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Summary: Novel approaches to bio-imaging and
automated computational image processing allow the
design of truly quantitative studies in developmental
biology. Cell behavior, cell fate decisions, cell inter-
actions during tissue morphogenesis, and gene expres-
sion dynamics can be analyzed in vivo for entire
complex organisms and throughout embryonic develop-
ment. We review state-of-the-art technology for live
imaging, focusing on fluorescence light microscopy
techniques for system-level investigations of animal de-
velopment, and discuss computational approaches to
image segmentation, cell tracking, automated data
annotation, and biophysical modeling. We argue that the
substantial increase in data complexity and size requires
sophisticated new strategies to data analysis to exploit
the enormous potential of these new resources. genesis
49:488–513, 2011. VVC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Recent years have seen a number of technological advan-
ces, which likely will open up entirely new avenues to
studying the development of complex multicellular organ-
isms. Breakthroughs in light microscopy technology are
accompanied by new computational tools for automated
image processing and data analysis. At the same time proc-
essing power of consumer-level computers increases at a
fast pace and high-performance computational hardware is
available at very low cost. Fast imaging platforms are inter-
faced with powerful computational infrastructures for rou-
tine investigations in the life sciences.

Since system-wide experimental investigations of
development are now accessible in vertebrates and
higher invertebrates, the spectrum of new possibilities is
extensive. The development of tissues and entire organs

can be studied in live animals at single-cell resolution.
Cell migratory tracks, cell division patterns, and lineage
trees can be extracted and tested against biophysical
models of cell behavior and cell mechanics. Large-scale
comparative analyses provide information on the variabili-
ty of developmental building plans and allow the quanti-
tative assessment of mutant defects. Such morphogenetic
reconstructions can be complemented by comprehensive
analyses of gene expression patterns, yielding high-resolu-
tion atlases for different developmental stages.

An obvious next step is the extension to a complete
in silico database with information on gene expression,
cell lineages, and a morphogenetic description of cellu-
lar dynamics (Paluch and Heisenberg, 2009) for all cells
throughout the entire period of development (Megason
and Fraser, 2007). A long-term goal of these efforts is
the system-level understanding of developing organ-
isms. Combining a comprehensive set of morphological,
genetic, and functional in vivo data with sophisticated
computational processing strategies may ultimately
allow the construction of a descriptive model of
embryogenesis. A quantitative assessment of these com-
plex data may allow the extraction of a fundamental set
of mechanistic rules in a normalized morphogenetic
scaffold and thus pave the way for a developmental
computer model with truly predictive power.

Challenges in Imaging-Based Studies
of Embryonic Development

System-wide quantitative studies of development are
becoming increasingly popular (Mavrakis et al., 2010).
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The first critical step in the experimental workflow is
data acquisition, which is most frequently implemented
using fluorescence light microscopy assays. Fluorescence
light microscopy provides specificity, good spatio-tempo-
ral resolution and is well-suited for in vivo studies of suffi-
ciently transparent specimens. This set of attributes is
complemented by other imaging modalities, such as mi-
croscopic magnetic resonance imaging (lMRI), which
trades off specificity and resolution, but achieves out-
standing coverage in large opaque specimens (Jacobs
et al., 2003). The excellent penetration provided by lMRI
is critical e.g. in studies of amphibian (Papan et al., 2007)
and avian (Ruffins et al., 2007) embryogenesis.

In this review, we will primarily focus on fluores-
cence light microscopy assays, which are particularly
well established in the life sciences and have been
instrumental in dissecting developmental mechanisms
in various biological model systems. There are many
experimental challenges in the comprehensive study of
cell behavior in entire intact organisms. Desirable—and
often critical—properties of the microscope are a high
imaging speed, high signal-to-noise ratio, efficient, and
comprehensive coverage of large embryos in their
entirety, good spatial resolution, physiological imaging
at low levels of photo-toxicity and low levels of photo-
bleaching. Live imaging of large cell populations or
even entire embryos at single-cell resolution requires
fast data acquisition, if cell identities are to be followed
unambiguously over time. Precise mapping requires
excellent computational segmentation efficiency in
combination with sampling speeds that yield cell move-
ment distances of less than half a cell diameter within
the sampling interval. In zebrafish and Drosophila

embryos, this typically corresponds to sampling inter-
vals of about 60 s and 30 s, respectively. High signal-to-
noise ratio and spatial resolution are critical to achieve
good detection efficiencies in an automated computa-
tional analysis of the microscopy data. This is particu-
larly important in fluorescence microscopy, as image
quality degrades with increasing imaging depth into the
specimen and labeling/expression efficiency of fluores-
cent markers typically varies from cell to cell. For long-
term observations, e.g., when studying organ develop-
ment or reverse-engineering cell fate decisions, it is
furthermore critical to employ assays that ensure mini-
mal photo-damage in the specimen. Similarly, the con-
sumption of fluorophores in the excitation process
requires optimal use of the limited photon budget
provided by the fluorescent markers in the specimen.

Studying Development With Confocal and
Two-Photon Laser-Scanning Microscopy

In the last decade, conventional and confocal fluores-
cence microscopy were the most frequently used tech-
niques for quantitative imaging of development (Pawley,

2006), followed by multiphoton techniques (Denk
et al., 1990; Diaspro et al., 2005; Helmchen and Denk,
2005). In addition, a number of complementary meth-
ods, such as Optical Projection Tomography (Sharpe
et al., 2002) and Optical Coherence Tomography
(Huang et al., 1991), were developed and applied to a
broad spectrum of biological questions and model
organisms, including live imaging of early mouse devel-
opment (Larin et al., 2009).

The most common implementations of confocal and
two-photon microscopy are based on two-dimensional
laser scanning. A laser beam is focused into the specimen
and fluorescence light emitted by fluorophores in the re-
spective focal volume is collected by using the same
objective. Subsequently, the laser focus is moved to the
next location. In this manner, image information is
obtained pixel per pixel until an entire thin volume sec-
tion has been covered and represented in a two-dimen-
sional image. The pixel dwell time (the resting time of
the laser on each spot) is typically in the order of 1–10
ls, and thus it takes about 1–10 s to record a typical one-
megapixel-sized image. While conventional confocal fluo-
rescence microscopy relies on one-photon excitation,
i.e., fluorophore excitation by absorption of a single pho-
ton of the illuminating laser beam, two-photon micros-
copy uses light of a longer wavelength, which enables ex-
citation only upon near-simultaneous absorption of two
photons by the same fluorophore. Two-photon micros-
copy provides intrinsic optical sectioning, as the high
photon densities required for efficient excitation occur
only in the small focal volume. In contrast, one-photon
excitation-based confocal microscopes require the use of
a small pinhole in the detection system to block fluores-
cence originating from out-of-focus regions. An increase
in imaging speed is achieved in spinning disk confocal
microscopes (Graf et al., 2005) and in line-scanning
implementations, which collect information for multiple
pixels simultaneously. The increase in imaging speed
comes at the expense of image quality, since the parallel-
ized illumination/detection scheme leads to signal cross-
talk between different volume elements.

Traditional experimental approaches based on confo-
cal and two-photon fluorescence microscopy are well
established and are often used for live observation of
subpopulations of cells in the developing embryo. Imag-
ing is typically performed either over short periods of
time with high temporal sampling or over long periods
of time with intermediate temporal sampling.

Confocal light microscopy has enabled detailed stud-
ies of the embryogenesis of Caenorhabditis elegans,
including the automated reconstruction of comprehen-
sive cell lineage trees (Bao et al., 2006; Murray et al.,
2006) and the automated analysis of gene expression
patterns (Liu et al., 2009b; Long et al., 2009; Murray
et al., 2008; Murray et al., 2006; Peng et al., 2008).
Confocal time-lapse imaging of morphogenesis has also
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been established in ascidians (Rhee et al., 2005) and
annelids and recently allowed constructing high-resolu-
tion gene expression maps for the developing Platyner-

eis dumerilii brain (Tomer et al., 2010). In less
transparent species, such as Drosophila melanogaster,
two-photon microscopy typically provides superior
accessibility of dynamic processes deep inside the
embryo (Fowlkes et al., 2008; Parton et al., 2010), as
has been demonstrated in the analysis of germ layer
formation during gastrulation (McMahon et al., 2008;
Supatto et al., 2009) (see Fig. 1). By introducing quanti-
tative modeling and image registration, two-photon
microscopy-based assays enabled the construction of
an extensive gene-expression atlas for several develop-
mental stages in the early fly embryo (Fowlkes et al.,
2008; Luengo Hendriks et al., 2007; Luengo Hendriks
et al., 2006) (see Figure 2). Dynamic events in superfi-
cial structures, such as the remodeling of epidermal
tissue during dorsal closure (Solon et al., 2009), are
also readily accessible by confocal microscopy (Mav-
rakis et al., 2008), and, if live imaging is not a critical
requirement, confocal microscopy can be combined
with chemical clearing protocols (Spalteholz, 1914) to
enhance depth penetration in systems-level studies.

