduction, migration, and signaling responses
uniquely observed in 2D settings (49, 50). In summary, the
mappings of multidimensional cellular forces and cytoskeletal
structures presented here offer another dimension to current
models of cell migration and adhesion mechanobiology (10, 51–
54). Future improvements to the spatial and temporal resolution
of cell traction measurements in 2.5D and fully 3D settings (26),
combined with subdiffraction limit imaging of the 3D cytoskeletal
and adhesion architecture (31, 48), will be a critical path toward
understanding how cells generate, sense, and respond to me-
chanical forces in a variety of physiological settings.

Materials and Methods
Cell Culture and Plasmids. Spontaneously immortalizedMEFs were cultured in
DMEM (Mediatech, Inc.) with 5% (vol/vol) FBS (55) (Richard Assoian, University
of Pennsylvania, Philadelphia, PA). MEFs were transfected transiently with
paxillin-EGFP [Clare Waterman, National Institutes of Health (NIH), Bethesda,
MD], EGFP-actin, and mEGFP-farnesyl-5 [a plasma membrane localized GFP-
tagged 20-amino-acid farnesylation signal from c-Ha-Ras (56)] (Michael
Davidson, Florida State University, Tallahassee, FL) using Lipofectamine 2000
(Invitrogen) or TransIT-LT1 (Mirus). Cells were plated on hydrogels for at least 3
h to allow spreading before imaging.

Preparation of Deformable Substrates and Mechanical Characterization. PEG-
based hydrogels with RGDS were synthesized as described previously (57) and
flexible 2D substrates for TFM experiments were polymerized between glass
coverslipswith UV light. After removal of the top coverslip, the substrateswere
incubated in PBS at 37 °C for at least 24 h to allow swelling (SI Appendix). The
Poisson ratio of 0.34 and shear modulus of 2,431 ± 87 Pa for the PEG-based
hydrogels was measured as described in (SI Appendix, Fig S3). The Young’s
modulus of 6,517 Pa was calculated from the shear modulus using the Poisson
ratio of 0.34 and assuming linearly elastic, isotropic material properties.

Image Acquisition. Cells were imagedwith a 60×, 1.2 numerical aperture (NA),
water immersionobjective (UPLSAPO60XW;Olympus) attached to anOlympus
IX71 inverted microscope equipped with a CSU10 spinning disk confocal scan
head (Yokogawa Electric Corp.), live cell incubator (Pathology Devices), and an
ImagEM 16-bit EMCCD camera (Hamamatsu Photonics) or a LD C-Apochromat
63×, 1.15 NA, water immersion objective attached to a Zeiss Axiovert 200M
inverted microscope equipped with a CSU10 spinning disk confocal scan head,

Fig. 4. Finite element models of focal adhesion rotations. (A) Cartoon
depicting the key elements in the FEM model. A contracting actin fiber
generates shear traction on the upper surface of a focal adhesion (FA), which
is modeled as a rigid plate connected to the PEG hydrogel. The shear load is
applied uniformly on the top side of the FA, which is sufficient to induce
both the horizontal and vertical substrate displacements comparable to
experimental data. (B) Finite element renderings showing deformed con-
figurations of the PEG hydrogel and focal adhesion. Contour maps along the
symmetry plane show both horizontal and vertical displacements within the
hydrogel. (C) Scatter plots of the measured hydrogel displacements from
individual FAs (n = 121, 10 cells) with the average (green lines). Only beads
residing within the first 0–2 μm of the hydrogel are shown. The x axis was
normalized by the major axis of the fitted ellipse to each adhesion, so the
adhesion itself spans from −1 to 1 (SI Appendix). The average FEM simulated
hydrogel displacements within 0–2 μm from the hydrogel surface are shown
for comparison (magenta lines, with the x axis normalized by the modeled
FA length). (D) Scatter plots of the normalized experimental traction stresses
from individual FAs with the average (green lines). The x axis is normalized
by the fitted major axis length and the y axis of both plots is normalized by
the mean shear traction surrounding each adhesion. (E) Top-down graphical
maps of the averaged experimentally measured traction stresses from Dwith
the same spatial dimensions. The inner ellipse depicts the normalized area
of the FA, and the average shear and normal tractions within and outside of
the FA are shown. The shape of the inner ellipse is scaled to match the mean
major and minor axis lengths of the ellipses fit to the adhesions (8.3 ± 3.9 μm
and 2.17 ± 0.9 μm, respectively). Note that the maximum shear traction stress
is centered on the FA, whereas the maximum upward and downward trac-
tion stresses are at the distal and proximal ends of the FA, respectively.
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live cell incubator, and a Photometrics Evolve EMCCD camera. A 98- × 98- ×
15-μm volume was imaged around each cell to incorporate the entire cell vol-
ume and∼10 μmof hydrogel below the cell. These parameters corresponded to
voxel dimensions of 0.1917 × 0.1917 × 0.5 μmor 0.1808 × 0.1808 × 0.5 μm in the
horizontal and axial planes on theOlympus and Zeiss systems, respectively. After
the stressed image was acquired, the cells were treated with 0.5% (wt/vol) SDS
detergent (JT Baker), reequilibrated for 10 min, and then reimaged to acquire
a reference image of the nonstressed hydrogel. Time-lapse datasets were ac-
quired at time intervals ranging from 30 s to 5 min. Super-resolution structured
illumination images were acquired as described previously (58) (SI Appendix,
Fig S1).

Calculation of Bead Displacements and Cell Tractions. Images were imported
into Matlab (MathWorks) and bead centroids were identified using a 3D
Gaussian maximum likelihood estimator. After centroid identification, beads
in the stressed (subject to cell-generated tractions) dataset were matched to
beads in the relaxed (after cell lysis) dataset using a previously described

feature vector-based algorithm relating the relative position of each bead to
its local neighbors (26). Cell tractions were calculated from the measured
bead displacements via a discretized Green’s function as described previously
(26) and in detail in SI Appendix.

Finite Element Modeling. FEM simulations of adhesions were carried out in
Abaqus using the finite strain option (NLGEOM) to account for any geometric
nonlinearities. The assumptions, parameters andmaterial properties for each
condition are detailed in SI Appendix.
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SI Appendix: 

 

