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Numerous efforts to generate “connectomes,” or synaptic

wiring diagrams, of large neural circuits or entire nervous

systems are currently underway. These efforts promise an

abundance of data to guide theoretical models of neural

computation and test their predictions. However, there is not

yet a standard set of tools for incorporating the connectivity

constraints that these datasets provide into the models

typically studied in theoretical neuroscience. This article

surveys recent approaches to building models with constrained

wiring diagrams and the insights they have provided. It also

describes challenges and the need for new techniques to scale

these approaches to ever more complex datasets.
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Introduction
Theoretical models in neuroscience often make assump-

tions about synaptic connectivity that lead to predictions

about neural activity and behavior. These assumptions

range from specifying the parameters of a statistical

distribution that characterizes the wiring of many neurons

(for example, populations of pyramidal cells in a volume

of neocortex [1]) to specifying the properties of

connections among individual neurons with prescribed

functions (for example, specific connections among

motion-selective retinal neurons [2��]). Except for sys-

tems with sufficiently few neurons, these assumptions are

often informed by incomplete knowledge of connectivity

obtained from electrophysiological measurements of a

subset of connections.
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Electron microscopy (EM) reconstruction techniques

promise a more complete picture of neuronal intercon-

nectivity, obtained by tracing the processes and identify-

ing the synaptic connections of all neurons in an imaged

volume of brain tissue [3]. An EM wiring diagram has

existed for the nematode C. elegans since the mid-1980s

[4], and for the larva of the ascidian Ciona intestinalis since

2016 [5]. Efforts are underway to map the full nervous

systems of the adult [6] and larval [7,8,9,10�] Drosophila
melanogaster fruit fly, larval zebrafish [11], volumes of

rodent brains including retinal [12] and cortical areas

[13–15], and other systems [16,17].

These efforts suggest the possibility of inferring the

connectivity of models directly from EM data, rather

than assuming it. Such an approach may lead to better

models whose activity and interactions can be more

readily compared to experiments. We survey recent

studies that build models based on synaptic wiring

diagrams, highlighting results that have been obtained

and the assumptions that are required to build the

models. We argue that new quantitative techniques must

be developed to exploit EM data as a meaningful con-

straint in models with many uncertain parameters.

EM wiring diagrams and the information they
provide
EM reconstructions of neuronal connectivity are based on

images obtained from thin sections of a volume of brain

tissue [3]. These images are analyzed to identify

structures of interest, typically 3-d reconstructions of

neurons, their processes, and their synaptic connections.

While this is often done manually, advances in automated

image segmentation methods are accelerating the speed

at which analyses can be performed [18]. EM reconstruc-

tions are effective at identifying neurons and the presence

of chemical synapses between them, but many quantities

of interest for modeling remain unconstrained (Figure 1).

The first source of uncertainty involves the connectivity

itself. In addition to tracing errors, EM datasets often

provide reconstruction of only a subset of a complete

neural circuit. Such “partial” connectomes do not provide

knowledge of interactions between neurons that

involve unreconstructed synapses. Such “hidden”

neurons can make it substantially more difficult to infer

accurate models [19,20].

As has been discussed before [21], even knowledge of a

“complete” connectome leaves many parameters rele-

vant for modeling unknown. Neurotransmitter identities
www.sciencedirect.com
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Figure 1

Illustration of the use of EM data to constrain the wiring of a network model. While such data can be used to determine the presence or absence

of chemical synapses between neurons, only incomplete information about synaptic weights and cell types may be available, and many

biophysical parameters remain unconstrained. EM images illustrate a volume of mouse somatosensory cortex [14] (available under the Open Data