While early Drosophila embryos are generally difficult
to image due to strong light scattering/absorption and
auto-fluorescence of yolk granules and the vitelline mem-
brane (Mavrakis et al., 2008), the highly transparent
embryos of e.g. the fish species Danio rerio and Oryzias

latipes lend themselves very well to fluorescence micros-
copy-based imaging assays (Megason and Fraser, 2003,
2007; Wittbrodt et al., 2002). Numerous quantitative anal-
yses of their development have been performed, includ-
ing studies of axis elongation (Gong et al., 2004), cell
sorting during germ layer formation (Krieg et al., 2008),
convergence and extension (Yin et al., 2009), early fore-
brain development and fate mapping (England and
Adams, 2007; England et al., 2006), optic vesicle forma-
tion (Rembold et al., 2006), morphogenesis of neural
crest (Ezin et al., 2009) and late brain development
(Hirose et al., 2004; Koster and Fraser, 2004). Exception-
ally fast events can be captured by optimizing imaging
speeds with slit-scanning confocal microscopy, e.g., for
analyzing the developmental dynamics of the beating
embryonic heart (Liebling et al., 2006).

In addition to confocal and two-photon fluorescence
microscopy, harmonic generation microscopy has been
used for the in vivo study of zebrafish embryos, combining
second- and third-harmonic generation microscopy for
label-free imaging (Chen et al., 2006; Chu et al., 2003;
Hsieh et al., 2008; Sun et al., 2004). A modification of this
technique allowed cell lineaging for the first three hours
of early zebrafish embryogenesis (Olivier et al., 2010).

Studying avian and mammalian embryogenesis is
particularly challenging, as it requires not only elaborate
microscopy, but also sophisticated in vivo assays or in
vitro embryo culture. These assays are complemented
by powerful genetic tools, e.g., for functional genomics

FIG. 1. Imaging and reconstructing Drosophila gastrulation with two-photon microscopy. (a) Segmentation of mesoderm nuclei (orange
spheres) in histone-GFP expressing embryos by the use of Imaris software. Furrow formation, furrow collapse as a result of an epithelial-to-
mesenchymal transition, and spreading of the mesoderm to form a monolayer are illustrated from top to bottom, respectively. (b/c) Tracking
cell positions in three dimensions over time. Shown are dorsal (b, upper panel) and posterior (b, lower panel) views of mesoderm tracks
(blue and yellow indicate early and late time points, respectively) and dorsal (c, upper panel) and posterior (c, lower panel) views of
mesoderm (orange), and ectoderm (gray) net displacement vectors. Scale bars, 20 lm. Credits: Panels (a–c) were reprinted from Science,
vol. 322, McMahon et al., ‘‘Dynamic Analyses of Drosophila Gastrulation Provide Insights into Collective Cell Migration’’, 1546-1550, Copy-
right (2008), with permission from AAAS.
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FIG. 2. Quantitative mapping of gene expression patterns in the Drosophila blastoderm. (a) Examples of average temporal patterns of
mRNA expression recorded in the Drosophila VirtualEmbryo for several gap (kni, gt, hb) and pair-rule (eve, ftz, slp1) genes. Temporal cohorts,
staged by percent membrane invagination, are arranged from left to right with each row corresponding to a different gene. Each rectangle
shows a lateral view of the blastoderm in a half-cylindrical projection with the dorsal midline at top, the ventral midline at the bottom, and
anterior to the left. (b) PointCloudXplore allows visualization of quantitative three-dimensional expression data. Expression of the gap genes
fkh, gt, hb, kni, and Kr is shown for the stage 5: 4–8% cohort. The upper panel shows a three-dimensional model of the blastoderm surface
(anterior left, dorsal down) with each nucleus colored according to the expression level of the five genes. The lower panel shows a cylindrical
projection of the entire blastoderm (anterior left, ventral center, dorsal upper, and lower edges). The heights of each surface plot indicate
the average expression level of the gene recorded at that point on the VirtualEmbryo, making readily visible the quantitative changes
in expression of these gap genes along both the A-P and D-V axes. A comprehensive database of gene expression patterns and the
PointCloudXplore software are available at http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp. Credits: Panels (a/b) were reprinted from Cell, vol.
133, Fowlkes et al., ‘‘A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm’’, 364-674, Copyright (2008),
with permission from Elsevier.
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and in vivo cell tracking in mice (Hadjantonakis et al.,
2003; Hadjantonakis and Papaioannou, 2004; Nowot-
schin and Hadjantonakis, 2009a,b). Comprehensive
protocols have been devised for the in ovo imaging of
chick somitogenesis (Kulesa et al., 2010; Kulesa and
Fraser, 2002) and live mouse imaging in embryo culture
(Nowotschin et al. 2010; Udan and Dickinson, 2010).
The quite remarkable progress in these fields and the de-
velopment of new tools for live imaging of early mouse
development open up an exciting perspective for quanti-
tative studies of development in higher vertebrates
(Chuai et al., 2009; Chuai and Weijer, 2009; Nowotschin
et al., 2009; Nowotschin and Hadjantonakis, 2010).

Confocal fluorescence microscopes are faster than
two-photon microscopes and yield data at a better
signal-to-noise ratio, whereas two-photon excitation
typically provides improved penetration depth in live tis-
sues due to the wavelength-dependency of the magni-
tude of light scattering and light absorption (McMahon
et al., 2008; Supatto et al., 2009). Owing to extensive
research efforts and iterative optimization in numerous
commercial designs, today’s confocal and two-photon flu-
orescence microscopes are both powerful and straight-
forward to apply. However, there are also fundamental lim-
itations that make certain types of experimental investiga-
tions impossible. In both cases the point-scanning
approach leads to technical limitations in imaging speed,
efficient use of the fluorescent markers, or both, which
preclude the system-wide study of cell behavior at the spa-
tio-temporal resolution required for comprehensive cell
tracking in entire animals throughout development. More-
over, at relatively high imaging speeds the maximum time
window of observation in the confocal fluorescence
microscope is typically limited to a few hours at maximum
due to the effects of photo-bleaching and -toxicity.

Studying Development With Light
Sheet-Based Microscopy

The fundamental limitations in imaging speed, signal-
to-noise ratio and photon-efficiency of point-scanning mi-
croscopy modalities, such as confocal and two-photon
fluorescence microscopes, were overcome with the
advent of light sheet-based fluorescence microscopy. Ini-
tially developed for macroscopic imaging (Siedentopf and
Zsigmondy, 1903; Voie et al., 1993), the method was
developed further for fluorescence microscopy
of biological specimens (Fuchs et al., 2002; Huisken
et al., 2004).

The basic idea behind light sheet microscopy is to
employ two separate optical subsystems oriented per-
pendicular to each other (Stelzer and Lindek, 1994),
which are used for light sheet illumination and fluores-
cence detection, respectively (Fig. 3a). The first subsys-
tem creates a laser light sheet either by using a suitable
optical element, such as a cylindrical lens (Huisken

et al., 2004), or by using laser scanners (Keller et al.,
2008b) (Fig. 3b). The second optical subsystem detects
the fluorescence emitted by fluorophores in the illumi-
nated plane via a conventional camera-based wide-field
detection arrangement. While nonscanning light sheet
microscopy is optically and electronically easier to
implement, the scanning approach provides increased
flexibility and control over the illumination profile,
which is critical e.g. for contrast-enhancing structured
illumination (DSLM-SI, Figure 3c) (Keller et al., 2010)
and fast three-dimensional imaging of stationary sam-
ples. The intrinsic incoherence of the scanned light
sheet implementation furthermore provides improved
homogeneity of sample illumination and thereby
increases image quality (Rohrbach, 2009).

