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Multiple dynamic representations in the
motor cortexduring sensorimotorlearning
D. Huber1{*, D. A. Gutnisky1*, S. Peron1, D. H. O’Connor1, J. S. Wiegert2, L. Tian1, T. G. Oertner2, L. L. Looger1 & K. Svoboda1

The mechanisms linking sensation and action during learning are poorly understood. Layer 2/3 neurons in the motor
cortex might participate in sensorimotor integration and learning; they receive input from sensory cortex and excite
deep layer neurons, which control movement. Here we imaged activity in the same set of layer 2/3 neurons in the motor
cortex over weeks, while mice learned to detect objects with their whiskers and report detection with licking. Spatially
intermingled neurons represented sensory (touch) and motor behaviours (whisker movements and licking). With
learning, the population-level representation of task-related licking strengthened. In trained mice, population-level
representations were redundant and stable, despite dynamism of single-neuron representations. The activity of a
subpopulation of neurons was consistent with touch driving licking behaviour. Our results suggest that ensembles of
motor cortex neurons couple sensory input to multiple, related motor programs during learning.

Animals move their sensors to collect information, and these move-
ments are guided by sensory input. When action sequences are
required to achieve success in novel tasks, interactions between move-
ment and sensation underlie motor control1 and complex learned
behaviours2. The motor cortex has important roles in learning motor
skills3–6, but its function in learning sensorimotor associations is
unknown.

The neural circuits underlying sensorimotor integration are begin-
ning to be mapped. Different motor cortex layers harbour excitatory
neurons with distinct inputs and projections7–10. Outputs to motor
centres in the brain stem and spinal cord arise from pyramidal-
tract-type neurons in layer 5B (L5B). Within motor cortex, excitation
descends from L2/3 to L5 (refs 9–11). Input from somatosensory
cortex impinges preferentially onto L2/3 neurons8,12. L2/3 neurons
therefore directly link somatosensation and control of movements.

L2/3 neurons also participate in learning-related plasticity.
Synapses from the somatosensory cortex to L2/3 neurons are critical
for learning new motor skills13 and support long-term potentiation14.
Learning causes plasticity in networks of L2/3 cells5,15. L2/3 neurons
are thus poised to organize learned movements and the underlying
sensorimotor associations.

To define their roles in learning we imaged large L2/3 neuron
populations in the vibrissal motor cortex (vM1) while mice learned
a sensorimotor task involving whisking and object detection, followed
by licking for a water reward. The vM1 is a subdivision of the primary
motor cortex in which low-intensity stimulation evokes whisker
movements8,16–18. Pyramidal-tract-type neurons in vM1 project to
the brainstem to control whisking19,20 and rhythmic licking5,21.
Activity in the vibrissal somatosensory cortex (vS1; also known as
the barrel cortex), activated by touch, propagates to vM1 (refs 18,
22, 23) to excite L2/3 neurons8,12. Thus, L2/3 cells in vM1 may directly
mediate the stimulus–response (touch–lick) association learned in the
object-detection task.

Tracking neuronal populations during learning is challenging
because only a small fraction of neurons can be recorded stably over
days using electrophysiological methods24. Instead, we imaged activity

in large populations of neurons5,25,26 over weeks while monitoring
multiple sensory and motor variables27,28, enabling us to relate popu-
lation activity to behaviour during learning. Activity in L2/3 cells
correlated with licking, whisker movements (whisking) and touch-
related forces. Representations of individual neurons changed with
learning, but in a restricted manner so that licking neurons rarely
changed into whisking neurons and vice versa. This indicates that
motor cortex neurons default to represent specific behavioural
features. As mice became expert at the sensorimotor task, representa-
tions at the level of neuronal populations stabilized, despite continuing
changes at the level of individual neurons. A subpopulation of neurons
seemed to trigger licking in response to whisker touch, suggesting that
L2/3 cells in the motor cortex learn to link task-related sensory inputs
and actions.

Learning under the microscope
We trained head-fixed mice in a vibrissa-based object-detection task27

while imaging populations of neurons (Fig. 1a)28. Following a sound, a
pole was moved to one of several target positions within reach of the
whiskers (the ‘go’ stimulus) or to an out-of-reach position (the ‘no-go’
stimulus) (Fig. 1b). Target and out-of-reach locations were arranged
along the anterior–posterior axis; the out-of reach position was most
anterior (Fig. 1a). Mice searched for the pole with one whisker row
(the C row) and reported the pole as ‘present’ by licking, or ‘not
present’ by withholding licking. Licking on go trials (hit) was
rewarded with water, whereas licking on no-go trials (false alarm)
was punished with a time-out during which the trial was stopped
for 2 seconds. Trials without licking (no-go, correct rejection, go,
and miss) were not rewarded or punished. All mice showed learning
within the first two or three sessions (d9 . 0.8, one-tailed bootstrap
test, P , 0.001) (Fig. 1c). Performance reached expert levels after three
to six training sessions (d’ . 1.75, approximately 80% correct trials,
P , 0.001).

We used videography and automated whisker tracking (Fig. 1a)27 to
determine the whisker movements and somatosensory input.
Rhythmic whisking (10–20 Hz) was superposed on slower changes
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in the average whisker position, the set point (Fig. 1d, e). Whisking
was thus split into set point (,6 Hz) and amplitude (6–60 Hz;
Methods)29 (Fig. 1d). As a measure of sensory input, we extracted
touch-induced changes in whisker curvature, which are proportional
to the pressure activating mechanoreceptors in the follicle30,31.

Improved performance in the object-detection task correlated with
changes in motor behaviour. Naive mice whisked occasionally, in a
manner that was unrelated to the trial structure (Fig. 1e), probably
reflecting their uncertainty about the stimulus–response relationship.
In contrast, expert mice protracted their whiskers through a large
angle to search for the pole soon after it became available (within
approximately 350 ms) (auditory cue, Fig. 1d, e)27. The repeatability
of whisking across trials (Pearson’s correlation coefficient; r 5 0.57, P
, 0.001) (Supplementary Fig. 1a and Methods) and the amplitude of
whisker protraction during the sampling period increased with per-
formance (r 5 0.54, P , 0.001) (Supplementary Fig. 1b). Licking
consisted of rhythmic bouts of 7.2 6 0.45 Hz5,21 (Fig. 1f). The timing
of lick bouts with respect to touch became stereotyped with learning.
Naive mice licked with variable latencies (on hit trials), and licking
sometimes even preceded touch, indicating that the mice were guessing.
Expert mice licked shortly after first touch, and the temporal jitter of the
first lick in a bout decreased with performance (r 5 20.50, P , 0.001)
(Supplementary Fig. 1c).

