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The mylib library supports fairly complex object classes such as multi-
dimensional arrays, level-set trees, and water-shed decompositions of an image,
that we think necessitate an object-oriented style despite the fact that C is the
implementation language. Therefore we have developed and consistently follow
a set of object management and memory usage conventions that are adhered to
throughout the library.

The conventions were chosen with an eye towards optimizing performance
(we presume you would be writing in something like Perl or Matlab if you didn’t
need the outmost in speed and memory utilization). The dynamic memory
allocation required for object creation and destruction is provided by the malloc
suite and occurs in the system heap. Anybody that has ever implemented a heap
knows there can be substantial time and memory overhead whenever excessive
fragmentation occurs and such fragmentation is inevitable in any long running
or complex application. Therefore we always try to minimize the use of the heap.
If you don’t believe us, try doing a million malloc’s followed by a million free’s
of those malloc’d blocks in some random order. The malloc’s are fast but
the ensuing free’s will cost you seconds of CPU time. Therefore, a particular
emphasis of our object management scheme is enabling a user to have fine-
grained control over object memory usage and to adopt conventions that allow
for highly efficient memory management.

The first section is required reading for all users of mylib as it describes the
essential conventions and generic routines for every class. The second section
should be read by those wishing to contribute code to mylib as it describes the
macro support that makes it easy to realize an implementation of the conven-
tions for any class you might develop. The third section carefully documents
the code generated in response to the macro support described in the second
section. It serves as the documentation for the custom preprocessor that realizes
the macro transformations.
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1 Object Management Conventions

1.1 Convention 1: Object Creation and Destruction

Every data abstraction or class has routines to create, copy, and destroy objects
of the class. For example an Array object is modelled by the following record
and, among (many) others, has the four routines given below:

typedef struct

{ Array_Kind kind; // Interpreation of the array: one of the four enum constants above

Array_Type type; // Type of values, one of the eight enum constants above

int scale; // # of bits in integer values

int ndims; // Number of dimensions of the array

uint64 size; // Total number of elements in the array (= PROD_i dims[i])

int *dims; // dims[i] = length of dimension i

char *text; // An arbitrary string label, ’\0’-terminated as per C convention

void *data; // A block of size sizeof(type) * size bytes holding the array.

} Array;

Array *Make_Array(Array_Kind kind, Array_Type type, int ndims, int *dims);

Array *Read_Image(char *file_name, int layer);

Array *Copy_Array(Array *array);

void Kill_Array(Array *array);

The routine Make Array creates a new array object and returns a pointer to
it. So does the routine Read Image. Such routines we term generators and
often a class will have more than one. The user is responsible for managing
the newly created object including the memory it occupies. When the object is
no longer needed its storage should be returned to the system heap with a call
to Kill Array. If another copy of an object is needed, it can be created with
Copy Array which is also considered to be a generator for the class.

Note that for an Array object the user is shown the internal fields of the top-
level record of the object. The convention is that a user is free to examine these
fields but should shy away from ever setting them unless they really understand
the impact thereof. We don’t over-protect the user and often, when we think
it useful, reveal the fields of an object. However, when an object’s encoding is
so complex that it is unlikely to be of any direct value to the user, we hide the
type of object by declaring it to be of type void. For example, a level set tree
object (that models the tree of level sets of an image) has, among others, the
following declarations:

typedef void Level_Tree;

Level_tree *Build_Level_Tree(Pixel_APart *image, int iscon2n);

Level_tree *Copy_Level_Tree(Level_Tree *tree);

void Kill_Level_Tree(Level_Tree *tree);
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In summary, every class has a least one generator besides its Copy-routine, and
the Copy and Kill routines always have the form <X> *Copy <X>(<X> *) and
void Kill <X>(<X> *) where <X> is the class name.