Light sheet microscopy provides intrinsic optical
sectioning. Imaging speed and signal-to-noise ratio are
exceptionally high due to the parallelized detection
scheme. At the same time, photo-damage in the speci-
men is substantially reduced, since only the thin volume
in the focus of the detection subsystem is illuminated to
acquire an image. This combination of advantages is
critical for live imaging applications and allows high-
speed imaging of cell behavior in entire vertebrate and
higher invertebrate embryos at subcellular resolution
(Keller et al., 2010; Keller et al., 2008b).

Light sheet-based microscopes typically employ
water-dipping lenses with long working distance as
well as vertical sample mounting, which provide intrin-
sic capability of multiview imaging. This imaging mode
refers to the acquisition of a series of data sets of the
same volume along multiple angles (Fig. 3a). The advan-
tages are two-fold: In large specimens that are not
visible in their entirety from a single view due to their
size or other factors limiting optical penetration depth,
multiview imaging allows structural complementation
and reconstitution of a single data set representing the
entire specimen (Huisken et al., 2004; Keller et al.,
2010; Keller et al., 2008b; Preibisch et al., 2010). In
addition, multiview imaging can be used to overcome
the anisotropy of the point spread function resulting
from the use of a single detection lens arrangement
employed in almost all light microscopy implementa-
tions. Whereas the axial resolution is typically inferior
to the lateral resolution in single-view imaging—usually
by approximately one order of magnitude—a data set
with isotropic resolution can be reconstructed in multi-
view imaging (Keller et al., 2006; Swoger et al., 2007;
Verveer et al., 2007). More detailed technical descrip-
tions of light sheet microscopy and comparisons to
conventional confocal and two-photon microscopy
with respect to the parameters discussed above are pro-
vided elsewhere (Huisken and Stainier, 2009; Keller and
Stelzer, 2008, 2010).

Light sheet-based microscopy is highly amenable to
integration with other optical techniques. Examples of
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such extensions are the introduction of laser ablation
for precise three-dimensional sample manipulation
(Engelbrecht et al., 2007) and the use of two-photon
excitation to achieve a further increase of penetration
depth, albeit at the expense of signal-to-noise ratio and
flexibility in multi-color imaging (Palero et al., 2010).

The exceptionally low levels of photobleaching and
phototoxicity in light sheet-based microscopy not only
have a quantitative impact on the recordings, but also
enable entirely new experimental observations. Exam-
ples are the imaging of fast cytoskeletal dynamics in
three dimensions over long periods of time (Keller et al.,
2008a; Keller et al., 2007) or the observation of zebrafish
development over three days at high spatio-temporal re-
solution (Keller et al., 2010). The advantages arising
from low illumination energy requirements are further
complemented by new assays for physiological three-
dimensional sample preparation, using low-concentra-
tion agarose cylinders (Huisken et al., 2004; Keller et al.,
2008b) or soft gels such as collagen I or reconstituted
basement membrane (Pampaloni et al., 2007), conven-
tional coverslip-based experimental preparations.

While scanning (DSLM) (Keller et al., 2010; Keller
et al., 2008b; Keller and Stelzer, 2008, 2010; Mertz
and Kim, 2010) and nonscanning (SPIM, mSPIM, OPFOS,
TLSM, OCPI, Ultramicroscopy) (Buytaert and
Dirckx, 2007; Dodt et al., 2007; Fuchs et al., 2002; Hole-
kamp et al., 2008; Huisken and Stainier, 2007, 2009;
Huisken et al., 2004; Keller et al., 2006, 2007; Turaga
and Holy, 2008) implementations of light sheet-based mi-
croscopy have shown exceptional capabilities in a wide
spectrum of applications in the life sciences, their intrin-
sic advantages are invaluable in the comprehensive
study of cell behavior in complex developing organisms.
Light sheet microscopy has been applied to analyze cel-
lular dynamics in entire wild-type and mutant zebrafish
embryos over 24 hours (Keller et al., 2008b) (Figures 4
and 5, http://www.digital-embryo.org/fish.html), to fol-
low zebrafish brain development with cellular resolution
over 3 days (Keller et al., 2010) and for high-speed imag-
ing of the embryonic heart to study atrioventricular valve
morphogenesis and function (Scherz et al., 2008). Com-
bining scanned light sheet microscopy with structured
illumination patterns (DSLM-SI, Figure 3c) provides high

FIG. 3. Light sheet-based microscopy. (a) Left: Comparison of sample illumination and fluorescence detection in conventional/confocal
microscopy and in light sheet-based microscopy (LSFM). A major part of the specimen is illuminated in confocal microscopy, although fluo-
rescence from only a single plane in the specimen is detected. By contrast, no photo-damage is inflicted outside the in-focus plane of the
detection system in the light sheet-based microscope. Right: Three-dimensional imaging in light sheet-based microscopy is performed by
moving the specimen through the light sheet in small steps and recording a two-dimensional image at each step. In DSLM, three-dimen-
sional imaging can alternatively be performed by moving the light sheet through the specimen and by displacing the detection lens accord-
ingly. In multiview imaging, the same volume inside the specimen or even the entire specimen is recorded along several angles. The resulting
multiview information can be combined into a single image stack by data post-processing using a fusion algorithm. (b) Photograph of the
central part of the DSLM-SI imaging platform with a single CCD camera for fluorescence detection. The figure shows the DSLM subsystems
for illumination (blue dashed line) and detection (green dashed line). (c) Light sheet-based structured illumination with digitally adjustable fre-
quency: Side view of the central components of a digital scanned laser light-sheet fluorescence microscope. The illumination lens illumi-
nates a thin volume by rapidly scanning a micrometer-sized laser beam through the specimen. Fluorescence is detected at a right angle to
the illuminated plane by the detection lens. The intensity of the laser beam is modulated in synchrony with the scanning process to create
the structured illumination light patterns. Credits: Panel (a) was reprinted from Current Opinion in Neurobiology, vol. 18, Keller and Stelzer,
‘‘Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy’’, 624-632, Copyright
(2008), with permission from Elsevier. Panels (b/c) were reprinted from Nature Methods, vol. 7 no. 8, Keller et al., ‘‘Fast, high-contrast imag-
ing of animal development with scanned light sheet-based structured-illumination microscopy’’, 637-642, Copyright (2010), with permission
from Macmillan Publishers Ltd.
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FIG. 4. Imaging zebrafish embryonic development with DSLM/DSLM-SI. (a) Maximum-intensity projections (left) and Digital Embryo recon-
structions (right) of a nuclear-labeled wild-type zebrafish embryo at the indicated times and developmental stages. Color code: movement
speeds (0 to 1.2 lm min21, cyan to orange). Images are deconvolved with Lucy-Richardson method (10 iterations). Scale bar, 100 lm. (b)
Maximum-intensity projections of a DSLM time-lapse recording of a membrane- and nuclei-labeled zebrafish embryo injected with
ras-eGFP mRNA and H2A-mCherry mRNA at the one-cell stage. Membranes were imaged using structured illumination (SI-25), and nuclei
were imaged using standard light sheet illumination (LS). Images are deconvolved with Lucy-Richardson method (10 iterations). Scale bar,
100 lm. High-resolution movies are available at http://www.digital-embryo.org/. Credits: Panel (a) was reprinted from Science, vol. 322,
Keller et al., ‘‘Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy’’, 1065-1069, Copyright
(2008), with permission from AAAS. Panel (b) was reprinted from Nature Methods, vol. 7 no. 8, Keller et al., ‘‘Fast, high-contrast imaging of
animal development with scanned light sheet-based structured-illumination microscopy’’, 637-642, Copyright (2010), with permission from
Macmillan Publishers Ltd.
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image quality also in less transparent specimens, such as
early Drosophila embryos, and allows optimizing image
contrast in response to spatio-temporal changes of light
scattering in the developing embryo (Keller et al., 2010).
DSLM-SI was used to perform fast multiview imaging of
Drosophila embryogenesis over 12 hours (Figure 6a),
providing a data basis for the construction of a Drosoph-

ila Digital Embryo (Keller et al., 2010) (Fig. 6b, http://
www.digital-embryo.org/fly.html).

