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ABSTRACT

In order to study anatomy of organisms with high-resolution there is an increasing demand to image large
specimen in three dimensions (3D). Confocal microscopy is able to produce high-resolution 3D images, but these
are limited by its relatively small �eld of view compared to t he size of large biological specimens. To overcome this
drawback, motorized stages moving the sample are used to create a tiled scan of the whole specimen. The physical
coordinates provided by the microscope stage are not precise enough to allow reconstruction ("Stitching") of the
whole image from individual image stacks.

We developed an algorithm, as well as an ImageJ plug-in, based on the Fourier Shift Theorem that computes
all possible translations (x, y, z) between two 3D images at once, yielding the best overlap in terms of the cross
correlation measure. Apart from the obvious gain in computation time it has the advantage that it cannot
be trapped in local minima as it simply computes all possiblesolutions. Computing the overlap between two
adjacent image stacks is fast (12 seconds for two 512x512x89images on a Intel® Core2Duo with 2:2 GHz) making
it suitable for real time use, i.e. computing the output image during acquisition of the individual image stacks.
To compensate the possible shading- and brightness di�erences we apply a smooth linear intensity transition
between the overlapping stacks. Additionally we extended the to generic 3D registration using gradient based
rotation detection on top of the phase correlation method. We demonstrate the performance of our 3D stitching
plug-in on several tiled confocal images and show an exampleof its application for 3D registration.

Keywords: 3D Stitching, 3D Registration, Fourier Analysis, Global Optimization

1. INTRODUCTION

There is an increasing demand to image complete biological specimen with high resolution in two and three
dimensions (2D, 3D). Biologist use Confocal(3D), Wide�eld(2D) or Electron(2D) microscopes equipped with
motorized stages to stepwise image large areas using high magni�cations. The acquired image tiles have to be
combined into one �nal output image by a process usually referred to as Stitching. Motorized stages used for
such acquisitions operate with high precision, however, inmany cases the physical coordinates from the stage
are not precise enough to provide a proper reconstruction ofthe whole acquisition on pixel level (Fig. 3b).

The physical coordinates provided by the microscope telemetry are imprecise due to the limited precision of the
motorized stages and the nondeterministic shaking of the stage during acquisition. With our microscope hardware
we observed changes up to 10% from the anticipated position of an image tile. To overcome those problems we
present an ImageJ plug-in capable of stitching two and threedimensional images starting from approximate initial
con�guration. The plug-in uses a phase correlation based algorithm to �nd optimal registration parameter for
each pair of stacks and global optimization to stitch multi-tile acquisitions. Additionally we implemented linear
blending to compensate brightness changes between the image tiles.

This paper is organized as follows. We will �rst describe thealgorithm for stitching two adjacent tiles. In
the following chapter we extend the algorithms to the stitching of many tiles and describe the linear blending.
Afterwards we present the ImageJ plug-in and �nish with the summary and outlook of further applications of
phase correlation.
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2. ALGORITHM

2.1 Problem Description

In the generic case, the acquisition results in set ofn image tiles where a subset overlaps so that all images
form a connected graph. However, in most cases the tiles are arranged in a p � q grid and overlap by a 10{30%.
The user provides an initial arrangement of the image tiles,i.e. which image tiles overlap and the algorithm
determines the correct overlap for all tiles and create an properly registered output image containing all image
tiles that are connected.

We assume all transformation between overlapping tiles to be translation only. This approximation is reason-
able for most commonly used microscopy techniques where thestatic, �xed sample rests on a level microscope
slide. Translation only transformation models have the advantage that they have a closed form solution, that
means no iterative optimization methods are necessary to compute all possible translations in n dimensions.

2.2 Phase Correlation

The phase correlation method (PCM)1 is a popular algorithm to compute translational o�sets between images.
It is based on the well known Fourier shift theorem which states that a shift between two images results in a
linear phase di�erence in the Fourier transform of both images. If two imagesA and B are related by translation
the shift ( x; y; z) can be computed from thephase correlation matrix Q of both images.