Fig. S1: Super-resolution structured illumination microscopy (SIM) of focal adhesions and actin stress fibers. (A) A single 
plane SIM micrograph of a MEF cultured on a 6500 Pa PEG hydrogel and stained for vinculin (magenta) and F-actin (green). Scale 
bar, 10 μm. (B) Side-view of the inset outlined in (A) showing the thickness of the cell. Spread cell is flat, and significant height 
increase is observed only near the nucleus. Scale bars, 3 μm for vertical z-axis and 2 μm for horizontal. (C) Magnified side-view of the 
inset outlined in (C) showing a vinculin-stained focal adhesion and the associated actin stress fiber at the cell periphery. The adhesion 
is ~100-150 μm tall, and the height of the cell in this region is ~180-280 μm. Scale bars, 3 μm for vertical z-axis and 0.5 μm for 
horizontal. (D-F) Similar SIM micrographs of a MEF cultured on a 6500 Pa PEG hydrogel and stained for paxillin (magenta) and F-
actin (green).  
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Fig. S2: Bead localization and tracking. (A) Orthogonal axis maximum intensity projection of a single fluorescent bead as acquired 
in our system. The bead PSF spans approximately 6 pixels in both lateral and axial directions. (B) Probability density function of the 
measured bead displacements for 100 m x 100 m x 5 m cell free regions of the hydrogel. 10 sequential volumetric images were 
acquired and the resulting bead displacements (~7000 beads for each acquisition) computed. The standard deviations of these 
displacements thus represent the aggregate errors from localization, tracking and drift correction. (C) Probability density functions of 
the z displacements for 10 sequential volumes acquired at 100 nm intervals. 100 m x 100 m x 5 m cell free regions of the hydrogel 
were acquired sequentially with the center point of each volume shifted in 100 nm increments. The bead tracking algorithm is clearly 
able to delineate between increments of this size even over a large volume of acquisition. 
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Fig. S3: Measurement of the Poisson ratio. (A) Experimental setup showing PEG hydrogel cylinder suspended above a microscope 
objective. Cylinders laden with fluorescent beads were cast within PDMS molds, polymerized and allowed to swell overnight. After 
swelling, the ends of the cylinder were glued to silanized glass slides using additional PEG prepolymer. The glass slides were then 
attached a micrometer which was mounted above the microscope objective. The entire hydrogel was immersed in PBS for the duration 
of the experiment. From a resting length of 10 mm, the cylinder was stretched for 5% (10.5 mm) and 10% (11 mm) strain. After each 
stretch, the hydrogel was allowed to re-equilibrate for 30 minutes to allow for any viscoelastic relaxation. (B) Z-stacks were acquired 
for the entire thickness of the hydrogel at each strain (stretched along the y axis); however, because system was mounted on a 
widefield microscope (as opposed to a confocal), three-dimensional tracking was not able to be performed. Instead, a maximum 
intensity projection was taken from the central 0.1 mm of the cylinder and the 2D bead displacements were tracked. (C) Vector plots 
showing the bead displacements at both 5 and 10% strain. (D) Scatter plots of the x and y displacement as a function of x and y 
position (as measured from the centerline of the cylinder) respectively. Linear fits to each dataset, along with fitting parameters are 
indicated. (E) Poisson ratio  is estimated from the slopes in (D). Both 5 and 10% strains report a Poisson ratio of 0.34. 
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Fig. S4: Overview of the simulated point-like tractions used for resolution and sensitivity analysis. Contour maps showing the 
simulated tractions, distributed over a circular area of progressively decreasing radius and applied along the z-axis (sTz – simulated 
traction, z component). For each condition, the recovered tractions (recovered under experimentally relevant levels of bead density 
and measurement noise) are also shown (rTz – recovered traction, z component). The line plot used in figures S5-S7 is indicated. 
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Fig. S5: Numerical characterization of the sensitivity and spatial resolution of point-like traction measurements along the x 
Cartesian direction. Line cuts are plotted for simulated tractions applied along the x-Cartesian direction (sTx) with decreasing 
magnitude (50%-5% of the hydrogel elastic modulus) and distributed over a circular area of decreasing radius (10 m to 1 m). For 
each loading, the recovered traction components along each Cartesian direction are plotted (rTx, rTy, rTz). Grey boxes indicate 
conditions that would be difficult to distinguish under the limits of our system. 
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Fig. S6: Numerical characterization of the sensitivity and spatial resolution of point-like traction measurements along the y 
Cartesian direction. Line cuts are plotted for simulated tractions applied along the y-Cartesian direction (sTy) with decreasing 
magnitude (50%-5% of the hydrogel elastic modulus) and distributed over a circular area of decreasing radius (10 m to 1 m). For 
each loading, the recovered traction components along each Cartesian direction are plotted (rTx, rTy, rTz). Grey boxes indicate 
conditions that would be difficult to distinguish under the limits of our system. 
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Fig. S7: Numerical characterization of the sensitivity and spatial resolution of point-like traction measurements along the z 
Cartesian direction. Line cuts are plotted for simulated tractions applied along the z-Cartesian direction (sTz) with decreasing 
magnitude (50%-5% of the hydrogel elastic modulus) and distributed over a circular area of decreasing radius (10 m to 1 m). For 
each loading, the recovered traction components along each Cartesian direction are plotted (rTx, rTy, rTz). Grey boxes indicate 
conditions that would be difficult to distinguish under the limits of our system. 
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Fig. S8: Diagram of sensitivity vs. resolution for point-like tractions. Plot of the sensitivity (surface tractions expressed as a % 
elastic modulus (Emod)) vs. spatial resolution (circular radius over which the tractions are distributed). Note that a traction of 25% 
Emod distributed over a circular region of 3 m will be resolved by our system, but the peak value will be under reported to be 
approximately 10% Emod (as illustrated in plots S5-S7).  
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Fig. S9: Overview of the simulated sinusoidal tractions used for resolution and sensitivity analysis. Contour maps showing the 
simulated tractions, oriented in the z Cartesian direction and distributed over the entire measurement surface with progressively 
smaller wavelengths. For each condition, the recovered tractions (recovered under experimentally relevant levels of bead density and 
measurement noise) are also shown (rTz – recovered traction, z component). The line plot used in figures S11-S12 is indicated. 
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Fig S10: Description of the different orientations used for the simulated sinusoidal loads and global error analysis.  (A) The 
vector valued traction distribution can be decomposed into scalar valued function multiplied by basis vectors. We chose the traditional 
basis vectors to be aligned with the Cartesian axis except that we rotated them such that the in-plane basis vectors were aligned 
parallel and perpendicular with the direction of wave propagation. In order to fully characterize the TFM response, we applied 
loadings at the hydrogel surface as transverse sinusoidal waves of three types: 1) Shear loads in which the direction of force 
application was orientated perpendicular to the direction of wave propagation, 2) shear loads in which the direction of force 
application was oriented parallel to the direction of wave propagation, and 3) normal tractions with the forces oriented into and out of 

the planar halfspace (B) Percent error expressed as %	݊݅ݐܿܽݎݐ	ݎݎݎ݁ ൌ 	
|்௦ି்|మ
|்௦|మ