Computational Techniques
for the Study of Development

The fundamental goal of developmental biology is
to understand how the fertilized ovum gives rise
to the organism with all its complexity. The direct
observation and quantification of this process by live
microscopy is therefore an essential step. In contrast to
‘‘-omics’’ approaches, microscopy retains high spatial
and temporal resolution (Megason and Fraser, 2007).
However, the produced images are generally large and
include many complex structures, which often make
manual inspection and analysis impractical. Moreover,
due to limitations inherent to the microscopy and label-
ing techniques, noise, low contrast and limited imaging

depth complicate the analysis. What is required is a ro-
bust automated system that is able to analyze such data
to provide comprehensive quantitative information
about morphology and morphodynamics at cellular and
subcellular levels. Such automation ensures efficiency,
consistency, tractability, objectivity and completeness.
The major process categories in this system are: (i)
image restoration; to reconstruct the fluorescence sig-
nal and enhance contrast, e.g., deconvolution and multi-
view image registration and fusion, (ii) image analysis;
to convert the voxel intensities into a more useful repre-
sentation such as delineated objects, their tracks, higher
order structures, or object annotations based on exist-
ing databases, (iii) modeling developmental processes;
e.g., biophysical and mathematical modeling of develop-
ing tissue morphology and mechanics, which when
combined with data analysis leads to image understand-
ing (see Fig. 7). We will provide a quick survey on the
above processes, highlighting noteworthy accomplish-
ments and research directions relevant for advancing
Quantitative Developmental Biology.

Image Restoration and Contrast Enhancement

The purpose of image post-acquisition processing is
to increase contrast and/or to provide real-time feed-

FIG. 5. Computational reconstruction of zebrafish embryonic development. (a) Detection of cell divisions in the Zebrafish Digital Embryo.
Microscopy data (right half of embryo: animal view, maximum projection) and Digital Embryo (left half of embryo) with color-encoded migra-
tion directions. Color code: dorsal migration (cyan), ventral migration (green), toward or away from body axis (red or yellow), toward yolk
(pink). (b) Cell tracking in the Zebrafish Digital Embryo. Dividing cells (red) and their daughter cells (blue). Yellow, red, and gray overlays
indicate progression of the peripheral cell division waves during division cycle 12 (arrows show direction of peripheral waves; t0 5 216 min
post fertilization). (c) Mesendoderm internalization and migration in dorsal and ventral hemispheres. Frontal and lateral views of slices on
dorsal (shield region, right) and ventral hemispheres (opposite of shield, left). Four cell populations were tracked: green or yellow nuclei in
the early or late embolic wave, blue nuclei at the leading edge of epiboly, and noninternalizing pink nuclei. Orange and white arrows indicate
hypoblast and epiblast cell movements. Scale bar, 100 lm. Databases and high-resolution movies of the Zebrafish Digital Embryo are avail-
able at http://www.digital-embryo.org/fish.html. Credits: Panels (a–c) were reprinted from Science, vol. 322, Keller et al., ‘‘Reconstruction of
Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy’’, 1065-1069, Copyright (2008), with permission from AAAS.
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FIG. 6. Imaging and reconstructing Drosophila early embryogenesis with DSLM-SI. (a) Maximum-intensity projections of a DSLM-SI multi-
view time-lapse recording of a nuclei-labeled Drosophila embryo at the indicated times. Images are deconvolved with Lucy-Richardson
method (five iterations). (b) Lateral snapshots of the Drosophila Digital Embryo. Colored spheres represent the nuclei that were automatically
detected in the DSLM-SI microscopy recordings of the developing Drosophila embryo. Colors indicate directed regional nuclei movement
speeds over 10-min periods. Scale bars, 100 lm. (c/d) Multiview fusion of the Drosophila Digital Embryo. Alignment of the four point clouds
representing the nuclei detected in the four views of the developing Drosophila embryo. Nuclei shown in different colors originate from differ-
ent microscopic views. Side view (c) and view along the anterior-posterior axis of the embryo (d). Databases and high-resolution movies of
the Drosophila Digital Embryo are available at http://www.digital-embryo.org/fly.html. Credits: Panels (a-d) were reprinted from Nature Meth-
ods, vol. 7 no. 8, Keller et al., ‘‘Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination
microscopy’’, 637-642, Copyright (2010), with permission from Macmillan Publishers Ltd.



back to the microscope system. Image deconvolution,
registration, and fusion are all tasks that lead to this
goal. The importance and details of post-acquisition
processing depend on its degree of integration with the
microscopy as well as the required subsequent data
analysis. So for example, widefield microscopy provides
high image acquisition speeds. However, to achieve op-
tical sectioning, the computational task of deconvolu-
tion is necessary. Traditionally, deconvolution estimates
the original unobserved object using the blurred
observed image and the microscope’s point spread
function (or an estimate of it) (Lucy, 1974; Markham
and Conchello, 1999). It is still a slow iterative process
that requires large amounts of computer power, despite
ongoing improvements (Hom et al., 2007; Lam and
Goodman, 2000). Therefore, the common strategy is to
couple high-speed widefield acquisition with offline
deconvolution (Racine et al., 2007). Several deconvolu-
tion software packages exist and are commonly applied,
including commercial (Autoquant by Media Cybernetics
and Huygens by Scientific Volume Imaging) and non-
commercial (Aida (Hom et al., 2007) and BiaQIm
(http://www.bialith.com/)) solutions.

Since most image analysis tasks provide more accurate
results when spurious structures are suppressed and
edges are enhanced, image enhancing and noise reduc-
ing filters should be applied when appropriate. Common
examples are anisotropic diffusion (Perona and Malik,
1990), median filtering and Gaussian blurring. For a
recent survey and comparison of methods in the context
of zebrafish imaging see Kriva et al. (2010). A word of
warning: care must be taken, since these filters will
change pixel and voxel intensity values. Tasks, for which
the original intensity values (or relative intensity values)
are important, such as correlation, should be performed
without application of such filters.

Image Registration

Image registration transforms an image (called the
source) into the coordinate system of a reference image
according to some overlap metric. This computationally
demanding process is required when comparing images
across different view angles, specimens, or time points.
It is often a prerequisite for further analysis steps such as
image fusion, tracking and cell annotation. Generally, an
image registration system is composed of three compo-
nents: (1) a similarity metric that measures the extent of
overlap of the source image with a reference image, (2)
a transformation model, i.e. a mechanism for performing
rigid, affine or freeform transformations, and (3) an
optimization engine that maximizes the overlap of
source and reference by fitting transformation parame-
ters. Image registration is commonly applied in a multire-
solution strategy to reduce computational load. The

FIG. 7. A general scheme for system understanding based on mi-
croscopy data analysis is composed of iterations of hypothesis
testing. After image acquisition, image post-acquisition processing
(image restoration) is performed; this typically includes image
deconvolution, noise filtering, edge enhancement, image registra-
tion and fusion. This is followed by the core image analysis tasks.
Common tasks are parsing images (image segmentation) for la-
beled objects such as cells and nuclei, generation of tracks over
time, as well as higher level analysis to identify e.g., lineages and
cell types. The output of the image analysis is typically compatible
with the mathematical model and is used as a test for its predictive
power. The last step is refining the model based on the output
from the image analysis. Models are then iteratively tested and
refined by perturbing the experimental system and designing new
experiments.
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main idea is to perform rough registration on down-
sampled images and to refine the registration stepwise
as the resolution is digitally increased up to that of
the original data. In addition, image registration may be
intensity-based, i.e., at the voxel level, using image corre-
lation metrics (Liu et al., 2009b; Long et al., 2009; Peng
et al., 2008; Swoger et al., 2007; Tomer et al., 2010) or
feature based (Al-Kofahi et al., 2002; Fowlkes et al.,
2008; Keller et al., 2010; Mace et al., 2006; Peng et al.,
2008; Preibisch et al., 2010; Sun, 1989), in which case
the registration is reduced to point or feature matching.
There is an extensive literature on image registration
(see Brown (1992) and Zitova (2003) for comprehensive
reviews). Especially in the medical imaging field, accu-
rate efficient registration is critical for computer-aided
diagnostics, and in this context most of the early image
registration methods have been developed.