Q(k; l; m ) =
B (k; l; m ) � A � (k; l; m )
jB (k; l; m ) � A � (k; l; m )j

� denotes complex conjugate

Note that ( x; y; z) refers to positions in real space while (k; l; m ) de�nes coordinates in frequency space. The
inverse Fourier transform of Q(k; l; m ) yields Q(x; y; z) which is a delta function � (x; y; z) in the ideal case, i.e.
a single peak whose position de�nes the shift between the images.

In real images, however,Q(x; y; z) contains several peaks marking di�erent translations with high correlation.
Moreover, each peak describes eight di�erent possible translations (in 3D) due to the periodicity of the Fourier
space. For example in two 100� 100� 100 images a detected shift of (x; y; z) = (10 ; 10; � 10) refers to one of the
following translations: (10; 10; � 10); (� 90; 10; � 10); (10; � 90; � 10); (� 90; � 90; � 10); (10; 10; 90); (� 90; 10; 90);
(10; � 90; 90); (� 90; � 90; 90).

To determine the correct shift we select then highest local maxima (3� 3� 3 neighborhood) from the inverse
phase correlation matrix and evaluate their 8 possible meanings using the correlation coe�cient rAB of the cross
correlation on the overlapping area of the imagesA; B .

rAB =
Cov(A; B )
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The correlation coe�cient gives a normalized value between� 1 and 1 describing their similarity. The peak with
the highest rAB is selected as translation between the two images. If none ofthe rAB is above a certain limit
(e.g. 0:3) the tiles are assumed to be non overlapping.

2.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is computed using the Prime Factor Fast Fourier Transform (PFFFT) 2

implemented in the Java Mines Toolkit (JTK). 3 It supports a wider variety of input sizes and is faster than
typical Radix-2 FFT algorithms. As JTK implements only one d imensional PFFFT, we added multithreaded
methods for 2- and 3-dimensional Fourier transforms.

Prior to performing the PFFFT the input images have to be extended to a size supported by that algorithm.
However, a simple zero-padding is not optimal as it producessharp edges between the input image and the
zero-padded part (Fig. 1 rightmost image). These edges cause high correlation independent of the image content
making the detection of all translations impossible.



Figure 1. shows the process of extending an image to a size accepted by the PFFFT. Hard edges as shown in Zero Padding
only are prevented and the image content is preserved.

To overcome those issues as well as the problem of periodicity of the Fourier Transform (it assumes that the
function continues from right to left and bottom to top) the i mages are �rst extended by 1=4 of their size. The
empty space is then �lled by the mirrored content of the images and afterwards faded from their real intensity
to black using an exponential windowing function (Fig. 1). In this way, the periodicity is not broken and real
image information is preserved as only the mirrored parts are faded out. The resulting images are zero-padded
to dimensions supported by the PFFFT algorithm without intr oducing any artifacts.

2.4 Global Optimization

After the correct alignment between overlapping image pairs has been identi�ed the location of each image tile
in the �nal output image has to be determined. To compute a location for an image tile it must have at least one
overlapping neighbor, however, typically an image tile hasup to eight neighbors (Fig. 4). Such con�gurations
require a global optimization which ensures that possible alignment errors are not propagated. Furthermore a
global optimization can deal with cases where no translation between overlapping images was found but these
extant images are still connected indirectly over other images. This situation occurs when for instance the
overlapping area in both images is uniform (e.g. black), a tile is missing or the correlation coe�cient for two
overlapping tiles is below a certain threshold (0:3) and therefore not considered for global optimization.

To solve the global optimization we use the generic groupwise landmark registration that has been formalized
and implemented in the diploma thesis of Stephan Saalfeld.4 It computes the �nal location of each image if it
has at least one valid overlapping tile as well as minimal, average and maximal displacement of all tiles relative
to the initially computed pairwise alignments. In the ideal case the displacements are zero, however, in real
images small displacements in the range of 1 pixels are typical (Table 1).