1.2 Convention 2: Recycling and Buffering Objects

Thus far our management of objects is quite conventional: a generator acquires
memory for an object it is creating from the system heap, and the corresponding
Kill routine returns the memory to the heap. But often applications use only
one or a small handfull of objects of a given type at any one moment. For
example, as shown below, one might repeat a for-loop a thousand times and in
each iteration create an Array by reading an image file, analyze the image in
some way, and then kill it. Only one Array object is in existance at any given
moment, but a thousand system allocations and frees are performed.

for (i = 1; i <= 1000; i++)

{ Array *image = Read_Image(...);

// analyze the image for something cool

Kill_Array(image);

}

To alleviate this wasted effort, especially in the common case where every image
is of the same dimensions, every class has a routine void Free <X>(<X> *) that
effectively recycles the object by placing it on an internal recycle list from which
a generator will grab a previously used object if one is available, rather than
malloc a new one. The recycle list is always realized as a last-in, first-out stack.
Returning to the example above, if one frees the Array created in each loop, as
opposed to killing it, i.e. replaces Kill Array with Free Array, then only one
Array will ever be allocated from the system heap, and it will be reused in each
iteration.

Many objects, such as an Array, have one or more fields that point to blocks
of memory whose size can vary depending on the value of the object, e.g. dims
whose size is proportional to the dimensionality of the array, text whose size
is that of its \0-terminated label string, and data which depends on the kind,
type, and dimensions of the array. Obviously when a generator picks up such an
object from the recycle list, one or more of the blocks may not be large enough
to accomodate the value(s) of the object the generator is being asked to make.
In this case, those blocks of the object that are not large enough are expanded
with calls to realloc. Obviously the class must know the size of these memory
blocks. These are contained in a wrapper that surrounds the object record but
is always hidden from the user. If you are interested see Section 3 for details of
how this is implemented. In the event a block is bigger then necessary, then it
is not reduced in size, but left as is with the excess part of the block unused. So
in the case of our running example, the data-block of the Array that is being
recycled in each iteration, will grow to the size of the largest Array required
in any iteration. Probabilistically, a reallocation will not be necessary very
often if the block sizes follow a distribution with exponentially vanishing tails.
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Indeed by theory, the number is expected to be on the order of the logarithm
of the number of iterations. To further reduce reallocations a generator may
anticipate future growth in object sizes by, for example, reallocating blocks by
10-20% more than is needed, or keeping track of the largest object they have
been asked to produce and and always asking for a block of this largest size,
rather than of the needed size.

This buffering reduces the number of reallocations that are required at the
expense of using more space than is absolutely necessary for any given object.
However, in the example, where only one object is ever extent, this overhead
is more than compensated for by the reduction in usage of the system heap.
However, in cases where many instances of an object type will persist, or the
objects are so large that any overhead in their memory blocks is problematic
(e.g. a 400 mega-pixel image stack), one can pack the object by calling the
routine <X> *Pack <X>(<X> *) on each object. The effect is that the space for
the memory blocks of an object are reduced to exactly the sizes needed for the
object’s value by calling realloc as necessary, and as a convenience a pointer
to the object is returned.

Over time the memory blocks for such objects, if recycled through the use of
the Free-routine, become larger than needed for the value of the object currently
occupying them. While, as suggested above, some generators further pad the
size of the blocks by keeping and requesting a highwater-mark size and further
geometrically expanding it, this is a design choice that can vary from class to
class. Indeed, for very large objects, such as 3D image stacks, padding is not

a good idea. For example, the generators for arrays pad the size request for
small arrays, but if the needed size is very large then no padding is requested.
Moreover, if a memory block of an object shell taken from the recycle list is very
big and much larger then what is needed by the object being generatored, then
in fact the generator packs it automatically. While the specific buffering policy
of a class is hidden from the user and is at the discretion of the implementor,
it is always the case that the user can pack objects when the effect of any such
buffering policy is deemed detrimental to the application.

As a final comment, notice again that for our running example, often all the
images are of exactly the same size, in which case no reallocation takes place at
all. A single array is allocated in the first iteration and then efficiently reused
thereafter! We conclude with a revised outline of our running example, in which
the single array holding the image is reused and then returned to the system
heap after the last iteration.

for (i = 1; i <= 1000; i++)

{ Array *image = Read_Image(...);

// analyze the image for something cool

if (i < 1000)

Free_Array(image);

else

Kill_Array(image);

}
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1.3 Convention 3: Resetting and Monitoring Classes