Biological image registration is also being increasingly
applied in the context of tissue morphogenesis. Tomer
et al. (2010) used a sophisticated and powerful combina-
tion of intensity-based registration methodologies to
establish homology between development of the verte-
brate pallium and the sensory-associative brain centers
in an annelid. They used a combination of rigid, affine,
and nonrigid transformation models in a multiresolution
analysis. Peng et al. (2008) developed a novel nonrigid
feature-based technique to straighten C. elegans worms
(the worm straightening algorithm—WSA, Fig. 8). Their
strategy was to reduce the worm representation to a
one-dimensional manifold by determining the anterior-
posterior axis. They constructed the straightened
image as a series of one-pixel separated planes perpen-
dicular to the one-dimensional line by image rotation.
This approach lies in sharp contrast to landmark-based

three-dimensional nonrigid registration methods, in
which a deformation field is calculated. WSA has found
application in the automated determination of C. elegans
cell fates by gene expression profiling (Liu et al., 2009b).
Fowlkes et al. (2008) built a quantitative spatio-temporal
atlas for gene expression in the Drosophila blastoderm
(the model VirtualEmbryo—Fig. 2) using point cloud
registration as their primary tool.

For the registration of multiview light sheet micro-
scopic images a Fourier-domain technique has been
implemented (Swoger et al., 2007), as well as a point-
cloud method that relies on segmenting beads acting as
fiducials (Preibisch et al., 2010).

Another type of application that can benefit from
image registration is time-lapse imaging. Large tissues or
groups of cells may move out of the field-of-view during
the acquisition. To maintain detailed observation, auto-
matic registration from one frame to the next is used to
calculate a transformation that guides the microscope
stage to keep the desired part of the sample in the field of
view in an adaptive manner (Rabut and Ellenberg, 2004).

Image Analysis

Image analysis converts voxel intensities into usable
information such as cell boundaries, geometries, spatial
organization, and trajectories. Automation of image
analysis is essential to avoid subjective results and to
handle large datasets. Current efforts increasingly focus
on developing robust high-throughput image analysis
systems. See for example recent studies on the develop-
ment of zebrafish (Brown et al., 2010; Campana et al.,
2010; Campana and Sarti, 2010; Keller et al., 2008b;
Liu et al., 2008; Melani et al., 2007; Rizzi et al., 2007;
Rizzi and Sarti, 2009; Zanella et al., 2010; Zanella et al.,
2007), Drosophila (Frise et al., 2010; Keller et al., 2010;
Keranen et al., 2006; McMahon et al., 2008; Peng et al.,
2007; Supatto et al., 2009; Weber et al., 2009; Zhou and
Peng, 2007) and Arabidopsis (Fernandez et al., 2010)
(see Fig. 9). By far the most prominent image analysis
task is image segmentation, which we present in some
detail (see Table 1 for an overview of some recent stud-
ies). It converts data from a pixel-based representation
to an object-based one. Image segmentation is a prereq-
uisite for further analyses, as can be seen in recent stud-
ies focusing on cell tracking (Brown et al., 2010; Jaqa-
man et al., 2008; Keller et al., 2008b; Supatto et al.,
2009), tissue tracking (Zamir et al., 2005), lineaging
(Bao et al., 2006; Fernandez et al., 2010; Hirose et al.,
2004; Murray et al., 2006; Olivier et al., 2010) and anno-
tation of cell type or cell cycle state (Held et al., 2010;
Long et al., 2009).

Image Segmentation

Image segmentation (or just segmentation) is the pro-
cess of delineating cellular and other labeled bounda-
ries, yielding their numbers, position and geometries. It

FIG. 8. Automated image processing of fluorescence images of
C. elegans larvae. (a) A two-dimensional slice of the three-dimen-
sional image stack. Blue, DAPI; green, nuclear localization signal
(NLS)-GFP expressed from the myo-3 promoter; red, mCherry
regulated by a promoter of interest (in this example, expression is
in some ventral motor neurons and neurons in the nerve ring). Scale
bar, 10 lm. (b) The same two-dimensional slice after worm body
straightening. (c) The segmentation result of the DAPI channel of
same three-dimensional image, with the same two-dimensional
slice as in (a). Credits: Panels (a–c) were reprinted from Nature
Methods, vol. 6 no. 9, Long et al., ‘‘A 3D digital atlas of C. elegans
and its application to single-cell analyses’’, 667-672, Copyright
(2010), with permission from Macmillan Publishers Ltd.
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is an essential task preceding many other image analysis
steps and represents one of the grand challenges of
computer vision (Szekely and Gerig, 2000). In particular
developmental biology can benefit from advances in
this field, since imaging live developing organisms leads
to data that is difficult to analyze manually. Variations in
fluorescence marker expressions, morphological com-
plexity, tight packing of cells as well as light scattering
and shadowing effects complicate image segmentation
and can considerably decrease the accuracy of tradi-
tional techniques.

We will quickly touch upon the main classes of
computational image segmentation algorithms, and

will then highlight how, and in which context, some
of these approaches have been successful in the study
of morphogenesis. There are several ways in which
segmentation algorithms can be classified, for exam-
ple, supervised vs. unsupervised, intensity-based vs.
gradient-based, model-based vs. low-level. Also some
algorithms are more suitable for ‘‘blob-object’’ segmen-
tation (such as cell and nuclear lumen-labels), while
others are tailored for detecting the cell boundary (for
example membrane labels). We present a classification
according to the general computational complexity of
the algorithm and provide comments on other aspects
as well.

FIG. 9. Reconstructing plant development. (a) Multiangle image acquisition, three-dimensional reconstruction and cell segmentation
(MARS) of Arabidopsis thaliana. After automatic segmentation, the tissue was visualized with a full organ reconstruction. Scale bar, 50 lm.
(b/c) Virtual tissue sections using color codes for cell layer (b) or cell volume (c). Scale bar, 25 lm. (d) Upper row: Confocal image surface
projections of the top view of a wild-type flower collected at the indicated times. Lower row: Segmented three-dimensional reconstructions
of each time point (corresponding to images in the upper row). Credits: Panels (a–d) were reprinted from Nature Methods, vol. 7 no. 7,
Fernandez et al., ‘‘Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution’’, 547-553, Copyright (2010), with
permission from Macmillan Publishers Ltd.
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Thresholding

Threshold-based algorithms find an intensity value
above which all voxels belong to the foreground
(object) and the rest is background. They are the com-
putationally most efficient strategies. The main assump-
tion is that all desired features can be discerned based
on intensity, and, for automatic algorithms, that all infor-
mation necessary for finding the appropriate threshold
is contained in the image itself.

Global thresholding is the simplest strategy. The user or
algorithm selects an intensity value min(f(x)) < t <
max(f(x)), with f(x) representing the intensity information
constituting the image. The binary segmented image vox-
els are set to one for all f(x) > t, and zero otherwise. t can
be chosen manually, or based on priors such as the
expected volume of the segmented object(s). A widely
used automatic method for choosing t is Otsu’s method
(Otsu, 1979), which calculates the optimum threshold
separating fore- and background voxel classes such that
their combined intraclass variance is minimal. More recent
methods include the stable count threshold (Russel et al.,
2009) and fuzzy sets (Tobias and Seara, 2002).

Thresholding is computationally very efficient, but
only yields good results when structures are well sepa-
rated and contrast is uniform and high (MacAulay and
Palcic, 1988). It is often used to provide a starting guess
for more sophisticated approaches.

Edge Detection

Closely related to thresholding, edge detection methods
operate on the derivative of the image instead of its inten-
sity. The assumption is that object boundaries are located
in regions where intensity changes are abrupt. Well
known edge detector algorithms include Laplacian-of-
Gaussian (Marr and Hildreth, 1980), Sobel (Sonka et al.,
1998), and Canny (Canny, 1986). These algorithms try to
find edge pixels while eliminating the effect of noise.
Although edge detection algorithms are fast, structures
are output as discrete edge voxels, and may be incom-
plete or discontinuous. Post-processing is generally neces-
sary to obtain closed contours. Also, despite much
ongoing research, edge detection algorithms are highly
sensitive to noise.

