
19700 Helix Drive, Ashburn, Virginia 20147
571.209.4000 | www.janelia.org

November 24, 2021

OSSI proposal: User friendly deployment of
JVM based tools
Caleb Hulbert, John Bogovic and Stephan Saalfeld

Motivation

Thanks to the fast and scalable n-dimensional data processing library ImgLib2 (Pietzsch,
Preibisch, Tomančák, and Saalfeld 2012), we have developed a number of useful tools
for annotation, interactive transformation, and exploration of large image data in Java1 and
the Kotlin programming language.2 While the Java Virtual Machine (JVM) runs on all major
platforms (Linux, MacOS, Windows, Android, and others), end-user friendly deployment of
applications remains difficult. The difficulty is not to run the application but to provide (1) an
OS native launcher, (2) robust dependency management for operating system (OS) native
libraries and components running in the JVM that is compatible with OS native package
managers, and (3) frequent robust updates through integration with OS native package
managers. Numerous projects address this issue with mixed success:

The Eclipse project3 provides tools to create OS native launchers and hosts and inte-
grates market repositories to install and update components. Unfortunately, these
capabilities are tightly integrated with its Standard Widget Toolkit (SWT) and compo-
nents are self-managed. Particularly when the Eclipse platform was installed through
an OS native package manager, using the internal component manager can lead to
conflicts and broken installations.

The Fiji project4 (Schindelin et al. 2012) provides an OS native launcher for ImageJ and
manages components and plugins with an internal package manager. Unfortunately,
this package manager depends on write access to the application directory which
makes system-wide Fiji installations managed by OS native package managers im-
possible. Furthermore, the Fiji package manager does not resolve dependency con-
flicts and shared dependencies managed in different sources can easily lead to ver-
sion skew and broken installations.

The Conda project5 aims at solving version skew by managing virtual environments with
independent sets of components. Conda, however, focuses on Python-based ap-
plications, provides no dedicated support for JVM-internal dependencies, and the

1OpenJDK: https://openjdk.java.net/
2Kotlin: https://kotlinlang.org/
3Eclipse: https://www.eclipse.org/
4Fiji: https://fiji.sc/
5Conda: https://docs.conda.io/en/latest/

https://openjdk.java.net/
https://kotlinlang.org/
https://www.eclipse.org/
https://fiji.sc/
https://docs.conda.io/en/latest/


management of components in virtual environments can interact unpredictably with
OS native package management.

The Maven project6 provides a build system that manages versioned dependencies to
compile JVM based applications but does not provide support to manage OS native
dependencies and has very rudimentary capabilities to run applications.

The JGO project7 is a Python launcher for JVM based applications that uses Maven to
manage JVM-internal dependencies. It can be installed with conda which can be
used to manage OS native dependencies.

Several of our applications8 are distributed with Fiji where maintenance of updates is diffi-
cult and fragile because no automatic dependency management exists and individual com-
ponents interact with a very large environment of dependents and dependencies. Other
special purpose tools come without a native launcher and defer to the user (or an IDE such
as Eclipse) to resolve and provide dependencies, and to start the appropriate class.

The standalone N5 utilities9 use an ad-hoc platform dependent installation script for Linux
and MacOS that uses Maven to resolve and install JVM-internal dependencies and cre-
ates an OS native launch script that sets the appropriate class path for the JVM. This
ad-hoc installer is difficult to maintain and has broken repeatedly over the last few years.
It also lacks appropriate management for OS native dependencies like the blosc10 shared
libraries, particular for newer versions of MacOS. Installation is possible on Windows by
reproducing the steps performed by the installation script and some Windows specific path
editing, but an automatic installer has not been developed for lack of time.

The JavaFX application Paintera11 uses Conda to manage OS native dependencies and
JGO to manage JVM-internal dependencies and to provide an OS native launcher. While
the application does not interact with Python, it currently requires the installation of a com-
plete Python envorinment to launch JGO. The launcher must be started from the conda
terminal which is not user friendly.

Goals and milestones

The goal of this project is to develop a packaging tool chain for tools with JVM and non-
JVM dependencies, and to establish standardized distribution channels for these tools at
Janelia. The proposed efforts will make installation easier, more reliable for end-users, and
thereby reduce long-term software maintenance costs for developers while improving the
user experience as well as the visibility and accessibility of the tool. The reproducibility
of scientific software will be improved, as software will be less likely to break, e.g. due to
version skew. While the initial focus will be tools developed and distributed at Janelia, the
results are expected to translate seamlessly to the wider open source community and will
simplify the distribution of such tools worldwide.