Thus, object detection relies on a sequence of actions, linked by
sensory cues. An auditory cue triggers whisking during the sampling
period. Contact between whisker and object causes licking for a water

reward during a response period. Silencing vM1 indicates that this
task requires the motor cortex. With vM1 silenced, task-dependent
whisking persisted, but was reduced in amplitude and repeatability
(Supplementary Figs 1 and 2), and task performance dropped (per-
mutation test; P , 0.001) (Fig. 1g and Supplementary Fig. 1e). Similar
experiments revealed that vS1 is also crucial for the object-detection
task (Supplementary Fig. 1f)27,32. These observations suggest that vM1
and vS1 have critical roles in linking sensation and movement.

Chronic imaging of population activity
L2/3 cells in vM1 may directly mediate the learned association
between whisking, touch and licking. We therefore imaged the activity
of L2/3 neurons during learning (Fig. 2). To target vM1 for imaging
we injected adeno-associated virus (AAV) expressing tdTomato33
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Figure 1 | Learning a whisker-based object-detection task under the
microscope. a, A head-fixed mouse under a two-photon microscope. Whisker
movements were tracked with high-speed videography. For each trial, a metal
pole was presented either within reach of the whiskers (in one of several target
locations, corresponding to different hues of blue; go trial) or out of reach (red,
no-go trial). b, Onset of pole movement produced an auditory cue (vertical
dotted lines). The pole was within reach in the sampling period. Answer licks
were scored in the response period. c, Learning curves. The sensitivity index d9

measures behavioural performance (d9 5 0, chance performance; d9 5 1.75,
expert level (above the dashed line) approximately 80% correct trials).
d, Whisker movement and forces. Top traces, trial showing whisker angle
(grey) and set point (black). Middle traces, whisking amplitude (see Methods).
Bottom traces, change in whisker curvature, which is proportional to force
acting on the follicle. Left, hit trial; right, correct rejection trial. e, Learning-
related changes in whisking. Whisker angle (measured at the base of the
whisker, grey) and set point (low-pass filtered angle, black) for 20 consecutive
correct rejection trials in the first (top; d9 5 0.83, first session) and fifth session
(bottom; d9 5 3.52). f, Learning-related changes in licking. Licks (ticks; answer
licks in red) aligned to first touch, for 20 consecutive hit trials of a naive mouse
(top; d9 5 0.83) and of the same animal but in the fourth session (bottom; d9 5

3.59). g, Behavioural performance drops after inactivation of vM1 (n 5 5 mice;
control, solid circles; muscimol, open circles; asterisks, P , 0.001).
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Figure 2 | Imaging population activity across trials. a, Injection sites for
GCaMP3 virus in vM1 and tdTomato virus in vS1. rAAV2/1-CAG-tdTomato,
recombinant AAV serotype 2/1 (rAAV2/1) virus expressing tdTomato under
the CAG promoter; rAAV2/1-Syn-GCaMP3, rAAV2/1 virus expressing
GCaMP3 under the human synapsin 1 promoter. b, L2/3 neurons in vM1
receive strong input from vS1 and excite deep layer neurons in vM1. Light blue,
glass imaging window; light grey, bone; dark grey, dental cement. c, d, GCaMP3
(green) and tdTomato (red) fluorescence image overlaid on a bright-field image
(grey), in coronal section (c) and through the imaging window (d). Box, field of
view in e. Br, Bregma. e, L2/3 neurons expressing GCaMP3 (depth, 210 mm).
Individual regions (individual neurons) are outlined in pink. f, Example
fluorescence traces (fractional change in fluorescence, DF/F; ten neurons in
twelve trials). Vertical bars, sampling period (blue, go trials; red, no-go trials).
g, Example neurons (cells A and B) across one session (329 trials; expert mouse,
d9 5 3.13) and simultaneously recorded behaviours. Consecutive hit, false
alarm and correct rejection trials are arrayed from top to bottom (misses were
rare in this session). Fluorescence intensity was normalized. Curvature changes
due to touch only occur during the sampling period in hit trials, because
otherwise the pole was out of reach. Whisking occurred in all trials. Licking
occurred in hit and false alarm trials. Lower panel, session averages for correct
trial types (blue, hits; red, correct rejections). Deg, degrees.
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into the C2 column of vS1 and visualized red axonal fluorescence in
vM1 (Fig. 2a–d; see Methods). We infected vM1 with the genetically
encoded calcium indicator GCaMP3 (ref. 34). Long-term expression
of GCaMP3 did not cause detectable damage in vivo, and it did not
inhibit long-term potentiation in brain slices (Supplementary Figs 3
and 4).

We imaged GCaMP3-expressing neurons through an imaging
window35 in fields of view overlapping with the red axons (Fig. 2c–e).
Images (approximately 250 neurons; Supplementary Table 1) were
acquired continuously (4 Hz) over sessions lasting 1 h (280 trials; range
of 141–424 trials). Regions of interest were drawn around individual
cells to extract fluorescence dynamics caused by neural activity (Fig. 2e
and Supplementary Fig. 5). A deconvolution algorithm was used to
detect fluorescence events36 corresponding to small bursts of action
potentials (.2 action potentials)34 (Supplementary Fig. 5 and
Methods). Events were detected in 10.6% of neurons per session
(Methods and Supplementary Table 1) (Fig. 2f). Of all neurons, 43%
showed activity in at least one session. All subsequent analyses were
based on these ‘events’ (286 unique neurons; .10 events per session; 5
animals; 6 sessions per animal). Time series of events were aligned with
recordings of behaviour, such as whisking, licking and touch, and
grouped by trial type (hit, correct rejection, miss and false alarm)
(Fig. 2g).