Region Growing

The main idea of region growing algorithms is that all
voxels belonging to the same object are (a) connected
(according to some neighborhood criteria), and (b)
fulfill some binary quality function Q. A general region
growing algorithm will usually start at some seed
point(s) (found for example by thresholding) and check
immediate neighbors for fulfilling Q. Voxels for which Q

is equal to one will be added to the region, and the next
iteration is initiated. Iterations commence until no
neighbors are added. Region growing algorithms differ

mainly in their implementation of Q. The simplest strat-
egy is growing according to voxel intensity value. The
object’s gray values are assumed to be within some
range around a mean value. So neighbor voxels are
added, if their intensity value lies within some range
around the region’s mean. Variants on region growing
algorithms include adaptive region growing (Modayur
et al., 1997), in which the decision to add a new neigh-
bor is weighted by how close the region has reached an
expected size (note the inclusion of prior knowledge),
competitive region growing (Adams and Bischof, 1994),
nonconnected region growing (Revol and Jourlin,
1997) and region growing strategies that do not require
initial seed points (Revol-Muller et al., 2002).

Region growing algorithms are computationally
intensive, noise leads to over-segmentation and hole-for-
mation, and they only separate the regions that share
the property defined in Q. Nevertheless, they are flexi-
ble in the choice of (multiple) criteria, are based on a
simple concept and are easy to program on a computer.

Pattern Recognition

Volumetric images can be regarded as patterns sub-
ject to pattern classification algorithms, which can gen-
erally be classified into supervised and unsupervised
ones. Supervised methods include supervised artificial
neural networks (Alirezaie et al., 1997), support vector
machines (Wang et al., 2001) and active shape models
(Cootes et al., 1995). A training set is needed for all of
these methods. The first two are nonlinear statistical
data modeling tools. They can model complex relation-
ships between inputs and outputs. Active shape models
encode the variability of shapes from an appropriate
training set using selected shape parameters. The
method depends on a good parametric model that enco-
des the most important morphological features. Seg-
mentation proceeds by finding the best position of the
shape points according to the appearance information.
Active shape models are closely connected to deforma-
ble models (described below) due to the necessity of an
economic shape description.

Another popular technique is k-nearest neighbors
classification (Duda and Hart, 1973). It can be used to
estimate a tessellation of the feature space leading to
classification of the entire image. The disadvantage is
that it handles voxels in the image independently, and
additional machinery, for example Markov random
fields (Li, 1995) or mathematical morphology (Serra,
1982), needs to be implemented to define the spatial
correlation between single voxels.

In the unsupervised pattern recognition procedures
(also called clustering algorithms) no training set is
needed. Those are variants of the k-means algorithm. For
example the fuzzy c-means algorithm (Mohamed et al.,
1999) iteratively minimizes the intracluster variation. Vox-
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els are classified according to a weighted distance func-
tion to the nearest cluster centroid. The cluster centroid
is updated and the voxels reassigned. The algorithm ter-
minates when all voxels have been classified.

Pattern recognition techniques can greatly enhance
image segmentation accuracy. Their application has
been mainly limited to the medical imaging field. How-
ever, the supervised algorithms are expected to become
more important for the life sciences as more representa-
tive morphological data is produced and large accurate
training sets can be constructed.

Watershed Transform

The watershed transform (Vincent and Soille, 1991)
considers the image as a system of catchment basins. A
catchment basin is the set of all voxels from which the
path of steepest descent ends in the same voxel. These
basins are ‘‘flooded’’ at the local intensity minima, thus
subdividing the image into regions and delimiting con-
tours. During the course of associating voxels with
basins, contiguous neighborhoods are given identical
labels. At the regions where voxels would be associated
with multiple basins, watersheds exist, and a ‘‘dam’’
should be built.

Watersheds always produce closed contours, how-
ever they generally yield over-segmentations, and var-
iants of the algorithm include strategies to overcome
this limitation (Bleau and Leon, 2000). For a critical sur-
vey and review see Roerdink and Meijster (2001).

Deformable Models and Level Sets

Low-level techniques (e.g., thresholding, edge detec-
tion, region growing, and k-means clustering) generally
assume that the segmentation can be carried out based
on information inherent to the image. This assumption
is fundamentally wrong (Szekely and Gerig, 2000). Espe-
cially for the rich image data produced with modern
microscopes, low-level techniques—though CPU effi-
cient—will not be able to generally produce satisfactory
segmentations. Incorporation of even rudimentary prior
knowledge is enough to increase the accuracy of
the segmentation. An important example of such a prior
is the assumption that imaged structures such as
organelles, cells or tissues are smooth, or bounded by a
biological membrane, and thus subject to physical
constraints of bending and tension energies. We can
therefore describe the structures computationally using
direct surface representation methods. Segmentation
proceeds in the image domain by the evolution of these
contours formulated in terms of the minimization of an
energy functional. This is the technique of deformable
models (Moore and Molloy, 2007; Terzopoulos and
McInerney, 1997). It has received much attention
recently in the context of segmenting medical and bio-
logical images (Chang et al., 2007; Debeir et al., 2004;

Degerman et al., 2009; Dormann et al., 2002; Dufour
et al., 2005; Khairy et al., 2008a; Khairy and Howard,
2008; Khairy et al., 2008b; Li et al., 2008b; McInerney
and Terzopoulos, 1996; Mukherjee et al., 2004; Padfield
et al., 2009a; Padfield et al., 2009b; Pecreaux et al.,
2006; Ray et al., 2002; Shen et al., 2006; Zimmer et al.,
2002). Deformable models can be classified into para-
metric and geometric models (Sonka et al., 1998).

Parametric models are usually associated with the
snake method (Kass et al., 1988). The surface is repre-
sented explicitly, for example as a set of connected
surface points (triangular mesh) or compactly in the
form of coefficients of a series expansion (Brechbühler
et al., 1995; Khairy and Howard, 2008; Khairy et al.,
2008b; Styner et al., 2005) (for a survey of shape repre-
sentation methods for deformable models see (McI-
nerney and Terzopoulos, 1996)). Associated with the
surface is an energy functional composed of internal
(image independent) and external (image dependent)
energies. The internal energy includes shape priors. It
keeps the contour smooth, and is defined through geo-
metric properties of the contour such as surface area
and curvature. This energy can be directly related to
known biophysical measurements such as the rigidity
of the biological membrane and its surface tension
(Pecreaux et al., 2006). The external energy is a
measure of how accurately the contour overlaps with
features in the smoothed image (or its derivative). The
main idea is to construct an Euler-Lagrange equation,
with a time variable, based on the energy functional.
The contour is evolved in time until equilibrium is
reached. According to the definition of the Euler-
Lagrange equation, equilibrium is the balance between
internal and external energies, and would result in a
contour that is generally smooth (conforms to priors)
and simultaneously represents the structure in the
image (conforms to the data). The first implementation
of this idea—the snake method—was sensitive to the
starting position of the contour because it depended on
image gradient. This means that parts of the contour
had to ‘‘feel’’ the pull of the gradient to converge. Later
improvements of the algorithm successfully decreased
the dependence on starting configurations and noise
(Cohen, 1991; McInerney and Terzopoulos, 1995; Xu
and Prince, 1998). An important example of these
methods is the highly successful diffusion gradient vec-
tor field approach (Xu and Prince, 1998). This method
was adapted to a contour-free version (Li et al., 2008a;
Li et al., 2007b) that has found recent application in
zebrafish nuclei segmentation (Li et al., 2007a). Other
variants of deformable model methods do not use curve
evolution, but perform a direct numerical minimization
of the curve-associated energy (Khairy and Howard,
2008) or alternatively Markov Chain Monte Carlo
optimization within a statistical Bayesian inference
framework (Khairy et al., 2008b). Importantly, paramet-
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ric deformable models provide a way to incorporate
prior information in a flexible manner, and with only
moderate loss of computational efficiency.

A limitation of parametric deformable models is that
they cannot handle topological changes without extra
computational machinery. This is naturally solved by
geometric deformable models, which are based on the
level set method (Osher and Sethian, 1988). The main
idea is to implicitly embed the evolving contour into a
higher dimensional function and view the contour as its
zero level. The advantage is that normals and curvatures
of the contour can be efficiently calculated just as in the
parametric models, but with the added advantage of the
natural handling of topological changes. Therefore the
computational complexity is decreased when segment-
ing many independent objects simultaneously. In partic-
ular the geodesic active contour (Caselles et al., 1997)
and Chan and Vese (2001) models are widely used. The
former is recommended when objects have clear boun-
daries and the latter when it is difficult to discern the
transition from object to background. We should state
here that the free change in topology is not always
desired, and one must carefully choose the algorithm
based on the particular dataset at hand.