6Maven: https://maven.apache.org/
7JGO: https://github.com/scijava/jgo
8Saalfeld lab projects: https://github.com/saalfeldlab
9N5 utilities: https://github.com/saalfeldlab/n5-utils

10Blosc: https://github.com/Blosc/c-blosc
11Paintera: https://github.com/saalfeldlab/paintera

2

https://maven.apache.org/
https://github.com/scijava/jgo
https://github.com/saalfeldlab
https://github.com/saalfeldlab/n5-utils
https://github.com/Blosc/c-blosc
https://github.com/saalfeldlab/paintera


Java 1412 introduced the Java Packaging tool13 which became an official part of the stan-
dard distribution with Java 16.14 The Java Packaging tool aims at generating OS native
packages and launchers for JVM applications that contain a Java runtime environment,
JVM dependencies and resources, as well as a native launcher. The tool uses Java’s mod-
ule system to reduce the footprint of the package to the minimal set of modules required to
run the application. We do not know how OS native dependencies are handled and if it is
possible to share runtimes and dependencies with other packages. However, the jpackage
tool is highly configurable and the structure of OS native packages is well documented. We
therefore expect that a solution can be built that enables sharing dependencies and using
the OS native package manager to update the application.

Exploration

At first, the jpackage tool needs to be explored and understood. Experimental OS native
packages for the N5 utitilities should be created and tested. We will have to develop an
understanding of what the benefits and shortcomings of bundling a stripped down Java
runtime with a fat set of dependencies is, how OS native dependencies can be handled
(in the case of N5 utilities we want to support compression with blosc), and how it can be
expanded to release individual components as OS native shared libraries and use an OS
wide JVM installation.

Consolidation

Building on our understanding of the packaging and release process, we will streamline
the release of OS native packages and distribute them through a dedicated Downloads
section of the GitHub repositories and through the standard software channels of modern
operating systems, e.g. for Ubuntu Linux, we will establish a Janelia PPA. Distributions of
the N5 utilities, Paintera, tools for deformable registration and conversion of large datasets
(Bogovic, Hanslovsky, Wong, and Saalfeld 2016; Bogovic et al. 2020), and tools to man-
ually proofread and modify intermediate results in the volume reconstruction pipeline for
FIB-SEM volumes (Scheffer et al. 2020; Xu et al. 2021) will be generated, tested, and
released for Ubuntu Linux, MacOS, and Windows.

Maintenance

The packaging platform and the distribution channels must be maintained to fix bugs, to
continuously release upgrades of our tools, and to track the evolution of the Java runtime,
the packaging tool chain, and the underlying operating systems. The platform will be doc-
umented and opened to the open source community such that the burden of updates and
maintenance can be shared.

References
Bogovic, J. A., P. Hanslovsky, A. Wong, and S. Saalfeld (2016). “Robust registration of calcium

images by learned contrast synthesis”. In: ISBI, pp. 1123–1126.
12OpenJDK 14: https://openjdk.java.net/projects/jdk/14/
13jpackage: https://openjdk.java.net/jeps/392
14OpenJDK 16: https://openjdk.java.net/projects/jdk/16/

3

https://openjdk.java.net/projects/jdk/14/
https://openjdk.java.net/jeps/392
https://openjdk.java.net/projects/jdk/16/


Bogovic, J. A. et al. (2020). “An unbiased template of the Drosophila brain and ventral nerve cord”.
In: PLOS ONE 15.12, e0236495.

Pietzsch, T., S. Preibisch, P. Tomančák, and S. Saalfeld (2012). “ImgLib2—generic image process-
ing in Java”. In: Bioinformatics 28.22, pp. 3009–3011.

Scheffer, L. K. et al. (2020). “A connectome and analysis of the adult Drosophila central brain”. In:
eLife 9. Ed. by E. Marder, e57443.

Schindelin, J. et al. (2012). “Fiji: an open-source platform for biological-image analysis”. In: Nature
Methods 9.7, pp. 676–682.

Xu, C. S. et al. (2021). “An open-access volume electron microscopy atlas of whole cells and tis-
sues”. In: Nature 599.7883, pp. 147–151.

4