ൈ 100 of the recovered tractions is plotted as a 

function of wavelength of the applied loadings for each of the orientations shown in (A). All values were computed for experimentally 
relevant levels of bead density and displacement measurement error. (C) A graphical depiction of the errors as presented in (B). An 
error of 25% indicates that the recovered traction vector will lie within a sphere centered at the tip of the simulated traction vector with 
a radius that is 25% of the magnitude of Ts. This is the 3D vectorial equivalent to traditional error bars on a 1D plot. 
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Fig. S11: Numerical characterization of the sensitivity and spatial resolution of oscillating tractions scaled to 5% of the elastic 
modulus. Line cuts are plotted for simulated tractions applied as parallel shear loads (sTx – parallel), perpendicular shear loads (sTy – 
perpendicular), or normal loads (sTz - normal), scaled to 5% of the hydrogel elastic modulus. For each loading, the recovered traction 
components along each Cartesian direction are plotted (rTx, rTy, rTz). 
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Fig. S12: Numerical characterization of the sensitivity and spatial resolution of oscillating tractions scaled to 2% of the elastic 
modulus. Line cuts are plotted for simulated tractions applied as parallel shear loads (sTx – parallel), perpendicular shear loads (sTy – 
perpendicular), or normal loads (sTz - normal), scaled to 2% of the hydrogel elastic modulus. For each loading, the recovered traction 
components along each Cartesian direction are plotted (rTx, rTy, rTz). 
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Fig. S13: Bootstrap analysis of recovered tractions. (A) Probability density functions of the standard deviations of the recovered 
tractions after 100 bootstrap iterations. Data are compiled the three cells shown in (B – 100 measurements each of 33,612 traction 
vectors). Mean standard deviations of all the recovered traction components in the x, y and z Cartesian directions are indicated. (B) 
Maximum intensity projections, contour and vector maps of the cells utilized in the bootstrap analysis. For the traction maps, the mean 
bootstrap values at each facet are plotted (and considered significant) only if each component is above 2X the standard deviations 
indicated in (A). All scale bars = 20 m.  All PEG hydrogels = 6500 Pa. 
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Fig. S14: The effect of regularization. (A-D) Vector plots showing the effect of varying the regularization parameter (λଶ in equation 
27) by more than 1 order of magnitude within the vicinity of the L-curve. Although the absolute values (and background levels) vary 
between each condition, the locations and relative differences between shear and normal tractions are consistent. All scale bars = 20 
m.  All PEG hydrogels = 6500 Pa. 
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Fig. S15: Dimensions and properties of the finite element simulations (A) The PEG hydrogel was modeled as a 200 x 200 x 60 m 
cube with *ENCASTRE boundary conditions along the bottom surface. The material was treated as a NeoHookean solid. All 
simulations were modeled utilizing a symmetry boundary condition cutting vertically through the center plane of the adhesion. (B) 
The focal adhesion was modeled as a 150 nm tall elliptical plate with major and minor axis of 6 and 2 m respectively. These values 
were comparable to those measured experimentally. The focal adhesion material was treated as linearly elastic with a Young’s 
modulus of 2.431 MPa (373 times more rigid than the initial modulus of the PEG hydrogel) and a Poisson ratio of 0.49. The bottom 
surface of the adhesion was tied to the PEG hydrogel using the surface to surface *TIE constraint in Abaqus. A shear load was applied 
to the upper surface of the adhesion using *DSLOAD in Abaqus. The magnitude of this load was increased until the horizontal 
displacements of the hydrogel matched those observed experimentally. An optimal match for the horizontal displacements was 
observed for a shear traction of approximately 3.128kPa when distributed uniformly on the dorsal surface of the adhesion. 
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Fig. S16: 2.5D TFM measurements of cells on substrates of varying rigidity. (A) Maximum intensity projections, contour and 
vector maps of the tractions exerted by representative mEGFP-farnesyl expressing MEFSs cultured on soft (~1kPa), medium (~4.7 
kPa) and stiff (~6.5 kPa) PEG hydrogels. (B-C) Compiled probability density functions of the shear or normal tractions exerted by 
cells in each condition. (D) Ratio of total normal to total shear tractions exerted by cells in each condition. Data in B-D are from n=15 
(soft), n=12 (medium) and n=14 (stiff) cells from multiple experiments. Each cell consists of 11204 traction vectors. * = alpha ≤ 0.05 
and ns = alpha >0.05 via Kruskal–Wallis one-way analysis of variance and Tukey’s HSD (Honestly Significant Difference) tests. All 
scale bars = 20 m. 
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Fig. S17: Representative images and tractions of mouse embryo fibroblasts. Maximum intensity projections, contour and vector 
maps of the tractions exerted by representative mouse embryo fibroblasts expressing paxillin-EGFP. All scale bars = 20 m.  All PEG 
hydrogels = 6500 Pa. 
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Fig. S18: Representative images and tractions of endothelial and osteosarcoma cells. Maximum intensity projections, contour and 
vector maps of the tractions exerted by representative bovine aorta endothelial cells and U2OS human osteosarcoma cells expressing 
Paxillin-EGFP. All scale bars = 20 m.  All PEG hydrogels 6500 Pa. 
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Fig. S19: Focal adhesion segmentation and regions of traction integration. Maximum intensity projection of a representative MEF 
expressing Paxillin-EGFP. Elongated, peripheral focal adhesions were outlined manually and ellipses fit to each region as detailed in 
Supplementary Materials. Green ellipses indicate the ellipses fit to each adhesion. Magenta ellipses indicate the expanded regions over 
which tractions were compiled for each adhesion. The yellow circle highlights small punctuate adhesions that were not included in the 
analysis. 
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Table S1: Values of elastic moduli of PEG hydrogels scaled by % Emod as used in resolution and sensitivity analysis. 
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Supplementary Methods and Discussion: 

Bead localization, tracking and noise measurement 

In order to measure the displacement field within the hydrogel, we tracked the movements of sub-diffraction limit 

200 nm fluorescent beads physically entrapped within the hydrogel. Because the diameter of the beads is 

approximately an order of magnitude larger than the pore size of polymerized PEG hydrogels (1), the beads do 

not diffuse within the hydrogel and thus accurately represent the movement of the substrate. The fluorescent 

beads make up approximately 0.01% of the substrate volume, therefore incorporation of the beads should 

minimally impact substrate mechanics at the scale of focal adhesions.  

 

Each volumetric dataset was filtered to remove high frequency noise and local maxima were identified as 

described in (2, 3). These local maxima represent preliminary bead centroid estimates. For each bead, a 5 x 5 x 5 

voxel region surrounding each maxima was isolated in the unfiltered, raw image. The size of this region was 

chosen to encompass the majority of the bead PSF while not being so large as to increase the probability of 

having multiple beads in each sub-image (Figure S2A). The centroid estimate for the bead within each sub-image 

was then refined using a 3D Gaussian, maximum likelihood estimator (MLE), where we have adopted the 

notation described in (4) for fitting a 2D Gaussian. Here, we modify those equations in order to perform 3D 

Gaussian fitting. The point spread function was modeled as a general 3D Gaussian function according to 

 

𝑃𝑆𝐹 (𝑥,𝑦, 𝑧) = 1

(2𝜋)
3
2𝜎𝑥𝜎𝑦𝜎𝑧

e
−� x2

2𝜎x2
+ y2

2𝜎y2
+ z2

2𝜎z2
�
 (1) 

 

The imaging model, which incorporates the effects of finite voxel size is 

 

𝜇𝑘(𝑥,𝑦, 𝑧) = 𝜃𝐼∭𝑃𝑆𝐹(𝑢, 𝑣,𝑤)𝑑𝑢,𝑑𝑣,𝑑𝑤 + 𝜃𝑏𝑔 (2) 

where 𝜇(𝑥,𝑦, 𝑧) denotes the expected value in the kth pixel, 𝜃𝐼 is the expected photon count, 𝜃𝑏𝑔 is the expected 

background count and 𝑑𝑢,𝑑𝑣 and 𝑑𝑤 are the length, width and depth of the of the kth voxel respectively. This 
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model was in turn approximated using error functions and unit voxel dimensions (the localized centroids were 

scaled by the asymmetric voxel dimensions after fitting) in order to simplify computation as follows 

 

𝜇𝑘(𝑥,𝑦, 𝑧) = 𝜃𝐼∆𝐸𝑥(𝑥,𝑦, 𝑧)∆𝐸𝑦(𝑥,𝑦, 𝑧)∆𝐸𝑧(𝑥,𝑦, 𝑧) (3) 

 

where  

 

∆𝐸𝑥(𝑥,𝑦, 𝑧) = 1
2
�𝑒𝑟𝑓 �

𝑥−𝜃𝑥+
1
2

√2𝜎𝑥
� − 𝑒𝑟𝑓 �

𝑥−𝜃𝑥−
1
2

√2𝜎𝑥
�� (4) 

∆𝐸𝑦(𝑥,𝑦, 𝑧) = 1
2
�𝑒𝑟𝑓 �

𝑦−𝜃𝑦+
1
2

√2𝜎𝑦
� − 𝑒𝑟𝑓 �

𝑦−𝜃𝑦−
1
2

√2𝜎𝑦
�� (5) 

∆𝐸𝑧(𝑥,𝑦, 𝑧) = 1
2
�𝑒𝑟𝑓 �

𝑧−𝜃𝑧+
1
2

√2𝜎𝑧
� − 𝑒𝑟𝑓 �

𝑧−𝜃𝑧−
1
2

√2𝜎𝑧
��  (6) 

 

and 𝜃𝑥,𝜃𝑦, and 𝜃𝑧 are the expected centroid coordinates. The Gaussian standard deviations of 𝜎𝑥 = 1.25, 

𝜎𝑦 = 1.11, and 𝜎𝑧 = 1.07 voxels were determined from the average fits of 10 spatially isolated beads acquired 

under the same imaging parameters as those used for traction force calculations. 