Common Attribution License) and are visualized using the NeuroGlancer software (https://github.com/google/neuroglancer).
for each synapse are not revealed and must be identified

by other means, for example by antibody staining or

transcriptomic profiling [22,23]. This can make it difficult

to identify excitatory or inhibitory interactions unless

morphology clearly identifies excitatory or inhibitory cell

types. Size and number of synaptic contacts likely corre-

late with the size of evoked postsynaptic potentials, but

the precise relationship has not been quantitatively mea-

sured [24]. Gap junctions may be difficult to identify,

depending on the staining protocol used. The effects of

neuromodulators cannot be inferred [21]. Many other

cellular and synaptic properties, such as membrane time

constants, excitability, and plasticity, are also uncon-

strained and must be characterized by non-EM means

[25�,26�]. What can we infer from a neural circuit’s

connectivity alone in the face of this uncertainty? An

instructive account comes from modeling studies that

focus on the stomatogastric ganglion (STG), a collection

of about 30 neurons in crustaceans that reliably produces a

periodic rhythm [27]. The limited number of neurons has

permitted a relatively complete characterization of this

system’s wiring diagram using electrophysiological meth-

ods. This wiring diagram has guided many important

studies of the STG’s dynamics, but does not fully con-

strain them. Researchers have found that there is a space

of distinct models that differ in their cellular and synaptic

properties but are consistent with both the observed

rhythm that the STG produces and its connectivity

[28]. Modelers must therefore contend with the challenge

that any dynamical model they build will contain

unknown parameters and dynamics that are not a perfect

match to real neurons, raising the concern that knowledge

of a wiring diagram will be unable to sufficiently constrain

the space of models consistent with available data.

Graph theoretic approaches
One approach to this challenge is to develop methods that

draw conclusions based only on the graph of connections
www.sciencedirect.com 
defined by a synaptic wiring diagram and independent of

unknown quantities. Methods have been developed to

extract structure such as the presence of distinct cell types

from combined connectivity and anatomical data [29��],
or to infer latent variables that characterize neurons and

their connectivity based on a graph of connections [30].

Studies of C. elegans have quantified the statistics of

network motifs [31]—patterns of connections among small

groups of neurons—which may be over- or underrepre-

sented compared to an Erdös–Rényi random graph in

which all connections are drawn independently. How-

ever, relating these graphical properties to neural dynam-

ics is challenging. Theoretical progress has been made

relating motif statistics to correlations between the

spike trains of neuron pairs [32], but these approaches

require assumptions such as homogeneity of cellular

properties, linearized synaptic interactions, and knowl-

edge of the correlation structure of external inputs.

Mathematical progress has also been made in understand-

ing how the dynamics of inhibitory threshold-linear recur-

rent networks depend on network motifs [33�]. Models of

associative learning make testable predictions about

motif statistics under the assumption that wiring is

optimized to maximize the number of stable patterns,

or “attractors,” of neural activity [1]. EM reconstructions

will quantify these graph statistics with greater accuracy

and scope than has been previously possible with

electrophysiology [34].

The nervous system of C. elegans exhibits global coordi-

nated activity during movement [35]. An account of such

dynamics likely requires analyses beyond average graph

properties or small circuit motifs. A recent study

approached this subject by focusing on the notion of

network controllability, defined as follows [36]: if a time-

varying input to a subset of N neurons (the controlling

neurons) can be chosen such that the output of another

subset of M neurons (the outputs) can be driven to an
Current Opinion in Neurobiology 2019, 58:94–100
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arbitrary point in M-dimensional space, then the outputs

are said to be controllable by the controlling neurons. The

authors identified classes of neurons in the graph of the

C. elegans connectome, that, if ablated, reduce the number

of controllable muscles, and compared their results to

experiments. This network control theory approach is

attractive because it connects global structure to function

using only a graph of connections. However, like other

approaches that focus on graph-theoretic properties, it

requires strong assumptions on neuronal dynamics. Inter-

actions between neurons are modeled as a linear dynam-

ical system with identical time constants for each neuron,

and the strengths or signs of interactions do not come into

play. Complete controllability may also be too strong a

requirement to ask of a biological system. Future studies

may relax some of these assumptions.