The recycling and buffering scheme of Convention 2 is designed to permit the
user, who generally has some a priori knowledge of the usage pattern of his
application, to avoid unecessary allocations and re-allocations of memory and
objects. But we foresee that in large or long-runnning applications, different
object regimes may be present during different phases of a computation or an
end-user’s work flow. For example, an application may first do some work on
some 1024×1024×256 3D image stacks, and then later do some work on a large
number of 512×512 2D images. In such a case, one would ideally like to restart
the buffering process and not use containers that are 1024 times bigger than
necessary! Therefore, for every class <X> we provide a routine of the form void

Reset <X>() that has the effect of (1) emptying the recycle list and killing
every object on it, (2) returning any working storage to the system heap, and
(3) reseting every buffer size to 0. That is, the state of the class is restored to
its original condition at the start of execution, save for any objects that the user
may still be holding.

Any well-developed code should not contain any memory leaks, i.e., it should
never lose track of an object and so fail to kill or free it when it is no longer
needed. To assist users in testing this, for each class we provide a routine int

<X> Usage() that returns the number of objects of type <X> that the class has
given to the user but that have not as yet been freed or killed. A typical usage
would be to check that the value returned is 0 at points in your computation
where you believe that all objects of type <X> should have been killed or are sit-
ting on the recycle list (which can always be emptied with a call to Reset <X>).

In addition, we provide a routine void <X> List(void (*han)(<X> *))

that calls a user-supplied handler routine han with a pointer to each object
of type <X> that is currently in use by the user. One might, for example call
this routine with a handler that prints out information about each object in use,
including its reference count (see the next section), as a debugging aid. Another
possibility would be to use a handler that frees or kills every object in use, thus
guaranteeing that all memory is freed.

1.4 Convention 4: References Versus Sub-Objects

A class object consists of a record that can have pointers to several blocks of
memory (that may in turn refer to other blocks of memory albeit rarely). In
addition an object record can have pointers to objects of other classes that
are considered part of the given object. For example, a Tiff object has its
type hidden from the user but within its defining code module it is realized as
a Tio record which has pointers to a Tiff Reader object and a Tiff Writer

object. These objects are considered sub-objects of the Tiff object in that they
are freed, killed, packed, or copied whenever the Tiff object is freed, killed,
packed, or copied.
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typedef void Tiff; // Realized internally as a Tio

typedef struct

{ Tiff_Reader *reader;

Tiff_Writer *writer;

int eof;

} Tio;

On the otherhand a Level Tree object’s hidden Comtree record has a pointer
apart ref to an APart object which is the array or slice from which its level
sets were determined. In this case one clearly doesn’t want the APart treated as
a sub-object of the Level Tree object, but rather we simply want a reference to
the image. That is, other derived objects such as a watershed partitioning, or a
collection of regions may all want to refer to the, possibly large, source image.
It would be an implementation disaster to make numerous copies of the image!

typedef void Level_Tree; // Realized internally as a Comtree

typedef struct

{ APart *apart_ref; // Reference to the image or slice level tree was made from

vertex *level_tree; // Memory block containing the vertices of the tree

int iscon2n; // Connectivity used in building the level tree

vertex *regtrees; // Binary tree of islands = level_tree-1;

int csize; // Size of tree (also of underlying APart)

bool is8; // Array is 8-bit (versus 16-bit)

uint8 *value8; // Pixel values of apart (undefined if is8 == 0)

uint16 *value16; // Pixel values of apart (undefined if is8 != 0)

} Comtree;

If an object is to have more than one reference from several different objects,
then the object must keep track of how many there are in a reference count.
This reference count is hidden in the wrapper that surrounds each object. It is
initially set to 1 by the generator that creates the object and this reference can
be thought of as being given to the user. From there routines can create addi-
tional references by calling the routine <X> *Inc <X>(<X> *) that increments
the count by 1 and returns a pointer to the object in question as a convenience.
This reference count is decremented by 1 whenever Free or Kill is called upon
its object, and when, and only when the reference count reaches 0 does the
object in question truly get freed, i.e. returned to the recycle list, or killed, i.e.
returned to the system heap, depending on whether Free or Kill was called.