 

For a Poisson process (which describes the acquisition of images using a CCD camera), the process likelihood is 

given by 

 

𝐿(𝑛�|𝜃) = ∏ 𝜇𝑘(𝑥,𝑦,𝑧)𝑛𝑘𝑒−𝜇𝑘(𝑥,𝑦,𝑧)

𝑛𝑘!𝑘  (7) 

 

where 𝑛𝑘 is the number of photons detected in the kth voxel of the raw image (i.e. not the band pass filtered 

image), and 𝜃 is the parameter set defined by �𝜃𝑥,𝜃𝑦,𝜃𝑧,𝜃𝐼 ,𝜃𝑏𝑔�. Parameter estimation was carried out via 
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Newton-Raphson iteration in order to maximize the log likelihood function ln�𝐿(𝑛�|𝜃)�. As in (4), the iterative 

updates were computed utilizing the partial derivatives of equation 7 as 

 

𝜕ln�𝐿(𝑛�|𝜃)�
𝜕𝜃𝑖

= ∑ 𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑖

� 𝑛𝑘
𝑢𝑘(𝑥,𝑦,𝑧)

− 1�𝑘   (8) 

 

The coordinates of the local maxima within each sub-image were used as initial guesses for 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧. The 

raw image intensity of the peak voxel was used as an initial guess for 𝜃𝐼 and the mode of the isolated sub-image 

around each bead used as an initial guess for 𝜃𝑏𝑔. After each iteration, the parameter set was updated according to  

 

𝜃𝑖 → 𝜃𝑖 − �∑ 𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑖

� 𝑛𝑘
𝑢𝑘(𝑥,𝑦,𝑧)

− 1�𝑘 �  × �∑ 𝜕2𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑖

2 � 𝑛𝑘
𝑢𝑘(𝑥,𝑦,𝑧)

− 1� − 𝜕𝑢𝑘(𝑥,𝑦,𝑧)2

𝜕𝜃𝑖

𝑛𝑘
𝑢𝑘(𝑥,𝑦,𝑧)2𝑘 �

−1
 (9) 

 

Note the change in sign from equation 13 in (4). For each bead, 20 iterations were performed, which was found to 

be adequate for algorithm convergence. The partial derivatives required for the Newton-Raphson iteration are as 

follows: 

 

𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑥

= 𝜃𝐼
√2𝜋𝜎𝑥

�𝑒
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1
2�
2
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𝜕2𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑥2

= 𝜃𝐼
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1
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2
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� 𝑒

−�𝑥𝑘−𝜃𝑥+
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2

2𝜎𝑥
2 �∆𝐸𝑦(𝑥,𝑦, 𝑧)∆𝐸𝑧(𝑥,𝑦, 𝑧) (11) 

 

𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑦

= 𝜃𝐼
√2𝜋𝜎𝑦

�𝑒
−�𝑦𝑘−𝜃𝑦−

1
2�
2
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𝑒
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2𝜎𝑦2 �∆𝐸𝑥(𝑥,𝑦, 𝑧)∆𝐸𝑧(𝑥,𝑦, 𝑧) (12) 
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𝜕2𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑦2

= 𝜃𝐼
√2𝜋𝜎𝑦3
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𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑧
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𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝐼

= ∆𝐸𝑥(𝑥,𝑦, 𝑧)∆𝐸𝑦(𝑥,𝑦, 𝑧)∆𝐸𝑧(𝑥,𝑦, 𝑧)  (16) 

𝜕2𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝐼

2 = 0  (17) 

𝜕𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑏𝑔

= 1  (18) 

𝜕2𝑢𝑘(𝑥,𝑦,𝑧)
𝜕𝜃𝑏𝑔

2 = 0  (19) 

 

Once the bead centroid within each sub-image was identified, this value was scaled according to the experimental 

voxel dimensions and registered to the original image coordinates. Displacement trajectories between the stressed 

(i.e. subject to cell generated tractions) and relaxed (after SDS treatment) datasets were computed according to a 

local pattern matching algorithm defined in detail in (5).  To correct for mechanical drift, regions of the hydrogel 

that were significantly far from the cell were indicated by the user in each dataset. The displacement of these 

beads should be only affected by mechanical drift and not by cell generated tractions, thus the mean displacement 

of beads in these regions was used to correct for drift in the rest of the dataset.  
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Because errors in the measured experimental displacements will be a combination of bead centroid localization, 

bead tracking precision, and our ability to correct for any experimental drift or swelling within the hydrogel 

volume, we experimentally measured the aggregate of these factors by sequentially measuring the displacement 

field in cell-free regions of the hydrogel. Ten sequential 20 µm thick stacks (41 image slices each) were acquired 

under conditions identical to those used for traction calculation. Displacement trajectories within each of these 

stacks were computed and the standard deviations of these displacements used to describe the experimental errors. 

In order to correct for experimental drift, the mean value of all displacements in each of the Cartesian direction 

was subtracted from each measurement. The displacement errors in each of the three Cartesian directions obtained 

on the Olympus confocal were normally distributed about zero with standard deviations of 16.2, 16.9 and 58.3 nm 

for the x, y, and z directions respectively (Figure S2B). Measurements obtained on the Zeiss confocal had slightly 

lower standard deviations of 17.2, 11, and 35 nm in the x, y and z directions. The asymmetry of the errors in x and 

y is likely the result of a slight shift within the sample during the acquisition process. 

 

To confirm that our bead tracking algorithm could accurately discern displacements of the order of those reported 

experimentally, we acquired 11, 20 µm thick confocal image stacks with center positions shifted by increments of 

100 nm on the Olympus confocal. In each of these datasets, our algorithm accurately reported the mean z 

translation with a measurement spread comparable to that observed for the static measurements (i.e. ~58nm, 

Figure S2C). Because the displacement errors for the lateral directions are ~3X smaller than for the axial 

direction, we anticipate the ability to resolve even finer displacements in these directions, although the precision 

of our x-y microscope stage was not sufficient to test this experimentally.  

 

The aforementioned characterizations were carried out at the raw bead locations. In this manner, we typically 

localized and tracked 7000-9000 beads within a 100 x 100 x 5 µm volume for each cell corresponding to an 

average bead to bead separation of ~1 µm. For experimental measurements of cell tractions, these displacements 

were next interpolated into a uniform grid with a mean nodal separation of 1.7 µm using Delaunay triangulation 
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and standard tri-linear shape functions in Matlab. By interpolating the displacements of randomly distributed 

beads onto a uniform grid (that was consistent between all measurements), we only have to compute a single 

discretized Green’s function and singular value decomposition (as described below) and thus dramatically reduce 

the computational time for each traction measurement (e.g. from ~24 hours per traction measurement to ~10 

minutes). The effect of this displacement interpolation was explicitly accounted for in all characterizations of 

resolution and sensitivity described below. 

 

Hydrogel synthesis, mechanical characterization and measurement of Poisson ratio 

Dry PEG (MW 6000; Sigma-Aldrich, St. Louis, MO) was reacted with acryloyl chloride and triethylamine (TEA) 

in anhydrous dichloromethane under argon to yield PEG-diacrylate (PEGDA). Separately, PEG-RGDS 

macromers were generated by reacting PEGDA with monocysteins CGRGDS peptides by dissolution in 100mM 

sodium phosphate, pH 8.0, followed by filtration through a 0.22 µm PVDF membrane (Millipore, Billerica, MA), 

dialysis, and lyophilization. To make flexible substrates for TFM experiments, PEGDA and acryloyl PEG-RGDS 

macromers were dissolved in phosphate buffered saline (PBS) pH 7.4, to final concentrations of 5.5 wt. % and 10 

mM, respectively. These pre-polymer solutions were mixed with 0.2 µm diameter, non-functionalized fluorescent 

beads (suncoast yellow; Bangs Labs, Fishers, IN). The mixture was dispensed onto coverslips that were 

functionalized with 3-(trimethoxysilyl)propyl methacrylate (Sigma-Aldrich) and flattened by top coverslips, 

treated with SurfaSil (Thermo Scientific, Waltham, MA) per the manufacturer’s instructions. The pre-polymer 

mixture between the coverslips was polymerized with 100 mW/cm2 long-wavelength UV light (320-500 nm) for 

30 sec using Omnicure S2000 (Lumen Dynamics, Mississauga, Canada). After removal of the top coverslip, the 

substrates were incubated in PBS at 37 °C for at least 24 hours to allow swelling.  

 

A shear modulus of 2431 ± 87 Pa for the PEG hydrogels was measured using an AR 2000 rheometer (TA 

Instruments, New Castle, DE), equipped with a temperature-controlled Peltier plate at 37 °C and a 20 mm 

stainless steel plate geometry. Hydrogel samples were prepared and swollen using identical reagents and methods 
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as the substrates for the 2.5D TFM experiments. With the geometry head in contact with the hydrogel, strain 

sweeps of 1 % and 5 % at 0.25 Hz were performed, followed by frequency sweeps from 0.1 – 10 Hz at 1 % strain. 