Models constrained by function
Among the first results provided by the wiring diagram of

C. elegans was a characterization of its circuitry for detect-

ing touch [37]. Systems close to the periphery are

attractive targets for modeling based on EM wiring dia-

grams. For many of these systems, inputs and outputs can

often easily be identified and relatively complete circuits

can be reconstructed, leading to readily-formed hypothe-

ses about function that can be tested even if certain

system parameters are unknown.

A major target of EM reconstruction efforts in mice and

Drosophila has been the visual system, which has the

advantages of well-characterized cell types and inputs.

Since the 1960s, researchers have known that subtypes of

mammalian retinal neurons exhibit selectivity to the

direction of visual motion [38], but the mechanisms of

this selectivity have been a matter of debate. EM recon-

struction of mouse retina permitted, for the first time,

testing of models that predicted specific connectivity

motifs, such as direction selectivity of connections from

starburst amacrine cells onto retinal ganglion cells [39], or

differential dendritic targeting of connections from bipo-

lar cells onto starburst amacrine cells [2��]. Such direct

model evaluation was only possible once EM reconstruc-

tions were available. In Drosophila, the early visual system

has also been the target of reconstruction efforts. A

reconstruction of of the optic medulla made predictions

about the circuit underlying motion selectivity of neurons

in this area [40,41]. Connectivity constraints from these

data combined with activity measurements have led to

models of Drosophila motion processing that are being

continually refined [42–46].

EM reconstructions of the olfactory system have also

been performed, including maps of the Drosophila anten-

nal lobe [47] and zebrafish olfactory bulb [48], which

receive input from olfactory receptor neurons. A recurrent

network model of the zebrafish olfactory bulb, using

threshold-linear neurons with connectivity constrained
Current Opinion in Neurobiology 2019, 58:94–100 
by EM data, demonstrated that its wiring is consistent

with a role in decorrelating odor responses [49��]. In

Drosophila, several studies have focused on the mushroom

body (MB), an associative learning center that receives

input from the antennal lobe [50,10�,6]. Previous experi-

ments in adult Drosophila found that the wiring of Kenyon

cells (KCs) in the MB is consistent with random formation

of synapses [51], an idea with theoretical support [52,53].

An EM reconstruction of the larval MB found KC con-

nectivity largely consistent with this hypothesis [10�].
Modeling KCs as threshold-linear neurons, the study

argued that these wiring statistics were optimal based

on the ability of a readout of KC responses to discriminate

odors. A more recent analysis of an adult Drosophila EM

volume suggests that there may be additional structure in

PN-to-KC wiring that has yet to be characterized, and

future models will investigate the consequences of this

structure [6].

Other studies have focused on the motor periphery,

modeling the generation of locomotor activity and escape

responses in Drosophila larvae [7,8,54��] and visual navi-

gation in Platynereis larvae [17]. Frequent themes in the

above studies are largely feedforward architectures, lim-

ited numbers of input channels that convey information

with well-characterized statistics, and sufficient knowl-

edge of the properties of cell types of interest to model

their responses (Table 1). For many systems, not all of

these features may be present. In the next section, we

discuss the possibility of constraining neural network

models to infer task-relevant neural activity in the face

of uncertainty in biophysical parameters.

Constrained optimization of neural network
models
For many complex neural circuits, it may not be possible to

manually infer or tune unknown model parameters in order

to produce a desired function, even with knowledge of the

circuit’s connectivity. In recent years, artificial neural net-

works (ANNs), optimized using stochastic gradient

descent, have proven effective at performing tasks such

as object classification and at predicting neural responses in

higher visual cortical areas [55]. Can such optimization

approaches benefit from knowledge of a neural system’s

wiring diagram? This question is not easy to answer

because, in typical ANN approaches, the activity of model

units is generally not compared directly with individual

recorded neurons. Instead, projections of population activ-

ity (obtained by algorithms like principal components

analysis) in the model and the recordings are compared,

or a linear mapping is found that relates the two.