We adopt the convention of adding the suffix ref to any field that is a
reference to another object, as opposed to a pointer to a sub-object of the
current object. An object R referred to by such a reference field is not copied or
packed when the refering object O is copied or packed, but when O is freed or
killed then R does have a free or a kill called upon it. The trick is that when the
reference is first assigned to the field of O during its generation, the Inc-routine
is called on R so that R gets an extra reference count. So later when O is freed
or killed, the free or kill on R decrements that extra count and so R stays in
existence, unless of course, the user has freed or killed their reference to R in
the interim since generating O. Notice that the nice thing about this scheme
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is that the user doesn’t need to worry about whether the referred object is still
extant, it is guaranteed to be until all references have disappeared.

The Comtree record is hidden from the user, so how does the user know that
when a Level Tree is built an extra reference to its source image is created?
First, this is always documented in the comments in the include file containing
the declaration for the generator Build Level Tree that builds the tree. Sec-
ondly, wherever a declaration for Build Level Tree occurs, the image param-
eter will be annotated (see Convention 6) as receiving an additional reference,
specifically:

Level_tree *G(Build_Level_Tree)(Pixel_APart *I(image), int iscon2n);

The identity I() macro wrapped around image is our convention for declaring
that image will have Inc Array called on it, and the G() macro indicates that
Build Level Tree is a generator of Level Tree objects. More on this in Con-
vention 6. Finally, one can always get the current reference count for an object
by calling the routine <X> *<X> Refcount(<X> *).

1.5 Convention 5: Bundles For Multi-Valued Parameters

and Function Results

It is often the case that the computation of a given function creates multiple
outputs. For example, we want a routine Array Range to take an array as input
and return the minimum and maximum values in the array as double precision
numbers. Conceptually this pair of numbers consitute a range that conceptually
we would like think of as the result. But a function in C can only return a scalar
value so the only way we can accomplish this is to return a pointer to a structure
Range B that has a field for the minimum and maximum:

typedef struct

{ double maxval;

double minval;

} Range_Bundle;

Range_Bundle *Array_Range(..., Array *array);

One is immediately faced with the issue of where the Range B record resides.
If the routine creates it on the system heap then at some later point the space
will need to be freed. That immediately suggests that one make it a proper
object so that its storage management conventions are understood and uniform
across the system. But making an object class just to return a compound result
seemed excessive to us, especially since in cases such as this one the result will
likely be short-lived. So instead, we ask that the user supply us a pointer to
a record of type Range B and the routine fills it out and returns a pointer to
it for convenience. (In an earlier incarnation of the code the object was static
to the routine, but we moved away from this as it does not permit re-entrant
code, more on this in Section ..). We call this a bundle and we distinguish such
records by always ending their name with the suffix Bundle. We sketch the
template just described:
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Range_Bundle *Array_Range(Range_Bundle *range, Array *a)

{ ...

range->minval = ...;

range->maxval = ...;

return (range);

}

The limitation is that the values of the bundle will be reset the next time
the routine is called, but this is fine with us as the idea is that a bundle is a
short-lived object. Moreover, if you need a bundle to persist a while, then you
can assign it to a variable of that type that is itself either static or on the system
stack. To illustrate we give an artifical example of a routine that returns the
intersection of the ranges of two arrays:

Range_Bundle *Common_Range(Array *a, Array *b, Range_Bundle *range)

{ Range_Bundle temp;

Array_Range(range,a);

Array_Range(&temp,b);

if (temp.minval > range->minval)

range->minval = temp.minval;

if (temp.maxval < range->maxval)

range->maxval = temp.maxval;

return (range);

}

Another use for a bundle record is to pass in as an argument a short-term
collection of related values. For example, the drawing routines need to be given
a paint brush which specifies a drawing operator and a “color” that matches the
kind of the array. We give the declarations of the three types of color bundles
below, along with that of a void Brush Bundle which can be any one of the
three types, and a typical drawing routine all of which take a “canvas” Array

and Brush Bundle as input, among other parameters.

typedef struct

{ Drawer op;

double val;

} Plain_Bundle;

typedef struct

{ Drawer op;

double real;

double imag;

} Complex_Bundle;

typedef struct

{ Drawer op;

double red;

double green;

double blue;

double alpha;