Intermingled representations in the motor cortex
L2/3 cells in vM1 receive strong input from vS1. To investigate which
behaviours are represented by L2/3 cells during active somatosensa-
tion, we quantified how well specific behavioural variables could be
decoded from neural activity37. We used random forests38, a generalized
form of regression (Methods), to decode behaviour based on all neurons
(Fig. 3). Each behavioural session was treated separately. The beha-
vioural features measured touch (whisker curvature changes; Fig. 1d)
and movements (whisking set-point, whisking amplitude and licking;
Methods and Fig. 1d, f). The algorithm used the activity of populations
of neurons to fit individual behavioural features (the ‘model’), taking
into account dynamics within and across trials (Fig. 3). The explained
variance (Ri

2, for the ith behavioural feature) was used to measure the
quality of decoding.

Population activity typically accounted for the recorded beha-
vioural features with high fidelity. The model captured the timing
of contact between whisker and object (Fig. 3a) (range of R2 values
was 0.03–0.55 for individual mice and sessions). Coding of touch in
the motor cortex18,22 is consistent with direct input from vS1 to the
imaged neurons8. The model also predicted motor behaviours
(Fig. 3b–e) (whisking amplitude, range of R2, 0.22–0.60; whisker
set-point, range of R2, 0.22–0.66; lick rate, range of R2, 0.13–0.75).
Accurate decoding of whisking amplitude, whisking set-point and lick
rate suggests that vM1 controls these slowly varying motor para-
meters, as expected from previous motor cortex mapping5,8,16,18,29,39

and neurophysiological experiments5,29,39. The low sampling rate of
imaging may have missed rapid modulation in neural activity29.

We also quantified decoding accurancy as a function of the number
of neurons (Supplementary Fig. 6). Each behavioural feature required
only a very low number of neurons (1.5–5.5) to reach saturating
decoding performance. This suggests that the representations under-
lying object localization are redundant.

We next asked how individual neurons contribute to the popu-
lation representation. Correlations between activity of individual
neurons and specific behaviours were apparent in the raw traces.
For example, some neurons were active at the same time as whisking
during the sampling period, independent of trial type (cell A, Fig. 2g),
whereas other neurons were active only during licking (cell B, Fig. 2g)
or during other phases of the task (Supplementary Figs 7–13).

To quantify neuronal representations we used random forests
again, but this time behavioural features were fit using single neurons.
The explained variance (Ri

2, for the ith behavioural feature) was used

to measure the quality of decoding by single neurons. Almost one-half
of the active neurons (42%) decoded one or more of the measured
behavioural features (mean Ri

2 for the feature that was decoded best,
0.22) (Supplementary Fig. 7), with varying degrees of reliability
(Supplementary Fig. 14a–k). Shuffling the trial labels caused the quality
of the fit to decrease (Ri

2 . Ri, shuffled
2, P , 0.05 for 351 out of 358

neurons; 1,000 shuffles; average z score, 31; Supplementary Fig. 14l, m),
indicating that the random forest algorithm captured the covariance of
activity and behaviour within trials as well as across trials.

We classified neurons into categories (touch, whisking and licking),
mainly based on the largest correlation coefficient (maximum Ri

2)
(Supplementary Fig. 7). However, one of the trial types was sometimes
more informative than other trial types and caused the largest overall
correlation coefficient to be overruled (Methods) (Supplementary
Figs 7–13). For example, the relationship between neuronal activity
and whisking was only evaluated in trials without touch and licking
(correct rejections). In addition, we considered correlations between
activity and sensory variables (object location or forces acting on the
whisker, Supplementary Figs 10, 13 and 15). For example, in hit trials
some licking neurons showed activity levels that varied with object
location, a signature of sensory input (Supplementary Figs 8, 11, 13
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Figure 3 | Population decoding of behavioural features. a–d, Time series of
behavioural features (black; down-sampled to the imaging rate, 4 Hz) and a
model based on the activity of all active neurons in one session (magenta) (same
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2 .
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which coding of touch was weak (mean z scores (1,000 shuffles): whisking
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Fig. 14l, m for an explanation of z scores). e, Overlay of whisking at full
bandwidth (black) and the model (thick blue trace, whisking set-point; magenta
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and 15). Such neurons, which correlated with multiple behavioural
features, were classified as ‘mixed’ neurons (see Supplementary Fig. 7
and Methods for a full explanation of the classification rules).

The other active neurons remained unclassified on the basis of the
measured behavioural features (mean Ri

2 for best feature, 0.03).
However, these neurons still showed interpretable task-related activity
(Supplementary Fig. 7). Some neurons became active during errors and
others while withholding licking5. Together, the unclassified neurons
might have roles in cognitive processes; alternatively, they might relate
to motor or sensory variables that were not tracked in our study.
Overall, only a small fraction of active vM1 neurons expressed any
one representation (3% touch, 26% whisking, 9% licking and 4%
mixed), suggesting sparse coding of multiple behavioural features in
vM1.

Dynamics of representations with learning
We next investigated how individual neurons change with learning.
We used the classification of individual neurons to track changes in
representations over learning (6 sessions, corresponding to 6–14 days;
Methods and Supplementary Fig. 5). Single neurons were dynamic
(Fig. 4 and Supplementary Fig. 16): cells that decoded a given feature
during one session often did not contribute during other sessions, and
vice versa. However, when a neuron was classified in different sessions
it decoded similar behavioural features (Supplementary Table 2) so
that most neurons were classified as part of no more than one rep-
resentation throughout learning (Fig. 4a, c). In particular, whisking
neurons rarely became licking neurons and vice versa.

All response categories were detected in all animals (Fig. 4a, b and
Supplementary Fig. 7) and the representations were spatially inter-
mingled (Supplementary Fig. 16); nearby neurons were equally likely
to be part of any of the representations (spatial clustering index (SCI),
,1.0). These data suggest that motor cortex contains intermingled
representations of different movements, and that individual neurons
are primed to participate in controlling specific movements.