Data were collected from multiple measurements of three independent samples. 

 

A Poisson ratio of 0.34 was measured using cylinders laden with fluorescent beads. Each cylinder was cast within 

PDMS molds, polymerized and allowed to swell overnight. After swelling, the ends of the cylinder were glued to 

silanized glass slides using additional PEG prepolymer. The glass slides were then attached to a micrometer 

which was mounted above the microscope objective. The entire hydrogel was immersed in PBS for the duration 

of the experiment (Figure S3A, B). From a resting length of 10 mm, the cylinder was stretched to 5% (10.5 mm) 

and 10% (11 mm) strain. After each stretch, the hydrogel was allowed to re-equilibrate for 30 minutes to allow for 

any viscoelastic relaxation. Z-stacks were acquired for the entire thickness of the hydrogel at each strain 

(stretched along the y axis); however, because system was mounted on a widefield microscope (as opposed to a 

confocal), three-dimensional tracking was not able to be performed. Instead, a maximum intensity projection was 

taken from the central 0.1 mm of the cylinder and the 2D bead displacements were tracked (Figure S3C). Bead 

displacements were computed at both 5 and 10% strain. X and y displacement were plotted as a function of x and 

y position (as measured from the centerline of the cylinder) respectively and linear fits to each dataset, along with 

fitting parameters were computed (Figure S3D). The Poisson of 0.34 at both 5 and 10% strains (Figure S3E) was 

computed according to 

𝑛 = −𝑑𝑥
𝑥

𝑦
𝑑𝑦

 (20) 

The Young’s modulus of 6517 Pa was calculated from the shear modulus using the PEG Poisson ratio of 0.34 and 

assuming linearly elastic, isotropic material properties. In contrast to inferring the Poisson ratio based on confined 

and unconfined measurements of the Young’s and bulk moduli, this direct approach allows for the possibility that 

water can be absorbed or exuded from the deformed polymer network and thus more accurately mirrors the 

experimental conditions.  
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Generation of a discretized Green’s function 

From linear elasticity, the displacement field 𝒖�(𝒓�) within a continuum is related to the traction field 𝑻��𝒓�′� at a 

point via a Green’s function Γ�𝒓�, 𝒓�′� and a Fredholm integral of the first kind:  

 

𝒖�(𝒓�) = ∫Γ�𝒓�, 𝒓� ′�  𝑻��𝒓�′� d�̅� (21) 

 

Solving for the traction field 𝑻��𝒓�′� requires knowledge of a suitable Green’s function Γ�𝒓�, 𝒓�′� and inversion (or 

differentiation) of equation 21 The inversion of a noise-contaminated displacement field 𝒖�(𝒓�) renders the 

problem very sensitive to high frequency fluctuations in 𝒖�(𝒓�) which are often attributed to errors in measurement. 

For this reason, the problem is ill-posed and requires some form of regularization (or smoothing of the 

displacement measurements) in order to obtain a reasonable solution. 

 

To implement this approach, we generated a discretized Green’s function relating tractions on the hydrogel 

surface to displacements within the gel using the finite element method. To approximate a semi-infinite halfspace, 

we generated a 3D tetrahedral mesh of a 300 µm wide by 300 µm long by 60 µm tall volume using Abaqus CAE. 

A 100 µm square central portion of the top surface corresponding to the field of view for our microscopic images 

was discretized separately to have 11204 triangular elements, corresponding to an average element area of 

approximately 0.9 µm2. We then solved the forward finite element solution under the linear small strain 

approximation to relate the nodal displacements in the gel to unit tractions applied to each facet on the 

aforementioned surface in each of the three Cartesian directions (33612 total solutions). Because this method only 

requires a single decomposition of the FE stiffness matrix, it is considerably faster than numerical integration of 

the Greens function over each element as was done previously (6, 7). From each of these solutions, the 

displacement grid locations were queried for the computed displacements. Because both the bead coordinates and 

the location of applied tractions are at discrete locations, the relation between bead displacements within the gel 𝒖� 

and tractions on the surface of the cell 𝑻� is now transformed into a set of linear equations 
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𝒖� = Γ𝑻�  (22) 

 

where we have adopted the notation used in (8) in which  

 

𝒖� = [𝑢1(𝒓�1);𝑢2(𝒓�1);𝑢3(𝒓�1);𝑢1(𝒓�2);𝑢2(𝒓�2);𝑢3(𝒓�2); … ;𝑢1(𝒓�𝑚);𝑢2(𝒓�𝑚);𝑢3(𝒓�𝑚)] (23) 

 

is a 3m column vector, where m is the number of tracked beads and 𝒓� is the position vector of each bead. 

 

𝑻� = [𝑇1(𝒓�1′ );𝑇2(𝒓�1′ );𝑇3(𝒓�1′ );𝑇1(𝒓�2′ );𝑇2(𝒓�2′ );𝑇3(𝒓�2′ ); … ;𝑇1(𝒓�𝑛′ );𝑇2(𝒓�𝑛′ );𝑇3(𝒓�𝑛′ )]  (24) 

 

is a 3n column vector, where n is the number of discretized facets on the surface of the cell and 𝒓�′ is the position 

vector of each facet. Subscripts for both u and T in these definitions represent displacements and tractions 

respectively along each Cartesian axis. 

 

 𝚪 is an m x n matrix of the following form:  

 

𝚪𝑖𝑗𝑚𝑛 = �
𝐺𝑖𝑗11 ⋯ 𝐺𝑖𝑗1𝑛

⋮ ⋱ ⋮
𝐺𝑖𝑗𝑚1 ⋯ 𝐺𝑖𝑗𝑚𝑛

�  (25) 

 

Each element of 𝚪 is a 3 x 3 submatrix relating the displacement of bead m in direction i in response to a load on 

facet n in direction j: 

 

𝑮𝑖𝑗 = �
𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

�  (26) 
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Solution of the inverse problem utilizing the L-curve 

As described previously (7-9), relating the displacement measurements within the hydrogel volume to traction 

measurements at the hydrogel surface is an ill-posed, inverse problem that requires regularization in order to 

obtain a reasonable solution. To this end, we used 0th order Tikhonov regularization together with the L-curve 

criterion (10) for implementing and choosing the correct value for the Lagrange parameter, λ resulting in the 

following optimization: 

 

𝑚𝑖𝑛{|𝚪𝑻� − 𝒖�|2 + λ2|𝑻�|2}  (27) 

 

This approach relies on the fact that a log-log plot of |𝑻�|2 vs. |𝚪𝑻� − 𝒖�|2 as a function of λ2 often resembles an 

“L” shape. The optimal tradeoff between matching the experimental bead displacements (i.e. minimizing |𝚪𝑻� −

𝒖�|2) and maintaining reasonable traction magnitudes (i.e. minimizing |𝑻�|2) occurs near the corner of this curve. 

Similar to previous implementations (5, 8, 11), this optimization problem was solved by singular value 

decomposition using the suite of Matlab routines “Regularization tools” by PC Hansen (12).   

 

Note, the Green’s function and tractions above are calculated to transition from the reference, stress-free 

configuration of the substrate to its deformed, stressed configuration.  We therefore solve for the surface tractions 

that would need to be applied on the reference configuration in order to cause the cell-induced displacements.  