To identify signi�cant misalignments which occur if simila r structures in overlapping tiles are actually not
the same we use an approach inspired by robust regression. Wedetect outliers by checking the ratio between
maximal and average displacement. As long as the maximal displacement is more than 2:5 times higher than
the average displacement the alignment of the image pair with the highest displacement is removed and the
optimization is re-calculated.

2.5 Output Image Computation using Linear Blending

Almost all microscopic acquisitions su�er from shading. Shading is an position dependent additive term to
the pixel intensity, in microscopy also often called background image. In most cases this results in brightness
di�erences in the overlapping areas which are clearly visible as lines (Fig. 3) even if the registration is correct.

We compute the linear blending in the overlapping area by computing a weightening factor for each con-
tributing tile Ti at each location which is based on the distance to its own border. The closer the loca-
tion of a pixel l i;dim in an overlapping area is to its respective image border, thesmaller is its contribution
to the overall intensity. We start computing the minimal dis tance to the image border in each dimension



dmin
i;dim = min (l i;dim ; size(Ti;dim ) � l i;dim ). The initial weightening factor is computed as v(Ti ) =
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The parameter � in
uences how the intensities are blended in the overlapping area (Fig. 2). With higher values
of � the steepness of the blending increases. For� < 1 edges remain visible but are less prominent,� = 0 is
identical to averaging the pixel intensities. For all images shown in this publication we used� = 1 :5.

3. IMAGEJ PLUG-IN

The algorithm as described in this paper is implemented as several ImageJ plug-ins available for download on
the homepagehttp://fly.mpi-cbg.de/ ~preibisch/software.html together with a HowTo.

The plug-ins Stitching2D and Stitching3D align two opened images. The user can de�ne rectangular ROIs
in the input images which mark the area used to compute the alignment. This increases the computation
time but is no prerequisite. The plug-ins will create an output image using the fusion method de�ned by
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C
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Figure 2. illustrates the results of linear blending and the e�ect of � . For illustration purposes each panel contains three
images, one in white, gray and dark gray. A shows the resulting image for � = 0 which is identical to a simple averaging
in the overlapping areas. B and C show the output image when using linear blending and an � of 1 and 2, respectively.
Linear blending produces no visual borders even for huge brightness di�erences between many overlapping tiles.

A B C D

Figure 3. shows e�ect of linear blending on the output image. (A) Maximum intensity projection of a stitched image
consisting of 6 tiles with a �nal image size of 976 � 1421 � 86 px. The image was stitched using PCM with global
optimization and linear blending. The orange rectangle shows the area B,C,D are zoomed into. B shows the stitching
based on coordinates provided by the stage. C shows the alignment using PCM without linear blending, whereas in D
the linear blending was applied.



tiles individual tile output image output image computatio n min/avg/max
dimension dimension size time displacement

3 1024� 1024� 42 1097� 2345� 43 108 MB (8 Bit) 0 : 42 min 0:00=0:00=0:00 px
6 512� 512� 86 975� 1425� 86 350 MB (RGB) 1 : 20 min 0:60=0:77=1:05 px
24 1024� 1024� 68 3570� 5211� 70 1200 MB (8 Bit) 22 : 43 min 0:49=0:76=0:99 px
72 512� 512� 122 3391� 3847� 145 1850 MB (8 Bit) 43 : 10 min 0:00=0:39=0:64 px
63 1024� 1024� 92 6088� 7667� 119 5424 MB (8 Bit) 178 : 57 min 0:00=0:66=1:18 px

Table 1. examples of stitched data computed on an Intel ® Quad-Core CPU machine with 2 :67 GHz and 24 GB of RAM.
The stitched images of row 1,2 and 3 are shown in �gure 4. The global alignments of all stitchings have an average error
below 1 px, the displacements in row 1 are zero because the twoalignments are independent of each other. Note that the
computation time roughly scales linear with the output imag e size.