Learning also altered the timing of neuronal activity. In naive mice,
activity was distributed uniformly across the trial (Fig. 5a). With
learning, activity of the classified neurons (but not the unclassified
neurons) shifted towards the sampling period (Fig. 5b, c and Sup-
plementary Fig. 17). The fraction of neurons that were most active in
the sampling period increased by a factor of three, with little change in
overall activity levels (Supplementary Fig. 17). These shifts in activity
were explained in part by changes in whisking, which became more
concentrated in the sampling period with learning (Fig. 1e), and a
shorter touch–lick latency (Supplementary Fig. 1). With learning,
licking neurons became active earlier within the trial and also began
to fire earlier with respect to licking. In naive mice, activity in licking
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decoding licking for at least 4 days; mean 6 s.e.m.). f, Delay from first lick to
activity onset in licking neurons. The delay shortened after learning (*P ,

0.005, Wilcoxon rank sum test). g, PSTHs of touch (cyan, change in whisker
curvature), lick rate (red) and fluorescent traces of a representative touch
neuron (black) in a naive mouse (top trace), a mouse during learning (middle
trace) and an expert mouse (bottom trace). h, Delay from first contact to
activity onset in touch neurons (12 neurons from 4 animals). i, Delay from first
lick to activity onset in touch neurons.
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neurons trailed licking (Fig. 5d–f); in expert mice, activity anticipated
licking (when the slow kinetics of GCaMP3 fluorescence were taken
into account34). Licking neurons always lagged the first touch
(Fig. 5e), as did touch neurons (Fig. 5g, h). These learning-related
changes in temporal relationships between activity and motor beha-
viour suggest roles of these neurons in controlling movement.
Furthermore, nearby neurons can participate in highly specific forms
of circuit plasticity during learning.

We next analysed the dynamics of population-level representations
during learning (Fig. 6a–c). We decoded the behavioural features over
all experimental sessions and evaluated the quality of the fit as a
function of behavioural performance (Fig. 6a). Overall, the repres-
entation of licking strengthened, even though the number of licks per
trial remained stable during learning (Supplementary Fig. 17e). In
contrast, the representation of whisking remained stable, even though
whisking during the sampling period became more vigorous and
purposeful (Fig. 1e and Supplementary Fig. 1).

We assessed the stability of population representations by using the
model derived in one session to predict the behavioural features of
another session (Fig. 6b). For the first two or three sessions the models
derived on one day failed to predict movements on subsequent days,
implying labile population representations. However, as the behaviour
reached a plateau level the representations stabilized, particularly for
whisking and licking. More than 44% of the variance in the change in
behavioural performance between any two sessions could be explained
on the basis of changes in the representations of the different

behavioural features (multiple linear regression; P , 10217;
F4,145 5 29). Changes in the representation of licking were more pre-
dictive of the behavioural performance changes than whisking or touch
(Fig. 6c). The dynamics of the different representations suggest that
vM1 innately controls whisking but participates in the control of lick-
ing only in the context of specific sensorimotor contingencies, such as
licking triggered by touch.

Discussion
The precise roles of motor cortex in shaping movement and motor
learning have been debated for more than a century (reviewed in refs 1,
40). Classic recordings from identified pyramidal-tract-type neurons,
which carry cortical output to motor centres, revealed activity related
to muscle forces and movements41. However, pyramidal-tract-type
neurons constitute only a tiny fraction of motor cortex neurons7.
Simultaneous recordings from diverse neuron types indicate that
neuronal ensembles define trajectories of multi-joint movements26,42.
Conversely, stimulating groups of motor cortex neurons on beha-
vioural timescales evokes complex, ethologically relevant move-
ments43. vM1 projects to brainstem nuclei that control facial motor
programs such as whisking19,20 and licking5. Our imaging experiments
in vM1 show spatially intermingled representations of various facial
movements (Supplementary Fig. 16), all of which are related to per-
forming the object-detection task (Figs 1 and 3). Together, these obser-
vations suggest that small regions of motor cortex help to orchestrate
goal-directed movements involving multiple body parts.

Motor cortex activity changes with learning3–5. Goal-directed
movements might therefore be established or fine-tuned in the motor
cortex. Consistent with this view, representations in L2/3 of motor
cortex changed during learning of the object detection task. However,
individual L2/3 neurons seem to be pre-wired to represent particular
motor variables: whisking neurons rarely became licking neurons and
vice versa (Fig. 4). In expert animals, population-level representations
were stable (Fig. 6), even with unstable representations of single
neurons (Fig. 4 and Supplementary Fig. 16). Theoretical work has
shown that drifting representations at the level of individual neurons
may be crucial for motor learning4.

The representation of whisking was strong in L2/3 neurons of naive
animals and remained strong throughout learning (Fig. 6). In
contrast, the representation of licking increased with improvements
in behavioural performance. Control of voluntary whisking might
therefore be innate to vM1, whereas vM1 assumes control of licking
as the animal learns to initiate licking in response to a specific sensory
stimulus (for example, touch (Fig. 1) or olfaction5). Enabling flexible
associations between sensation and action could be a core function of
the superficial layers of the motor cortex.

To investigate the cellular mechanisms driving changes in vM1
activity, we used an object-location task. Learning this task requires
chaining a set of sensory-modulated actions into a specific order.
Behaviourally, we observed that stereotypic whisking and latency
between touch and licking were highly correlated with task pro-
ficiency (Fig. 1). Early during learning, activity of L2/3 neurons was
distributed uniformly across time, and this might provide a basis from
which2,44 appropriate sequences of movements can be selected,
depending on task demands (Fig. 5 and Supplementary Fig. 17).
After learning, neurons fired mostly during the sampling period,
coincident with whisking, touch and onset of licking. This change
of timing suggests a role for a dopaminergic reward prediction error
signal45, probably arising in the ventral tegmental area6, which could
implement temporal credit assignment in synaptic plasticity2.