If the wiring of an ANN model is constrained by EM data,

however, a one-to-one correspondence between model

units and biological neurons is introduced. In certain

cases, knowledge of a task and this correspondence

may be sufficient to predict features of neural activity,
www.sciencedirect.com



Constraining computational models using electron microscopy wiring diagrams Litwin-Kumar and Turaga 97

Table 1

Examples of published modeling approaches that infer properties of a neural system from knowledge of its connectivity. With the

exception of the first entry, we focus on approaches that use connectivity as a constraint for models of neural dynamics.

Modeling approach Data used Assumptions on dynamics Assumptions on

function

Prediction

Graphical approaches

[31,29��])
Adjacency matrix, potentially

other anatomical information

[29��]

None None Motifs, community structure,

cell types, etc.

Motif expansion (reviewed

in [32])

Motifs of weighted

adjacency matrix

Linearized interactions,

homogeneous neurons,

knowledge of external input

correlations

None Spike train cross-correlations

Competitive threshold-linear

networks [33�]
Adjacency matrix Homogeneous threshold-linear

neurons, purely inhibitory

interactions

None Qualitative behavior (e.g. fixed

points, limit cycles)

Network control theory [36] Adjacency matrix Linear dynamical system with

identical time constants for each

neuron

Full control of

output neurons

Necessity of each neuron for full

controllability

Decorrelation [49��] Weighted adjacency matrix Threshold-linear neurons,

known membrane and synaptic

properties

Decorrelation of

inputs

Correlations between neurons

Dimensionality [10�] Weighted adjacency matrix Feedforward network,

threshold-linear neurons, known

membrane and synaptic

properties

Maximization of

dimension of

neural

representation

Dimension and linear

separability

Constrained neural network

optimization (e.g. [56��])
Weighted adjacency matrix Known external inputs and

parameterized firing rate

response functions

Determined by

cost function

Activity of modeled neurons
even if neurons are modeled with simplified dynamics. A

recent study used this approach to analyze the early

Drosophila visual system [56��]. A convolutional neural

network model with threshold linear dynamics, whose

lower layers were constrained by EM connectivity data,

was trained to track objects in videos of natural scenes.

The authors observed that the model reproduced the

experimentally measured motion selectivity of specific

neuron classes, but only when the connections in the

model were initialized using the synapse counts obtained

from EM (a proxy for connection strength). A similar

approach has also been applied to the premotor circuitry

of the Drosophila larva by training the model to reproduce

the measured pattern of muscle activity during forward

and backward crawling [54��].

Future work must determine how much of a limitation

mismatches between model and neural dynamics pose for

predicting neuronal activity. To potentially reduce this

mismatch, studies should aim to parameterize uncertainty

in neural response properties (e.g. gains, thresholds, and

time constants) and infer these unknown parameters dur-

ing optimization, rather than connection strengths which

may be inferred from synapse counts or sizes. Under the

assumption that these parameters can be inferred by opti-

mizing for the system’s function, this approach reduces the

number of unconstrained parameters from OðN 2Þ synaptic

weights to OðNÞ biophysical parameters, where N is the

number of neurons. Theoretical work has demonstrated

that modulating single-neuron properties rather than
www.sciencedirect.com 
connections can substantially reorganize network activity

[57], supporting the feasibility of such an approach.

Incorporating other sources of knowledge
Constraints in addition to connectivity and optimization for

task performance are likely necessary to achieve a good

match between model and recordings. Many of the above

studies relied on knowledge of neuronal response proper-

ties or neurotransmitter identities, which can be used to

infer the signs of weights corresponding to excitatory or

inhibitory synapses. Future work should also aim to infer,

for distinct neurotransmitter types, distinct mappings from

synapse count or size to effective synaptic strength.