In contrast to the popular watershed transform (see
above) deformable model algorithms tend to under-
segment the image by merging objects that are closely
situated in the image. This requires some post-process-
ing to refine the results. Nevertheless, the high flexibility
of the method and the close connection to biophysics
make deformable models an excellent candidate as a
quantitative image analysis technique in developmental
biology.

Practical Image Segmentation
in Developmental Biology

The above techniques represent the main classes
of algorithms for image segmentation. Recently, some
variants of them have been successfully applied to the
problem of segmenting fluorescence images in develop-
mental biology studies (Table 1). The endeavors can
generally be classified into nuclei and cell membrane
segmentation. Segmentation of cell nuclei, i.e., in the
presence of a nuclear label, is easier since nuclei typi-
cally exhibit more uniform shapes and fluorescence in-
tensity levels. They are also better separated. To men-
tion a few recent studies; Al-Kofahi et al. (Al-Kofahi
et al., 2006) used adaptive thresholding followed by
watershed transform for segmentation of mouse neural
progenitor cells growing in culture. They used their
results as input for automated lineage construction. Bao
et al. (Bao et al., 2006) reconstructed C. elegans cell lin-
eages from fluorescence recordings of specimens with
GFP-labeled histones. For the initial segmentation of
nuclei, they used low-pass filtering and histogram-based

thresholding. This was followed by determination of
local intensity maxima identification to determine posi-
tions of nuclei. They incorporate priors about the ap-
proximate size and spacing between nuclei to deter-
mine approximate nuclear geometries. Keller et al.
(2008b) developed an adaptive iterative thresholding
method, which was used to construct the Zebrafish Dig-
ital Embryo (Figs. 4 and 5). McMahon et al. (McMahon
et al., 2008; Supatto et al., 2009) used the spot segmen-
tation method of the commercial software Imaris to
investigate collective cell migration in Drosophila (see
Fig. 1). Keller et al. (2010) applied a Laplacian-of-Gaus-
sian blob detection-based method for determining nu-
clear centers from DSLM-SI data of developing Drosoph-

ila embryos. This was followed by estimation of nuclear
diameters from the local intensity distributions, and led
to the generation of the Drosophila Digital Embryo
(Fig. 6).

Image segmentation algorithms that find cell bounda-
ries, even when cells are touching, are critical for
developmental biology. Although there are many specific
fluorescent membrane labels, the recorded boundaries
are often incomplete and their quality depends on the
specific dye used, expression levels and depth of observa-
tion. The subjective surfaces method (Sarti et al., 2000)
reconstructs incomplete boundaries, and—in combina-
tion with post-acquisition filters—has been implemented
for zebrafish cell boundary segmentation (Zanella et al.,
2010). Another technique for cell boundary detection
has been developed based on finding the gray-weighted
distance transform (Baggett et al., 2005). The approach
is promising, as its extension to three dimensions is
straightforward. The recently developed Evolving Gener-
alized Voronoi Diagrams (EGVD) method (Yu et al.,
2010) utilizes intensity, geometric information and topo-
logical constraints to segment touching cells within a
one-function level-set approach. Its generalization to
three dimensions is also straightforward (Yu et al.,
2009b), and has been used in the study of mouse neuro-
blastoma neurite outgrowth (Yu et al., 2009a).

In general, cell boundary segmentation from images
of fluorescently labeled membranes is challenging and
computationally demanding, and is still the focus of a
number of current efforts.

Summary of Image Segmentation

A universal solution for the problem of image seg-
mentation is not feasible, and progress in this field has
been rather slow (Pavlidis, 1992; Zamperoni, 1996).
Effectively, there are as many segmentation strategies as
there are segmentation problems (see Table 1 for an
overview of some recent approaches in the context of
developmental biology). The human visual system is
able to perform segmentation easily and quickly, while
for computers segmentation is a difficult problem as it
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is ill-posed. Well-posed problems have solutions that (1)
exist, (2) are unique, and (3) change smoothly with
small changes in the data. In the case of image segmen-
tation, we assume that the first criterion is satisfied.
However, to satisfy points (2) and (3), we need to intro-
duce prior knowledge, whose details will strongly influ-
ence the result of the segmentation. In general, low-level
algorithms make no assumptions about the objects and
yield inferior segmentations. At the other extreme are
correlation and covariance methods (template match-
ing), in which the object sought is of precisely known
shape or exhibits precisely known properties and the
computer searches for these in the data. In between are
algorithms that take advantage of prior knowledge to dif-
ferent degrees; in increasing order: region growing, de-
formable models and Hough transform (and its variants).
The most flexible framework to express prior knowl-
edge for image segmentation is Bayesian inference. Many
segmentation algorithms can be formulated in Bayesian
terms, e.g., thresholding, deformable models, and Mar-
kov random fields.

Cell Tracking and Lineaging

Once the cells or nuclei have been segmented over
time, we can follow collective cell migration and per-
form lineaging and cell annotation. To reach that goal,
cell tracks must first be generated by associating each
segmented cell (or nucleus) with a track.

The simplest strategy is to associate each cell cent-
roid in a frame to the spatially closest one in the next
frame. This is accurate when cell movements are slow
in relation to imaging speed. When this is not the case,
accuracy of tracks can be increased by generalizing the
concept of ‘‘distance’’ between cells to that of a feature
vector, which includes details of the morphology (e.g.,
in the form of Fourier shape coefficients), fluorescence
intensity, volume, surface area, or total curvature
(bending energy).

Also, segmentation methods can be extended to cell
tracking; examples are template matching between one
frame and the next, or deformable models segmenta-
tion, in which the contour extracted from one frame
serves as the starting guess for segmentation in the next
one. Correlation analysis can provide accurate identities
for tracking when contrast and temporal resolution are
high (Brown et al., 2010; Keller et al., 2008b) (Figs. 4
and 5). More sophisticated methods include gradient
vector flow (Ray et al., 2002; Zimmer et al., 2002) and
estimated cell dynamics (Debeir et al., 2004; Shen
et al., 2006). Liu et al. (2009a) use a graph matching
method (Gold and Rangarajan, 1996) for tracking plant
cells in noisy images. They exploit the local tissue struc-
ture, incorporating relative position information of cells
with respect to their neighbors. Some probabilistic
approaches are also promising (Cui et al., 2006;

Kachouie et al., 2006; Li et al., 2008b; Shen et al.,
2006). In the context of developmental biology, Al-
Kofahi et al. (2006) developed an effective prior knowl-
edge tracking strategy based on evaluating probabilities
of whether cells move, divide or die between consecu-
tive image frames. They separate the task of cell seg-
mentation from the matching algorithm. Matching deci-
sions are based on the solution of a numerical integer
programming problem. Their method is able to recog-
nize and isolate errors in the initial segmentation during
the track assignment stage; however a training set is
needed for setting method-specific parameters. Also
noteworthy is the fuzzy soft-assign algorithm (Chui and
Rangarajan, 2003) developed for point-set matching and
based on deterministic annealing (Rose, 1998). It was
modified for cell tracking (Gor et al., 2005) by extension
to problems with one-to-many correspondences. Other
recent examples for tracking and lineaging are shown in
England et al. (2006), McMahon et al. (2008) (see Fig.
1), Fernandez et al. (2010) (see Fig. 9) and Olivier et al.
2010).

Lineaging Software

The most commonly used program for generating
lineages is SIMI BIOCELL (Schnabel et al., 1997), which,
however, involves a significant amount of manual inter-
vention. Specific for lineaging of C. elegans is Angler
(Martinelli et al., 1997), which browses images of the
worm embryo during early development and relates
these images to overlaid cell lineage data and three-
dimensional schematic views of cell positions. A general
lineage determination algorithm is StarryNite (Bao et al.,
2006; Murray et al., 2006), which segments nuclei in a
semisupervised fashion, traces them in time and assigns
daughters to mothers. The developers of StarryNite
also developed the program AceTree, which serves as a
lineage editor to correct errors, and to visualize and
compare lineages.