METHODS SUMMARY
We used adult male PV-IRES-cre mice (over 2 months old) (B6;129P2-
Pvalbtm1(cre)Arbr/J, The Jackson Laboratory). Details of surgery, imaging and
data analysis are provided in Methods.
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Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Chronic window preparation. All procedures were approved by the Janelia Farm
Research Campus Institutional Animal Care and Use Committee. We used adult
(older than postnatal day 60) male PV-IRES–Cre (parvalbumin internal ribo-
somal entry site (IRES) Cre recombinase) mice (B6;129P2-Pvalbtm1(cre)Arbr/J,
The Jackson Laboratory). All surgeries were conducted under isoflurane anaes-
thesia (1.5–2%). Additional drugs reduced potential inflammation (subcutaneous
injection of 5 mg kg21 ketoprofen) and provided local (0.5% Marcaine solution
injected under the scalp) and general analgesia (intraperitoneal injection of 0.1
mg kg21 buprenorphine). A circular piece of scalp was removed and the under-
lying bone was cleaned and dried. The periostium was removed with a dental drill
and the exposed skull was covered with a thin layer of cyano-acrylic primer
(Crazy glue). A custom-machined titanium frame was cemented to the skull with
dental acrylic (Lang Dental).

Afferents from the somatosensory cortex were labelled with virus expressing
tdTomato33 (rAAV2/1-CAG-tdTomato; 20 nl at 300- and 550-mm depths). The
C2 barrel was targeted based on intrinsic signal imaging28. The virus was injected
with a custom, piston-based, volumetric injection system (based on a Narishige,
MO-10 manipulator)46. Glass pipettes (Drummond) were pulled and bevelled to a
sharp tip (outer diameter of 30 mm). Pipettes were back-filled with mineral oil and
front-loaded with viral suspension immediately before injection.

A craniotomy was made over the vM1 of the left hemisphere (size, 3 3 2 mm;
centre relative to Bregma: lateral, 0.8 mm; anterior, 1 mm) (Fig. 2a–d). These
coordinates were previously determined using intracortical microstimula-
tion8,16,18, by mapping axonal projections from vS1 in vM1 (refs 8, 47), and by
trans-cellular labelling with pseudorabies virus (data not shown). Neurons under-
lying the craniotomy were labelled by injecting rAAV2/1-Syn-GCaMP3 (pro-
duced by the University of Pennsylvania Gene Therapy Program Vector Core).
The brain was covered with agar (2%). Between four and eight sites (10–15 nl per
site; depth, 150–210 mm; rate, 10 nl per minute) were injected per craniotomy.

The imaging window was constructed from two layers of standard microscope
coverglass (Fisher; number 2 thickness, 170–210 mm), joined with an ultraviolet
curable optical glue (NOR-61, Norland). A larger piece was attached to the bone
and a smaller insert was fitted snugly into the craniotomy (Fig. 2b, d). The bone
surrounding the craniotomy was thinned to allow for a flush fit between the insert
and the underlying dura.

After virus injection, the glass window was lowered into the craniotomy. The
space between the glass and the bone was sealed off with a thin layer of agar (2%),
and the window was cemented in place using dental acrylic (Lang Dental). At the
end of the surgery, all whiskers on the right side of the snout except row C were
trimmed. The mice recovered for 3 days before starting water restriction. Imaging
sessions started 14–21 days after the surgery.
Behaviour. We designed an object-detection task, with three goals in mind: first,
animals should be able to learn the task quickly, in a few days; second, the sensory
(whisker contacts and forces) and motor (whisking, licking) behaviours needed to
be tracked at high spatial and temporal resolutions throughout learning; third, we
wanted to detect neurons in the motor cortex whose activity patterns might be
shaped by sensory input. Because different object locations produce different
somatosensory stimuli, we presented the object in several locations. Neural activity
levels that depend on object location then indicate the coding of sensory variables.

Behavioural training began after the mice had restricted access to water for at
least 7 days (1 ml per day)5,28. The behavioural apparatus was designed to fit under
a custom-built two-photon microscope (https://openwiki.janelia.org/wiki/
display/shareddesigns/). All behavioural training was performed under the
microscope while imaging neural activity. In a pre-training session mice learned
to lick for water rewards from a lick port (,100 rewards). At the same time the
brain was inspected for suitable imaging areas. Fields of view were restricted to
zones where expression of GCaMP3 and tdTomato (axons from vS1) overlapped
(Fig. 2a–d). To escape the vasculature near the midline, imaging was typically
performed towards the lateral edge of vM1. Mice with excessive brain movement,
limited virus infection or impaired optical access (bone growth or large blood
vessels in the vS1 axon projection zone) were excluded from the study.

During the first behavioural session (session 1) the pole was positioned within
the range of the whiskers’ resting position, thereby increasing the chance of a
whisker–pole collision. As soon as performance reached d9 . 1 the pole was
advanced to a more anterior position (,0.5 mm from whisker resting position),
forcing the mouse to sample actively for the pole. The target position was adjusted
for every session. In expert mice, multiple target positions, all within reach of the
whiskers, were introduced to study the effects of object location (Supplementary
Figs 8–11, 13 and 15, and Supplementary Table 1).
Reversible inactivation. To inactivate vM1 the GABA (c-aminobutyric acid)
agonist muscimol was injected into the imaging area in expert mice. A small hole
was drilled through the imaging window to allow access for a glass injection

pipette. Muscimol hydrobromide (Sigma-Aldrich) was dissolved in saline (5 mg
ml21) and 50 nl were injected slowly (10 nl per min) at depths of 500 and 900 mm
under the pia27. The animals were left to recover for 2 hours before the beha-
vioural session. Inactivation caused a complete absence of fluorescence transients
in the imaged field of view (data not shown). Similar methods were used to
inactivate vS1 (Supplementary Fig. 1)27.
Imaging. GCaMP3 was excited using a Ti-Sapphire laser (Chameleon, Coherent)
tuned to l 5 1,000 nm. We used GaAsP photomultiplier tubes (10770PB-40,
Hamamatsu) and a 163 0.8 NA microscope objective (Nikon). The field of view
was 450 3 450 mm (512 3 256 pixels; pixel size, 0.88 3 1.76 mm), imaged at 4 Hz.
The microscope was controlled with ScanImage48 (http://www.scanimage.org).
The average power for imaging was ,70 mW, measured at the entrance pupil of
the objective. For each mouse the optical axis was adjusted to be perpendicular to
the imaging window. Imaging was continuous over behavioural sessions lasting
approximately 1 h (average, 53 min; range, 24–72 min). Bleaching of GCaMP3
was negligible. Slow drifts of the field of view were corrected manually approxi-
mately every 50 trials using a reference image.
Image analysis. To correct for brain motion we used a line-by-line correction
algorithm (similar to a method used previously49, but based on a correlation-
based error metric). First, we averaged five consecutive images showing the
smallest luminance changes (chosen from the approximately 40 images compris-
ing a behavioural trial). Each line of each frame was then fit to this reference image
using a piecewise rigid gradient-descent method.