the user. Note that these plug-ins support to create the output image as two channel overlap (red/cyan) to
visualize the alignment quality. As only two images are stitched, global optimization is unnecessary. The
plug-in Stitch Collection of Images stitches an arbitrary collection of input images. The con�guration how the
input images are arranged has to be stored in a text �le. It �rs t loads all �les using the LOCI bioformats
importer ( http://www.loci.wisc.edu/ome/formats.html ) to read microscopic �les if necessary. It computes
the alignments between all overlapping images and uses global optimization to compute the output image. To
release the user from the task of creating a text �leStitch Grid of Images creates an appropriate con�guration
for an arbitrary grid of images and starts the computation immediately if wanted. Typically the memory
consumption of the plug-in are in the range of 2-3Ö the size of the output image. It can be minimized by setting
smaller ROIs or overlapping area and choosing maximum projection as fusion method which do not has to load
all contributing images at once.

4. RESULTS

We used the presented algorithm to reconstruct di�erent til ed acquisitions of confocal microscopes (Table 1),
examples of stitched images are shown in �gure 4. The images show visually no stitching artifacts, neither
from misalignments nor from intensity leaps in the overlapping areas. The global optimization �nishes with low
average and maximal displacement and without discarding non-black image tiles supporting that the individual
pairwise alignment have a high quality. The computation time is rather fast, small collections of 3D images can
be reconstructed in less than a minute. From the overall computation time registration takes typically 25% and
the creation of the output image 75%, mainly due to the linearblending which is subject to further optimization.
Due to the ability of the program to run fully multithreaded, computation time will almost linearly increase
with future generations of multi-core CPUs. In general the time needed for computing the output image is much
shorter than it actually takes to acquire the stacks. For example the acquisition of 24 tiles (Table 1, 3rd row)
took roughly 2 hours compared to 23 minutes of computation time.

4.1 Other applications

The PCM has the advantage over gradient based alignment methods that it cannot be trapped in local minima
as it simply computes all possibilities. It is, however, limited to the detection of translational shifts. Therefore
we extended PCM to generic 3D registration using gradient based rotation detection, i.e. we solve the rotations
using an iterating scheme while the translations are solvedusing PCM. In cases where the initial guess is not
close to the solution and/or the correct alignment is a very small local minima we found this solution to perform
better.5 We are currently developing a general plug-in for ImageJ using this technique which will be released
soon.

5. SUMMARY & OUTLOOK

In this paper we present an algorithm and an implementation for ImageJ capable of fast and reliably stitching
huge sets of 3D image stacks. We applied it successfully to several di�erent types of biological samples acquired
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Figure 4. shows stitched images of 3D confocal tiles. A showsa Drosophila melanogaster pupae containing a GFP reporter
under the regulation of the yellow gene, imaged few hours before eclosion. The 
y was dissected out of the pupal case,
immersed in mineral oil and imaged immediately (live) with a n Optiphot confocal microscope (Nikon) equipped with a
4Ö dry lens and a Biorad 1024 system. It was stitched from three i mage stacks arranged in a 1� 3 grid (Table 1 �rst
row). A Gaussian convolution with � = 1 was applied to reduce noise, the maximum intensity projec tion is shown. B
shows the Drosophila larval nervous system stained with thr ee dies, stitched from a grid of 2� 3 RGB images (see table 1
second row), the maximum intensity projection is shown. C sh ows a zone in the dorsal telencephalon of human embryonic
tissue from week 17 post conception, incubated for 24 hours at 37 ° C in DiI. It was imaged using a Zeiss LSM 510 Laser
Scanning Confocal System and a 63Ö /1.4 objective equipped with a Zeiss motorized stage and software version 4:2. The
�nal image was created from 24 image stacks arranged in a 4� 6 grid (see table 1 third row), slice 18 is shown.

with di�erent microscopic systems. Although not shown in th is paper this approach is also practically applicable
to 2-dimensional and theoretically even to n-dimensional datasets. Future work comprises further optimization
of the source code as well as the development of a more user friendly gui for the input con�guration of the images.
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