Visualization and Annotation
in Developmental Biology

The need for integrated computer programs that a
biologist can run on a personal computer to study
development, has led to the generation of software sys-
tems that streamline cell annotation and data visualiza-
tion. Heid et al. have developed the 3D-DIASemb pro-
gram (Heid et al., 2002) integrating tracking, visualiza-
tion of whole embryos and analysis of cytoplasmic flow.
Their software requires the segmentation to be per-
formed in a semiautomatic way (whole embryos are
found automatically, and segmentation of cells and
nuclei is done manually). Tassy et al. developed the 3D
virtual embryo software (Tassy et al., 2006) for cell
annotation, which was demonstrated on a fixed sample.
The input to their system is a segmentation performed
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separately, and for which they used commercial soft-
ware. Fowlkes et al. (2008) developed the program
PointCloudXplore which allows visualization of quanti-
tative three-dimensional expression data (Fig. 2b). The
user can interactively explore average regulatory relation-
ships between multiple genes (http://bdtnp.lbl.gov/
Fly-Net/bioimaging.jsp). Peng et al. (2009) developed the
software VANO for volume-object image annotation.
The user can visualize and annotate 3D volumes start-
ing with either raw image data or a presegmentation.
Objects can be labeled, categorized, deleted, added,
split, merged and redefined. VANO was applied to
build and annotate high-resolution digital atlases of the
cells in C. elegans larvae and neuronal patterns in the
adult Drosophila brain.

More recently the problem of visualization in 4D data-
sets (space plus time) has been addressed. The main
challenge here is the large size of the datasets and the
need for interactivity. Campana and Sarti (2010) devel-
oped a distance-map driven real-time volume rendering
system that takes advantage of modern GPU architec-
ture. They demonstrate their approach on time-lapse
recordings of zebrafish development. Also, a powerful
cross platform program for real-time visualization of
large image datasets is the V3D software of Peng et al.
(2010). Their system can be customized with plug-ins
to address specific biological questions, and has been
used to build a three-dimensional atlas of neurite tracts
in the Drosophila brain (http://penglab. janelia.org/
proj/v3d). Apart from those two examples, many other
visualization solutions, commercial and noncommercial,
have been developed and recently surveyed (Walter
et al., 2010).

Finally, it is worth to note that the software package
Matlab (The Mathworks Inc.) has a wide user base in
the image processing community in general, and many
techniques presented above can be found implemented
in the Matlab programming language. We also point the
interested reader to a more in-depth excursion into the
concepts presented above through the excellent text by
Gonzalez et al. (2009).

Mathematical Modeling
of Developmental Processes

Since the early reaction-diffusion models for morpho-
genesis in plants and animals (Turing, 1952; Winfree,
1972), the amount of quantitative data has grown sub-
stantially, and mathematical and physical modeling of
morphogenesis has become recognized as an essential
tool in developmental biology (Tomlin and Axelrod,
2007). Models are now testable and experiments moti-
vated by them provide increased insight into how devel-
opmental processes work. This is a powerful way to
convert quantitative data into useful knowledge.

Especially microscopy data can significantly increase
our understanding of development, since we can

directly compare model predictions with phenotypes
(or more often with the results of analyzing images of
phenotypes). Several recent works have formulated
hypotheses about mechanisms of tissue morphogenesis
in mathematical terms, based on observations from
microscopy images, and coupled theoretical simulations
with perturbation of experimental systems.

Drosophila has received particular attention as a
model organism in combined theoretical and experi-
mental investigations of development (Bittig et al.,
2008; Day and Lawrence, 2000; Hufnagel et al., 2007;
Shraiman, 2005; Solon et al., 2009). One of the central
questions is: How does a tissue control its growth? Day
and Lawrence (2000) review extracellular and intracel-
lular regulators that link cell growth, division and cell
survival to final organ size in the context of the Dro-

sophila wing. They furthermore discuss models related
to the hypothesis that local steepness of morphogen
gradients may determine tissue size. Shraiman (2005)
proposed that the mechanism for stabilizing growth
may be mechanical. He uses a mathematical model for
nonuniform growth and finds that cells growing faster
or slower than the surrounding tissue are subject to
mechanical stress, which may by itself provide a mecha-
nism for stabilizing tissue size. Hufnagel et al. (2007)
extend this idea. In their model the size of the wing
disk is regulated by ‘‘the distance at which the morpho-
gen signal crosses a minimum threshold necessary to
promote growth.’’ The long-range interaction necessary
to propagate the information about the size of the
disk is provided mechanically by stress and deformation
in the growing tissue. Therefore, they formulate the
coupled ‘‘proportion checkpoint’’ and ‘‘mechanical
compression’’ models for wing size control.

In a closely related idea, Bittig et al. (2008) investi-
gated the mechanics of tissue growth with anisotropic
division and apoptosis of cells. They applied a two-
dimensional coarse-grained physical description of cell
movement taking into account tissue viscosity and phys-
ical parameters relevant to the Drosophila imaginal
disk. They show that oriented cell division can control
shape changes during development solely by the
mechanics of the tissue through shearing. Both contin-
uum and discrete models were implemented.

Other aspects of Drosophila morphogenesis observed
by microscopy have also recently received attention.
Farhadifar et al. (2007) describe a quantitative model
for the Drosophila wing epithelial packing. In their
two-dimensional discrete model, they minimize an
energy functional that includes surface area constraints,
line tension and possible cortical forces acting at the
cell perimeter. They are able to account quantitatively
for observed packing geometries and also for perturba-
tions induced by laser ablation experiments. Solon et al.
(Solon et al., 2009) focus on Drosophila dorsal closure.
They quantitatively describe the mechanism for closure
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as a cooperative force generation, in which directed
tissue movement is achieved through a ratchet-like
mechanism. They use a powerful combination of cell-
level modeling (simulating the viscoelastic properties)
and experimental perturbation of the system. Their
work is an excellent example of proceeding from
experiment to image analysis and then hypothesis
testing in developmental biology (see Fig. 7).

CONCLUSIONS

The quantitative systems-level investigation of develop-
ment with novel imaging and image processing technol-
ogies has only just begun. The future success of such
studies will depend critically on combining the techno-
logical and conceptual advances in different scientific
disciplines and—even more importantly—on conceiving
new, sophisticated strategies to computer-aided data
mining. Studying the developmental dynamics of biologi-
cal systems in their entirety is a critical next step
towards a comprehensive model of development and
will likely be of key importance for attaining a global
understanding of this multifaceted process. However,
the enormous complexity intrinsic to the resulting data
sets effectively precludes manual evaluation and often
even detailed inspection of the experimental output.
Currently, manual analyses still provide the highest level
of quality control, but they also compromise the unique
potential of this new experimental approach due to
their low-throughput character. Effectively, there is no
alternative to devising and implementing automated in
silico analyses that combine human-level precision
with machine-level speed to unlock truly quantitative
system-level studies in microscopy-based investigations
of development.

Although this goal still resides in the (hopefully not so
distant) future, it is equally important to note that even
this level of technical sophistication will only be a starting
point. On the one hand, the powerful technologies and
resources that are becoming available will enable efficient
testing of a wide spectrum of hypotheses related to spe-
cific developmental and biophysical mechanisms. On the
other hand, they present a great opportunity to address
entirely complementary system-level questions. The de-
velopmental blueprints of a large set of individuals can be
registered and compared quantitatively. Thereby, it will
be possible to computationally search for recurring motifs
in the spatiotemporal patterns of cell behavior underlying
specific dynamic processes or even the formation of
entire organs and tissues. Large-scale analyses will reveal
the intrinsic variability of developmental mechanisms
within single species or even individual strains as well as
their conservation across species boundaries, and allow
tying these quantitative insights to the respective evolu-
tionary history. Cross-correlation of single-cell resolution
morphological reconstructions and gene expression data

from entire developing animals may allow systematic
quantitative mapping of the genetic regulation of develop-
mental building plans and at the same time unravel com-
plementary mechanisms resulting e.g. from the physical
forces acting during morphogenesis (Oates et al., 2009).
The opportunities are almost endless and only one thing
seems certain: These are exciting times for the emerging
field of Quantitative Developmental Biology.
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