Results indicated that under the small strain approximation, changes in volumes/areas are minimal and the 

material stresses approximate the true Cauchy stresses.  To better relate the locations of these tractions to the 

immunofluorescent images of the cells (which are obtained in the stressed configuration - prior to SDS treatment), 

we projected these computed tractions onto the stressed configuration (i.e. projected the material stresses/surface 

tractions onto the deformed geometry).  The algorithm we chose for convenience was to generate a separate 
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discretized Green’s function Γ′ that relates the displacement of the surface nodes (rather than the bead locations in 

the bulk) to surface tractions.  We then solved  

𝒖�′ = Γ′𝑻�  (28) 

 

where Γ′ is the Green’s function that relates surface tractions to surface node displacements, 𝑻� is the recovered 

traction vector (recovered from equation 27), and 𝒖�′ are the displacements of the surface nodes in order to deform 

the relaxed (reference) geometry into the stressed (deformed) geometry.  Note that because the stress-strain 

equations are linear under the small strain assumption, this is fundamentally equivalent to solving the finite 

element equations for the surface displacements in response to the tractions 𝑻� that match the bead displacements 

in the bulk. 

 

Use of the L-curve is well established in solving inverse problems and for traction force microscopy (5, 8, 11); 

nevertheless, we also investigated the behavior of the solution in the vicinity of the corner of the L-curve to 

determine how sensitive the reported tractions are to the parameter λ2 (Figure S14). For all cells measured, the L-

curved displayed a well-defined maximum in curvature (i.e. a clear corner). When λ2 is decreased below the 

value indicated by this corner, the tractions begin to increase exponentially in magnitude and background noise 

increases dramatically. When λ2 is increased above the corner value, the tractions decrease in magnitude slowly, 

but the errors in matching the bead displacements increase significantly. However, while the absolute magnitudes 

of the tractions vary significantly, the spatial relationship of the tractions are qualitatively similar even when λ2 

varies over a full order of magnitude. Importantly, rotational moments about peripheral adhesive regions were 

maintained over this range (Figure S14). 

 

For display purposes, all renderings of cellular tractions were computed in Tecplot 360 (Tecplot Inc., Bellevue, 

WA), and contour plots were scaled such that approximately 1 % of all elements on the cell were saturated. 
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Characterization of resolution and sensitivity 

A quantitative characterization of resolution of the reported tractions is complicated by the vectorial relationship 

between tractions and displacements. Qualitatively, a traction applied uniformly over a large area would introduce 

displacements of many beads and should therefore be easier to detect than a punctuate traction which will only 

introduce displacements of a small subset of beads that are nearby. That is, because traction is reported as a force 

per unit area, the total energy (or force) imparted by a widely distributed surface traction would be significantly 

higher than that imparted by a surface traction of identical magnitude which is confined to a small area. Thus 

reporting that a traction reconstruction has a sensitivity of ** Pa without any mention to the area across which 

such tractions were measured is meaningless. Similarly, reporting that a traction reconstruction has a resolution of 

** µm without any mention as to the magnitude of the tractions capable of being measured at this length scale is 

also meaningless. Thus, in traction force microscopies, resolution and sensitivity are inherently linked. 

 

Further complicating the analysis of resolution, two traction vectors in close proximity will produce 

displacements within the hydrogel that could either add constructively or act to cancel each other out depending 

on whether the traction vectors are aligned or opposed. Thus, the directions at which surface tractions are oriented 

will also impact the true resolution and sensitivity of the technique. In order to address each of these aspects 

(spatial resolution, traction sensitivity, and the effect of traction orientation of these two factors), we utilized 

simulated datasets and two different metrics to characterize our technique. In the first approach, we 

computationally generated uniform tractions aligned with the x, y, or z Cartesian directions that were distributed 

over a circle of defined radius. The forward FEM solution was computed and the displacements calculated at 

specific locations within the hydrogel with densities and distributions that mirrored experimental bead densities 

and distributions. Gaussian distributed noise, scaled by the experimentally measured errors (Figure S2B) was 

then added to these displacement measurements. These noisy measurements were then interpolated onto the same 

grid as was used for experimental measurements and the tractions recovered in an identical manner (i.e. under L-

curve regularization). The magnitude of the simulated tractions and the radius of the circle over which they were 

distributed were progressively decreased until we could no longer recover the simulated tractions (Figure S4). In 
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order to be as general as possible, the loadings were scaled according to % of the hydrogel elastic modulus and 

can thus be applied to all the hydrogels used in this study. For reference, a table of % elastic modulus to traction 

Pa is provided in Table S1 for each of the hydrogels used in this study. In this work, we only consider errors 

introduced by the finite sampling of the displacement field and the displacement measurement noise. For small 

displacements, the stress-strain equations are linear, and the errors introduced by the FEM discretization of the 

Green’s function should be negligible in comparison to the previous two factors. However, for large 

displacements, or coarsely discretized finite element meshes, this may become a significant factor (as was 

previously characterized in (5)).  

 

As the radius of the circle upon which the tractions were applied decreased, the recovered tractions progressively 

began to underestimate the magnitude of the true loading and over estimate the spatial area over which the loading 

was applied, effectively blurring or averaging the true loading (Figure S5-S7). This effect was present for both 

shear and normally applied loadings and became more pronounced as the magnitude of the applied tractions 

decreased. In each of the three Cartesian directions, there exists a point at which it becomes difficult for our 

technique to discern between different conditions (gray boxes in Figures S5-S7). For both shear and normal 

loadings, our method would thus report a 5% load distributed over a ~10 µm radius circle even if the true traction 

distribution were a 10% load applied over a 5 µm radius circle, a 25% load applied over a 3 µm radius circle, or a 

50% load applied over a 2 µm radius circle. This resolution vs. sensitivity line roughly represents the limits of our 

technique for isolated, punctuate loadings with a full-width half-maximum of ~10 µm (Figure S8). Everything 

above this line can be resolved accurately; everything below this line will be underestimated and blurred to within 

this threshold. It is apparent from looking at the plots of figures S5-S7 that this metric is conservative, for normal 

loads, we can in fact detect a 10% load applied over a 3 µm radius circle and a 5% load applied over a 5 µm 

radius circle. 
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The above discussion is useful for characterizing the spatial resolution of traction measurements; however, it is 

important to keep in mind that this metric only represents the resolution for isolated, punctuate loads. Such 

loadings are often more difficult to recover because the limited spatial extent of the applied loadings means that 

only a small fraction of the beads will have detectable displacements and thus detectible signal to noise. Because 

there is no way of knowing a-priori where the force is localized, all beads must be incorporated into the solution 

even though many of them will only serve to contaminate the system with error. Previous implementations have 

attempted to circumvent this by restricting recovered tractions to occur only at focal adhesions (13). While this 

may be reasonable for 2D measurements of only shear loadings, it does not apply for our 2.5D method where the 

cortex of the cell may be expected to exert pressure on the substrate in regions where adhesions are not detected.  

 

In order to address the effect of traction orientation on resolution we adopted a different set of simulated loadings. 

Oscillatory loadings were applied across a region of the substrate that encompassed the entire experimental field 

of view (Figure S9). These loadings were oriented as either parallel shear tractions, perpendicular shear tractions, 

or normal tractions (Figure S10A). The recovered tractions were computed in an identical manner to that 

described above and compared to the original loadings. Under each condition, the wavelength and the magnitude 

of the simulated loadings were progressively decreased until the tractions could no longer be recovered. The 

errors in the recovered tractions were compared quantitatively according to 

 

% 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  |𝑇𝑠−𝑇𝑟|2
|𝑇𝑠|2

× 100  (29) 

 

where Ts and Tr are the simulated loadings and recovered loadings respectively and the norms are the Euclidian 

norm (Figure S10B). Note that such a global analysis is not appropriate for the spatially isolated traction analysis 

above because the vast majority of the simulated traction components in those cases are zero, thus any 

background would add disproportionately to the global error. We found that oscillatory shear loadings directed 

parallel to each other were the most difficult to recover. In all conditions, the accuracy of traction recovery 
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decreased with both the wavelength and magnitude of the applied loadings. A graphical depiction of the errors as 

presented in Figure S10B is shown in Figure S10C. An error of 25% indicates that the recovered traction vector 

will lie within a sphere centered at the tip of the simulated traction vector with a radius that is 25% of the 

magnitude of Ts. This is the 3D vectorial equivalent to traditional error bars on a 1D plot. While the error 

described above provides a quantitative metric for the accuracy of the recovered tractions, it can be difficult to 

interpret qualitatively. Because the simulated tractions are applied only along a specific Cartesian direction 

whereas the errors in the recovered tractions will be distributed across all Cartesian directions, this metric appears 

to be overly pessimistic (e.g. significant information about the simulated loadings can be obtained even at the 

100% global error point). To illustrate this, we have plotted line cuts of the simulated and recovered tractions for 

both 5% (Figure S11) and 2% (Figure S12) simulated traction magnitudes. For example for normal loadings of 

2% the hydrogel elastic modulus, oscillating at 10 µm wavelength (Figure S12) one can still readily discern the 

oscillatory nature of the simulated loading, albeit at the cost of significant background in both the x and y 

components.  