To align all trials within one session, the average of the trial showing the
smallest luminance changes was used as the session reference and all other trials
were aligned using normalized cross-correlation-based translation.

To extract fluorescence signals from individual cells, regions of interest (ROIs)
were drawn based on neuronal shape (individual neurons appeared as fluorescent
rings; Supplementary Fig. 5). Mean, maximum intensity and standard deviation
values of all frames of a session were used to determine the boundaries of the
neurons. An automated method was used to align the ROIs across sessions. For
each ROI, a small square (50 3 50 pixels) around the ROI was selected.
Displacements across sessions were calculated by computing the point at which
the normalized cross-correlation for this square and the average image of the day
peaked. For each ROI, its displacement vector was compared to that of its five
nearest neighbours. In cases in which the displacement exceeded seven times the
median of the neighbours’ displacements, it was set to the median and flagged for
manual inspection. The displacements of all ROIs defined a warp field for the
entire image.

The pixels in each ROI were averaged to estimate the fluorescence of a single
cell. The cell’s baseline fluorescence, Fo, was determined in an iterative manner.
First, we estimated the probability distribution function (PDF) of raw fluor-
escence for each ROI and centred it at its peak (that is, the peak was assigned a
value of 0). A ‘cutoff value’ was calculated by choosing the points below the PDF’s
peak and determining the value above which 90% of these values lay (which was
negative owing to our centring procedure). Cells were ‘moderately active’ if at
least 1% of their fluorescence was above twice the absolute value of this cutoff
value (that is, the PDF had a long positive tail). Cells were ‘highly active’ if the
density at this cutoff value relative peak density exceeded 0.1 (that is, the PDF’s
positive tail was not only long but also fat). All other cells were ‘sparsely active’.
The initial Fo estimate was generated by taking a 60-s sliding window over raw
fluorescence and using the 50th, 20th or 5th percentile as Fo for sparsely,
moderately and highly active cells, respectively. Using this first Fo estimate, we
computed a preliminaryDF/F (defined as (F 2 Fo)/Fo) and extracted events based
on a threshold (three times the median absolute deviation (MAD)). An event
period was defined as starting 2 s before the peak during a cross of threshold and
ending 5 s after the peak. In the subsequent Fo estimation procedure, Fo was only
estimated for periods without events, and determined using linear interpolation
for periods during events. The final DF/F trace used for all subsequent analysis
was computed using this Fo trace. To produce an event vector from theDF/F trace
and thereby minimize the temporal distortions caused by GCaMP3 dynamics34,
we used a non-negative deconvolution method (Supplementary Fig. 5)36.

Calcium imaging with genetically encoded indicators was crucial for tracking
the same neurons across multiple sessions. Furthermore, using imaging it is
possible to sample neural activity densely within a region. However, current
calcium indicators, including GCamP3, are not sufficiently sensitive to detect
single action potentials in vivo and, as a consequence, activity in neurons with
very low firing rates was probably missed28,34. Our analysis therefore focuses on
relatively active neurons. In addition, the slow dynamics (on the order of 100 ms)
of the calcium indicator limits the conclusions that can be drawn about connec-
tivity and causality from imaging data.

Approximately 80% of cortical neurons are pyramidal50. GABAergic inter-
neurons produce much smaller activity-dependent fluorescence changes than
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pyramidal neurons, presumably because of their short action potentials and high
concentrations of endogenous calcium buffer51, and their activity was not likely to
be detected using GCaMP328. For these reasons, the vast majority of active neurons
detected with our methods were probably excitatory pyramidal neurons.
Long-term expression of GCaMP3. AAV-mediated expression of GCaMP3
provides the high expression levels that are necessary for in vivo cellular imaging.
However, expression continues to increase over months, which can lead to com-
promised cell health34,52, and this correlates with breakdown of nuclear exclusion.
Over the time course of our experiments (up to 4 weeks of expression), no more
than 2% of the cells in the imaged field of view showed nuclear GCaMP3. These
neurons were excluded from analysis. In addition, overall event rates were stable
across time (Supplementary Fig. 17).

Several observations indicate that imaging did not damage the brain. First,
because of the brightness and photostability of GCaMP3 we were able to use
low average power. Second, there was no evidence for tissue damage
(Supplementary Fig. 3). Third, task-related activity increased with learning in a
specific manner, so that some representations (for example, licking) increased,
whereas other representations did not change (whisking) (Fig. 6). These learning-
related changes are inconsistent with nonspecific rundown.

Changes in intracellular calcium are necessary to trigger a variety of forms of
cellular plasticity. Could GCaMP3 expression interfere with synaptic plasticity?
The strength of calcium buffering (buffer capacity) can be estimated as buffer
concentration divided by its dissociation constant (Kd)53. High concentrations
(.200 mM) of strong (Kd, 170 nM) calcium buffer (for example, BAPTA) are
required to block synaptic plasticity54,55. We estimated the concentration of
GCaMP3 (Kd, 660 nM)34 under our experimental conditions. We collected acute
brain slices from mice that had been used in long-term imaging experiments. We
then compared cellular fluorescence at saturating calcium levels, induced by high
external K1 (20–30 mM) to calibrated GCaMP3 solutions (in standard K1-based
internal solution normally used for whole-cell recording). Four weeks of expres-
sion in L2/3 pyramidal neurons of the visual cortex yielded 76 mM of GCaMP3
(ref. 52). Seven weeks of expression in vM1 gave 130 mM of GCaMP. These results
suggest that GCaMP3 produces lower buffer capacity than BAPTA concentra-
tions that are known not to perturb synaptic plasticity (buffer capacities, ,200
versus .1200). Consistent with this, expression of GCaMP3 did not perturb
induction of long-term potentiation in hippocampal brain slices (Supplemen-
tary Fig. 4) (GCaMP3 concentration was 15 mM, determined as above).