The identification and recording of many neurons simul-

taneously using calcium imaging has made combined EM

and electrophysiological datasets possible [58,39]. If a

subset of neurons’ activities during a task or behavior

is known, a model may be optimized subject to con-

straints on these activity profiles. Such approaches trade

off between optimizing for function and producing real-

istic neural activity. These neural activity constraints will

likely be particularly important for systems for which only

partial wiring diagrams are available, or for systems in

which neurons do not have stereotyped functions (for

example, reconstructions of cortical columns; [14]).

Partial wiring diagrams
The strength of EM reconstructions comes from the

comprehensiveness of connectivity data that they
Current Opinion in Neurobiology 2019, 58:94–100
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provide, but so far the only “complete” connectomes to

have been annotated are those of C. elegans [4] and Ciona
intestinalis [5], and only recently at the level of detail

needed to assess variability across individuals or sexes

[59]. While a relatively complete wiring diagram of the

Drosophila adult and larva will likely be available soon, for

larger organisms such completeness is still far away. It is

therefore important to assess what information can be

inferred from partial wiring diagrams.

For structures with specific functions and well-

characterized input and output pathways, such as sensory

or motor systems, a limited wiring diagram containing the

structure of interest may be sufficient to construct models

of the function of individual neurons (e.g. [39,2��,56��]).
On the other hand, this may be difficult in the case of a

reconstruction of a portion of a highly recurrent network,

such as mammalian neocortex [14]. In these cases, EM

data may provide a statistical characterization of proper-

ties such as cell-type-specific connectivity [29��], motifs

[34] or preferential connectivity among functionally simi-

lar neurons [15]. These properties may be used to gener-

ate realistic simulated wiring diagrams for modeling

studies focused on statistical descriptions of population

activity rather than individual neurons.

Conclusions
Future theoretical work focused on EM datasets should

attempt to develop techniques for identifying features of

interest in connectivity graphs independent of

assumptions on neural dynamics. Techniques to auto-

matically cluster neuronal types [29��], identify latent

connectivity structure [30], and visualize wiring diagrams

are needed to facilitate the discovery of connectivity

patterns that suggest further experimental or modeling

study. Such techniques must be robust to reconstruction

errors and account for heterogeneity within and across

individuals if and when multiple reconstructions of indi-

viduals of the same species are available [59].

Studies that use wiring diagrams to infer neural dynamics

should focus on leveraging multiple sources of informa-

tion – from biophysics to neural activity to function – to

guide modeling. Regarding biophysics, an understanding

of the variables that determine effective synaptic weights,

whether they can be determined from EM images using

synapse counts, postsynaptic density sizes, and spine

sizes, and how these vary across neurotransmitter and

cell types, would lead to better parameterizations of

unknown model variables. An understanding of when

standard assumptions such as additive synaptic interac-

tions and simple neuronal input/output functions apply,

and when circuit elements should be simulated as point

neurons (as is done in most theoretical models; Table 1)

or as multi-compartmental models, would outline regimes

in which modeling efforts are likely to be well-

constrained. Expanding these regimes by relaxing
Current Opinion in Neurobiology 2019, 58:94–100 
assumptions – for example, by generalizing approaches

that require linear input/output functions to restricted

forms of nonlinearities – would also bring models closer to

biology. Calibration experiments are crucial to the devel-

opment of these new classes of models of single neurons

and synapses. It would be particularly useful to be able to

correlate detailed EM measurements of neuronal mor-

phology and connectivity [24] to measurements of neural

activity under perturbations [60,61] in the same circuit.

Approaches should be able to incorporate constraints on

subsets of the network to predict unknown quantities –

for example, using recordings of a subset of neurons along

with a connectivity graph to predict the activity of unre-

corded neurons. They should be able to trade off between

constraints of different types, including connectivity,

activity, and function. Theoretical work should also focus

on an understanding of the solution spaces of models

consistent with these constraints [28]. Such an under-

standing would help determine analyses and experiments

that would be most effective at reducing uncertainty in

model parameters, permitting an iterative refinement of

models based on experimental data.
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