 

The simulations presented here are well-controlled metrics for assessing the resolution and sensitivity limits of 

traction force microscopy techniques. In contrast, cells exert neither continuously oscillating loads, nor spatially 

isolated punctuate loads. Nevertheless, the metrics presented here serve to characterize the two extremes of 

recoverable loadings and thus quantitatively assess the resolution and sensitivity of the system. Moreover, these 

metrics could be readily applied to compare the benefits of previous and new developments to traction force 

microscopy methods or to quantitatively test the potential advantages of various approaches.  

 

Bootstrap analysis of reported tractions and global force balance 

The experimentally recovered tractions will represent a spatially averaged or blurred “image” of the true traction 

loadings subject to limitations presented in the preceding section. Given this constraint, it is also important to 

determine the statistical significance of the reported tractions. Put another way, one can ask – if we were to 

measure the displacement field a number of different times, and given that each measurement will be subject to 
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some randomly distributed experimental noise, how much variation could we expect in the recovered tractions? 

Because the cell (and thus the tractions) are not temporally constant, acquiring multiple experimental 

measurements of the same traction field is not feasible. However, one can assess the significance of the recovered 

tractions a-posteriori via a bootstrap analysis (5, 7, 8). In this method, the recovered tractions are used to generate 

displacements at the measured bead locations via solution of equation 22. Experimentally relevant levels of noise 

are then superimposed onto these displacements before interpolating onto the same grid used in the initial traction 

measurement. Equation 27 is then solved using the L-curve criterion and the newly recovered tractions compared 

to the initial measurement. This process can then be repeated numerous times to assess the statistical significance 

of the reported tractions. To verify that the reported tractions and specifically that the presence of rotational 

moments about peripheral adhesions were statistically robust, we performed 100 bootstrap iterations for traction 

measurements of 3 separate cells (Figure S13). The compiled standard deviations in the recovered tractions were 

~7Pa in x and y and ~20 Pa in Z (Figure S13A). For each of the cells tested, we show the mean recovered 

bootstrap tractions, culled to show only those tractions with components that were each greater than 2 standard 

deviations of the bootstrap measurements (Figure S13B). Although the bootstrap analysis resulted in a further 

smoothing of the traction fields (as evidenced by the lower magnitude tractions as compared to Figure 2), both 

the centrally localized shear maxima and the rotational moment about actin fibers and adhesions were statistically 

significant. 

 

We also note that when the entire cell is within the microscope field of view, one might expect the forces exerted 

by the cell to satisfy a global force balance. This balance is not implicitly enforced in our algorithm, and thus 

deviation from this balance provides some insight into the magnitude of the errors in the reported tractions. The 

relative errors in this balance expressed as  

 

% 𝑓𝑜𝑟𝑐𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑎𝑏𝑠�∑ 𝐹𝑖𝑛
𝑖=1 �

�∑ 𝑎𝑏𝑠(𝐹𝑖𝑛
𝑖=1 )�

× 100  (30) 
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summed over all n forces, where F is the traction component on either the x, y or z direction divided by the 

element area across which the traction is distributed, were typically between 1 and 5% for both the lateral and 

axial Cartesian directions. 

 

Effect of substrate stiffness 

We also investigated whether rotational moments about adhesions were only limited to cells cultured on relatively 

rigid hydrogels. By varying the weight percent of the PEGDA while keeping the concentration of PEG-RGDS 

constant, we could tune the material stiffness independent of changes in adhesive ligand. We generated 3 

hydrogels with elastic moduli of 1160 Pa (soft), 4756 Pa (medium), and 6517 Pa (stiff) and cultured MEF cells on 

each substrate. As the stiffness of the substrate increased, cells spread to a greater extent and exerted 

progressively stronger shear and normal tractions (Figure S16A-C). Although previous studies have reported 

strong downward tractions under the nucleus of cells, in our system and at each substrate stiffness, both the shear 

and normal tractions were largely limited to the cell periphery. We did observe weak downward tractions under 

the nucleus of cells in the very early stages of cell spreading. Thus while nuclear compression may explain the 

downward forces observed in some settings, this does not appear to apply to all cell types or across all hydrogel 

conditions (14). Finally, we observed that the ratio of total normal traction to total shear traction exerted by cells 

decreased progressively as the substrate became stiffer (Figure S16D), suggesting that the relative importance of 

normal tractions may be enhanced when cells are cultured on soft vs. rigid substrates. 

 

Segmentation and averaging of peripheral adhesive regions 

In order to reveal trends across multiple adhesions and multiple cells, we developed an algorithm to average the 

displacements and tractions in the vicinity of peripheral adhesions. Peripheral adhesions were outlined by hand 

from maximum intensity projections of EGFP-paxillin expressing MEFs. Only elongated adhesions were selected. 

If multiple adhesions were distributed serially (i.e. radially one behind the other) then they were grouped into a 

single “adhesive region”. These images were then used to generate a binary mask and imported into Matlab. 

Ellipses were fit to each isolated region using the “BWLABEL and REGIONPROPS” functions (Figure S19, 
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green outlines) and major and minor axis determined. For all adhesions measured (121 adhesions from 10 cells), 

the mean major and minor axis were 8.3 ± 3.9 µm and 2.17 ± 0.9 µm respectively. Co-centric, expanded ellipses 

of 2X the major and minor axis were then generated around each adhesion (Figure S19, magenta outlines) and 

tractions and displacements compiled within this expanded region. Displacements and tractions within these 

regions were then plotted according to their projected distance along the major axis of fitted ellipse. In order to 

compare adhesions of different lengths and widths, the projected distance was normalized by dividing by the 

length of the major axis fit of each adhesion. Traction measurements were further normalized by dividing both the 

shear and normal tractions by the maximum amplitude of the shear traction in the isolated region.  

 

 

Finite element details and discussion 

To model how cytoskeletal forces applied to focal adhesions could lead to rotational moments, we generated a 

finite element model of one focal adhesion in contact with the adhesive PEG hydrogel. The PEG hydrogel was 

modeled in Abaqus as a 200 x 200 x 60 µm cube with *ENCASTRE boundary conditions along the bottom 

surface. The material was treated as a NeoHookean solid according to 

 

𝑈 = 𝐶10(𝐼1̅ − 3) + 1
𝐷1
�𝐽𝑒𝑙 − 1�2 (31) 

 

where U is the strain energy per unit of reference volume, 𝐶10 and 𝐷1 are material parameters, 𝐼1̅ = λ�1
2 + λ�2

2 +

λ�3
2 is the first deviatoric strain invariant. The deviatoric stretches are defined as  

λ�𝑖 = 𝐽−
1
3λi where λi are the principal stretches and J is the total volume ratio. 𝐽𝑒𝑙 = J for isothermal conditions. The 

initial shear modulus and bulk modulus are given by 𝜇0 = 2𝐶10 and κ0 = 2
𝐷1

respectively. Values of 𝐶10 and 𝐷1 

were computed using the measured shear modulus of 2431 Pa. The bulk modulus was computed based on a 

measured Poisson ratio for the PEG hydrogels of 0.34 via κ0 = 2𝜇0(1+𝑣)
3(1−2𝑣)  as 6787 Pa. All simulations were modeled 
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utilizing a symmetry boundary condition cutting vertically through the major axis of the adhesion (bisecting it). 