We further tested whether GCaMP3 expression level influenced the plasticity
of neuronal responses. The relative baseline fluorescence measured in individual
neurons was constant across days and it was therefore a good indicator of
GCaMP3 expression. We calculated the probability that a classified cell remained
active and retained its classification (that is, was stable). We compared stability in
the 25% brightest and dimmest neurons. Dim and bright cells were similarly
stable (dim cells, 65% stable; bright cells, 60% stable; x2 5 0.39; P . 0.5). This
analysis suggests that under our conditions GCaMP3 does not obviously perturb
cellular plasticity in vivo.

Other measurements also suggest that plasticity was not obviously impaired
by long-term expression of GCaMP3. Circuit function is shaped by ongoing
plasticity, integrated over the recent past. Neurons with long-term expression
of GCaMP3 generally show normal circuit properties. Orientation and direction
selectivity are normal in GCaMP3-expressing L2/3 neurons in mouse V1 (ref. 52)
and hippocampal place cells are normal in CA1 neurons in the hippocampus56.
The sparseness and response types of L2/3 neurons in vS1 are indistinguishable
when measured with electrophysiological methods or GCaMP3 (ref. 28). Finally,
in our experiments L2/3 neurons showed specific learning-related changes in
activity in vivo (Figs 4–6).
Whisker tracking. Whiskers were illuminated with a high-power light-emitting
diode (LED) (940 nm, Roithner) and condenser optics (Thorlabs). Images were
acquired through a telecentric lens (0.363, Edmund Optics) by a high-speed
CMOS camera (EoSense CL, Mikrotron, Germany) running at 500 frames per
s (640 3 352 pixels; resolution, 42 pixels per mm). Image acquisition was con-
trolled by Streampix 3 (Norpix). The whisker position and shape were tracked
using automated procedures27. Whiskers are cantilevered beams, with one end
embedded in the follicle in the whisker pad. The mechanical forces acting on the
follicles can be extracted from the shape changes after contact between whisker
and object. For example, a change in curvature at point p along the whisker is
proportional to the force applied by the pole on the whisker30: F , Dkp yp, where
yp is the bending stiffness at p (approximately 3 mm from the follicle). We thus
present forces on the whiskers as the change in curvature, Dk. These forces
underlie object localization27,31. Dk was determined using a parametric curve
comprising second-order polynomial fits to the whisker backbone. Periods of
contact between whisker and object (touch) were detected based on the nearest
distance between whisker and object, and Dk. A total of ,13,000,000 whisker

video images, comprising ,7,500 behavioural trials, were analysed for this
project.

Expert mice contacted the pole multiple times with one or several whiskers
(average number of contacts for the dominant whisker, 8; range 0–19) before their
decision (signalled by an answer lick on correct go trials).
Behavioural features. We analysed neural activity with respect to several beha-
vioural features. Licks were detected with a lickometer27 and lick rate (Hz) was
defined as the inverse of the inter-lick interval. Our imaging rate (4 Hz) was
slower than the rapid components of rhythmic whisking (10–20 Hz). In addition,
motor cortex neurons primarily code for the slowly varying whisking variables,
set-point and amplitude29,39. Whisker set-point was the low-pass filtered (6-Hz)
whisker angle. Whisker amplitude was defined as the Hilbert transform29 of the
absolute value of the band-pass filtered (6–60-Hz) whisker angle (Fig. 1d).
Because whiskers move mostly together27, set point and amplitude were averaged
across all whiskers. The time derivatives of whisker set-point and amplitude were
used as independent features. Dk was measured during the sampling period.
Protraction touch (positive curvature changes), retraction touch (negative
curvature changes) and absolute values were treated separately. All behavioural
features were down-sampled to match the image acquisition rate (4 Hz). Mean
and maximum values were calculated for each feature in a 250-ms window
centred on the middle of the new sampling point.
Decoding behavioural variables. The relationship between the calcium activity
xi of the ith neuron and the jth behavioural variable yj can be characterized as an
encoding description P(xij yj) or a decoding description P(yjjxi). The encoding
description specifies how much of neuronal activity can be accounted for by
behavioural variables. The decoding description specifies how behavioural variables
can be derived from the activity of one neuron or neuronal populations. Here, we
focused on the decoding description.

We used machine learning algorithms to decode behavioural features based on
activity. The input to the algorithm was the event rate (that is, deconvoluted DF/
F). To predict sensory input we also used time-shifted future activity. For motor
variables we used both past and future activity, as neural activity could reflect
motor commands, corollary discharges or reafferent input.

The goal of the decoder algorithm was to find a mapping ŷj tkð Þ~
f xi tk�lð Þ, . . . ,xi tkð Þ, . . . ,xi tkzp

� �� �
that best approximates yj tkð Þ for all tk (dis-

cretized time in units of 0.25 s, corresponding to the imaging rate); l and p
represent the maximum negative and positive shifts of the activity respectively.

We concatenated trials to generate a vector �t of time-binned data. We used
l 5 2 and p 5 0 for sensory variables, and l 5 2 and p 5 2 for sensory-motor
variables (corresponding to time-shifts up to 0.5 s). The dimensionality of the
input variables is l 1 p 1 1. To simplify the notation, we define the vector �xi,n as
the activity of cell i at all times shifted n frames to the future. The algorithm was
trained on a subset of trials (the training set; 80%) and evaluated on a separate set
of test trials (20%). We repeated this procedure five times to obtain a prediction
for all trials38.

The accuracy of decoding was evaluated using the Pearson correlation co-
efficient (r) between the model estimate and the data. The explained variance
is R2 5 r2 (range 0–1). R2 was calculated separately for each trial type (that is, hit,
correct rejection, miss and false alarm). Treating trial types separately was critical
to disambiguate the relationship between different behavioural variables and
activity. For example, we observed large-amplitude whisking during licking,
which complicates the classification of neuronal responses. However, during
correct rejection trials, licking was absent and whisking present, allowing clas-
sification. Similarly, in trained animals, touch and licking occurred with short
latencies in hit trials (Figs 1 and 5). In contrast, touch was absent in false alarm
trials.

Decoding was carried out using the random forests algorithm38,57, a multi-
variate, non-parametric machine learning algorithm based on bootstrap aggrega-
tion (that is, bagging) of regression trees. We used the TreeBagger class
implemented in Matlab. TreeBagger requires only a few parameters: the number
of trees (Ntrees 5 128), the minimum leaf size (minleaf 5 5), the number of
features chosen randomly at each split (Nsplit 5 Nfeatures/3; the typical value used
by default). These parameters were chosen as a trade-off between decoder accu-
racy and computation time. We did not observe much improvement in decoding
accuracy for Ntrees . 32 and minleaf ,10 (data not shown).
Classification of response types. We measured the R2 between each measured
behavioural variable (for example, whisking speed, lick rate and whisking set-
point) and each cell’s decoder prediction for all the trials and for each trial type.
We considered only cells with more than one event in a session. In addition, for
sessions with multiple-pole positions we used an analysis of variance (ANOVA)
to determine whether the contact-evoked calcium response was different for the
different pole position (Supplementary Figs 8–11, 13 and 15). We grouped the
behavioural variables in larger categories such as whisking (for example, whisking
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amplitude, set-point and speed), lick rate and touch (for example, touch per
whisker, rate of change of forces and absolute magnitude). We considered the
best R2 set for each of the three behavioural categories. Alternatively, all cells were
manually classified based on trial-to-trial calcium transients and behavioural
prediction for each trial type. For most cells (.82%) classification was unam-
biguous based on the decoder R2 values. The remaining cells were more accurately
classified based on a rarer trial type (typically false alarm trials). Three of the
authors independently arrived at consistent classifications.
Population decoding. For decoding neural populations (Figs 3 and 6) we con-
sidered all neurons showing at least one event and created an input vector of size
Nneurons 3 (l 1 p 1 1). We trained the random forest algorithm to decode each of
the behavioural variables and evaluated the quality of the fit as before.

With the model based on data from one day we tested decoding of behavioural
variables on another day. To compare data between two different days, we nor-
malized the neural activity and the behavioural variables using a z-score trans-
formation (by subtracting the mean and dividing by the standard deviation). In
addition, some cells were active on one day but not on other days. We labelled
these neurons as missing data.
Measurement of synaptic plasticity in brain slices. Rat hippocampal slice cul-
tures were prepared at postnatal days 4 and 5 (ref. 58). Plasmids encoding
GCaMP3 and cerulean under the control of a human synapsin 1 promoter were
electroporated into single CA1 pyramidal neurons after 18 days in vitro (1:1 ratio;
50 ngml21 each) (modified from ref. 59). Recordings were taken 3–7 days after
transfection. GCaMP3 was mainly excluded from the nucleus and cell morpho-
logy was indistinguishable from neurons expressing cerulean alone. Paired
whole-cell recordings from CA1 and CA3 pyramidal cells were made at room
temperature (21–23 uC), using 3–4 MOhm pipettes containing (in mM): 135
K-gluconate, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 10 Na2-phosphocreatine, 3
ascorbate and 10 HEPES (pH 7.2). ACSF consisted of (in mM): 135 NaCl, 2.5
KCl, 4 CaCl2, 4 MgCl2, 10 Na-HEPES, 12.5 D-glucose and 1.25 NaH2PO4

(pH 7.4). Excitatory postsynaptic currents were measured at 265-mV holding
potential.

46. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of
neocortical excitatory connections. Nature 457, 1142–1145 (2009).

47. Porter, L. L. & White, E. L. Afferent and efferent pathways of the vibrissal region of
primary motor cortex in the mouse. J. Comp. Neurol. 214, 279–289 (1983).

48. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for
operating laser-scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

49. Greenberg, D. S. & Kerr, J. N. Automated correction of fast motion artifacts for two-
photon imaging of awake animals. J. Neurosci. Methods 176, 1–15 (2008).

50. Gonchar, Y., Wang, Q. & Burkhalter, A. Multiple distinct subtypes of GABAergic
neurons in mouse visual cortex identified by triple immunostaining. Front.
Neuroanat. 1, 3 (2007).

51. Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned
response properties of diverse inhibitory neuron subtypes in mouse visual cortex.
Neuron 67, 858–871 (2010).

52. Zariwala, H. A. et al. A cre-dependent GCaMP3 reporter mouse for neuronal
imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

53. Maravall, M., Mainen, Z. M., Sabatini, B. L. & Svoboda, K. Estimating intracellular
calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78,
2655–2667 (2000).

54. Nevian, T. & Sakmann, B. Spine Ca21 signaling in spike-timing-dependent
plasticity. J. Neurosci. 26, 11001–11013 (2006).

55. Gordon, U., Polsky, A. & Schiller, J. Plasticity compartments in basal dendrites of
neocortical pyramidal neurons. J. Neurosci. 26, 12717–12726 (2006).

56. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank,D. W. Functional imaging
of hippocampal place cells at cellular resolution during virtual navigation. Nature
Neurosci. 13, 1433–1440 (2010).

57. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
58. Stoppini, L., Buchs, P. A. & Muller,D. A. A simple method for organotypic culturesof

nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).
59. Rathenberg, J., Nevian, T. & Witzemann, V. High-efficiency transfection of

individual neurons using modified electrophysiology techniques. J. Neurosci.
Methods 126, 91–98 (2003).

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2012


	Title
	Authors
	Abstract
	Learning under the microscope
	Chronic imaging of population activity
	Intermingled representations in the motor cortex
	Dynamics of representations with learning
	Discussion
	Methods Summary
	References
	Methods
	Chronic window preparation
	Behaviour
	Reversible inactivation
	Imaging
	Image analysis
	Long-term expression of GCaMP3
	Whisker tracking
	Behavioural features
	Decoding behavioural variables
	Classification of response types
	Population decoding
	Measurement of synaptic plasticity in brain slices

	Methods References
	Figure 1 Learning a whisker-based object-detection task under the microscope.
	Figure 2 Imaging population activity across trials.
	Figure 3 Population decoding of behavioural features.
	Figure 4 Single neuron representations across learning.
	Figure 5 Plasticity in task-related neuronal dynamics.
	Figure 6 Stability in population decoding.