The focal adhesion was modeled as a 150 nm tall elliptical plate with major and minor axis of 6 and 2 µm 

respectively (Figure S15). The focal adhesion material was treated as linearly elastic with a Young’s modulus of 

2.4MPa and a Poisson ratio of 0.49 (effectively a rigid, incompressible plate). The bottom surface of the adhesion 

was anchored to the PEG hydrogel using the surface to surface *TIE constraint in Abaqus. A surface traction was 

applied to the upper surface of the adhesion using *DSLOAD in Abaqus. Because the actin cable applying this 

traction in cells is expected to remain taught, the applied load was kept parallel to x-y plane of the substrate (i.e. it 

did not rotate with the surface of the adhesion).  The magnitude of this traction was increased until the horizontal 

displacements of the hydrogel matched those observed experimentally. An optimal match for the horizontal 

displacements was observed for an applied traction of approximately 3.128kPa when distributed uniformly on the 

dorsal surface of the adhesion.  

 

This model of a uniform shear load applied to a rigid focal adhesion that is uniformly coupled to the substrate is, 

to our knowledge, the simplest model capable of reproducing the displacement patterns we observe 

experimentally. In order to generate a significant moment, the adhesion must be significantly stiffer than the 

underlying substrate. Our approximation of the adhesion as an essentially rigid plate is certainly an overestimate 

of the stiffness; however, this requirement may be relaxed if other factors such as the surrounding ventral cortex, 

or additional attachment to the dorsal actin meshwork, were to be included. Moreover, nearly all measurements of 

the mechanical properties of cells have been obtained from measuring the dorsal surface, which may be 

significantly weaker than the ventral surface. Indeed, the fact that we observe slowly decaying downward 

displacements proximal to the adhesion (which cannot be accurately captured by our simple model) suggests that 

the ventral cortex may also be generating significant downward tractions on the surface. Indeed recent super-

resolution studies (15) have revealed what appears to be a buckling of the ventral actin cortex, which would 

support this hypothesis.  

 

 



40 
 

Supplementary References 

1. Raeber GP, Lutolf MP, & Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system 
for proteolytically mediated cell migration. Biophysical journal 89(2):1374-1388. 

2. Crocker JC & Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interf Sci 
179(1):298-310. 

3. Gao YX & Kilfoil ML (2009) Accurate detection and complete tracking of large populations of features in 
three dimensions. Opt Express 17(6):4685-4704. 

4. Smith CS, Joseph N, Rieger B, & Lidke KA (2010) Fast, single-molecule localization that achieves 
theoretically minimum uncertainty. Nature methods 7(5):373-375. 

5. Legant WR, et al. (2010) Measurement of mechanical tractions exerted by cells in three-dimensional 
matrices. Nature methods 7(12):969-971. 

6. Delanoe-Ayari H, Rieu JP, & Sano M (2010) 4D traction force microscopy reveals asymmetric cortical 
forces in migrating Dictyostelium cells. Physical review letters 105(24):248103. 

7. Dembo M, Oliver T, Ishihara A, & Jacobson K (1996) Imaging the traction stresses exerted by locomoting 
cells with the elastic substratum method. Biophysical journal 70(4):2008-2022. 

8. Schwarz US, et al. (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect 
of localized force and the need for regularization. Biophysical journal 83(3):1380-1394. 

9. Ambrosi D (2006) Cellular traction as an inverse problem. Siam J Appl Math 66(6):2049-2060. 
10. Hansen PC (2001) The L-Curve and its use in the numerical treatment of inverse problems. 

Computational Inverse Problems in electrocardiography (Advances in Computational Bioengineering), ed 
Johnston PR (WIT Press, Southampton), Vol 5, pp 119-142. 

11. Sabass B, Gardel ML, Waterman CM, & Schwarz US (2008) High resolution traction force microscopy 
based on experimental and computational advances. Biophysical journal 94(1):207-220. 

12. Hansen PC (2007) Regularization Tools Version 4.0 for Matlab 7.3. Numerical Algorithms 46(2):189-194. 
13. Balaban NQ, et al. (2001) Force and focal adhesion assembly: a close relationship studied using elastic 

micropatterned substrates. Nature cell biology 3(5):466-472. 
14. Hersen P & Ladoux B (2011) Biophysics: Push it, pull it. Nature 470(7334):340-341. 
15. Xu K, Babcock HP, & Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament 

organization in the actin cytoskeleton. Nature methods 9(2):185-188. 

 

 



Supporting Information
Legant et al. 10.1073/pnas.1207997110

Movie S1. Volume rendering of an EGFP-actin–expressing MEF cultured on top of a planar PEG hydrogel containing fluorescent beads.
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Movie S2. Hydrogel displacements induced by the EGFP-actin–expressing cell shown in Movie S1. Displacements are computed from tracking fluorescent
beads before and after treatment with SDS. Horizontal (shear) displacements are shown on Left and vertical (normal) displacements are shown at Right. For
vertical displacements, red indicates an upward displacement toward the dorsal surface of the cell and blue indicates a downward displacement into the
hydrogel. Cross-section views in the bottom frames are taken from the white outlined region indicated at Top. (Scale bars, 20 μm.)
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Movie S3. Cell tractions exerted by the EGFP-actin–expressing cell shown in Movie S1. Shear tractions are shown on Left and normal tractions are shown at
Right. For vertical tractions, red indicates an upward pulling force toward the dorsal surface of the cell and blue indicates a downward pushing force into the
hydrogel. Cross-section views in the bottom frames are taken from the white outlined region indicated at Top. (Scale bars, 20 μm.)

Movie S3

Movie S4. Bead displacements induced by the paxillin-EGFP–expressing cell shown in Fig. 2 E–H. Horizontal displacements are shown on the Left and vertical
displacements are shown at Right. For vertical displacements, red indicates an upward displacement toward the dorsal surface of the cell and blue indicates
a downward displacement into the hydrogel. (Scale bars, 20 μm.)
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Movie S5. Cell tractions exerted by the paxillin-EGFP–expressing cell shown in Fig. 2 E–H. Shear tractions are shown on the Left and normal tractions are
shown at Right. For normal tractions, red indicates an upward pulling force toward the dorsal surface of the cell and blue indicates a downward pushing force
into the hydrogel. (Scale bars, 20 μm.)

Movie S5

Movie S6. Volume rendering of an mEGFP-farnesyl–expressing MEF migrating on top of a planar PEG hydrogel containing fluorescent beads.

Movie S6

Movie S7. Bead displacements induced by the mEGFP-farnesyl–expressing cell shown in Movie S6. Horizontal displacements are shown on the Left and
vertical displacements are shown at Right. For vertical displacements, red indicates an upward displacement toward the dorsal surface of the cell and blue
indicates a downward displacement into the hydrogel. (Scale bars, 20 μm.)
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Movie S8. Cell tractions exerted by the mEGFP-farnesyl–expressing cell shown in Movie S5. Shear tractions are shown on the Left and normal tractions are
shown at Right. For vertical tractions, red indicates an upward pulling force toward the dorsal surface of the cell and blue indicates a downward pushing force
into the hydrogel. Cross-section views in the Lower frames are taken from the white outlined region indicated at Top. (Scale bars, 20 μm.)

Movie S8

Movie S9. Bead displacements induced during the initial spreading of an mEGFP-farnesyl–expressing cell on top of a planar PEG hydrogel. Horizontal
displacements are shown on the Left and vertical displacements are shown at Right. For vertical displacements, red indicates an upward displacement toward
the dorsal surface of the cell and blue indicates a downward displacement into the hydrogel. (Scale bars, 20 μm.)
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Movie S10. Cell tractions exerted during the initial spreading of an mEGFP-farnesyl–expressing cell on top of a planar PEG hydrogel. Shear tractions are
shown on Left and normal tractions are shown at Right. For vertical tractions, red indicates an upward pulling force toward the dorsal surface of the cell and
blue indicates a downward pushing force into the hydrogel. Cross-section views in the Lower frames are taken from the white outlined region indicated at Top.
(Scale bars, 20 μm.)

Movie S10
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