} Color_Bundle;

typedef void Brush_Bundle;
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void Draw_Level_Set(Array *canvas, Brush_Bundle *brush, Level_Set *r);

The drawing routines know the kind of the canvas Array and so always know
what kind of specific paint brush to coerce the Brush Bundle parameter to. For
example:

static Color_Bundle yellow_overlay = { MIN_PIX, 1., 1., 0. };

Draw_Level_Set(canvas,&yellow_overlay,r);

In summary, a bundle is a record, or more consisely a struct, that is used as
a means of communicating multiple values to and from a routine. The storage
for a bundle is always managed by the user and is most typically on the system
stack, especially for applications where code needs to be re-entrant. It is not an
object, its purpose is to pass in conceptual related values as an argument, or to
receive conceptually related values as a function output.

1.6 Convention 6: Parameter and Return Value Annota-

tions

The library has so many routines that its pretty much impossible to remember
them all yet alone remember the parameter usage conventions for each. So a
handy index is available that lists by module every routine, type, and constant,
and in addition uses a simple annotation scheme to indicate the input/output
usage of every parameter and more. The scheme consists of a set of one capital
letter identity macros that are placed around a parameter or function name,
where the letter indicates the role(s) of the parameter or function name. As an
example, we list a couple of macros and give a fictitious function declaration:

#define M(x) x // parameter x is (M)odified by the routine, i.e. input & output

#define O(x) x // parameter x is set by the routine, i.e. (O)utput only

#define G(x) x // function is a (G)enerator

Array *G(Example)(Array *M(work), int *O(status));

First note that after macro expansion the declaration is just

Array *Example(Array *work, int *status);

so the annotations basically disappear before compilation. Indeed we use them
in the code and associated include files to enhance the documentation of inter-
faces. In the example above the annotations indicate that the function Example

is a generator, that the argument work is modified by the routine, and that the
integer pointed at by status is set by the routine.

A parameter to a routine can provide a value to the routine as input, it can
return a value from the routine as output, or it can serve as both. We use the
letter O to denote strict output, and the letter M to denote modification, i.e. both
input and output. By far most parameters are used as input and not modified,
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so our convention is to not mark such parameters, i.e. no M- or O-annotation
implies the parameter is strictly an input.

We also annotate return values of functions. A function that is a generator
has its function name annotated with the letter G (for generator). It is also
very common that a routine will return a pointer to one of its arguments, which
we indicate by annotating the parameter with the letter R (for return value).
The only other possibilities are that a function returns (a) a scalar value (e.g.
int or double), or (b) a pointer to a component of an object, or (c) a pointer
to a vector of scalars (e.g. int * or double *). Case (a) clearly requires no
annotation. In case (b) we effectively have a return result that (1) is short-term
in the sense that another call to the function or an object management call
on a relevant object can void the value, and (2) has its memory management
being taken care of by someone other than you. Because case (c) would not
be re-entrant, we avoid this case, it does not occur in our library. We give the
following real examples:

Array *G(Make_Array)(Array_Kind kind, Array_Type, int ndims, int *dims);

Array *Threshold_Array(Array *R(M(a)), double cutoff);

Range_Bundle *Array_Range(Range_Bundle *R(O(range)), Array *array);

int *Collapse_Watershed(Watershed *shed, void *base, int size,

int (*handler)(void *,int,void *), int *O(newcbs));

The function Make Array is a generator all of whose arguments are strictly input.
Threshold Array takes an array a as input, modifies it, and returns a pointer
to it as its result. Note that a is annotated with both R and M, a frequent case,
by simply nesting the annotation macros. Array Range clearly returns a pointer
to a bundle that is passed to it and whose values are set by the routine. By
deduction Collapse Watershed returns a vector of integers and sets the integer
pointed at by newcbs. The integer vector is guaranteed to persist until the
next call to the routine or until Reset Watershed is called. Note as a general
principle that only one R can occur, and if it is present, then G does not occur.

Our object management conventions involve sub-objects versus references,
and frees versus kills. So we further carefully annotate events involving these
phenomenon. In particular if a parameter is freed by a routine then it is an-
notated with an F, if it is killed it is annoted with a K, and if a new reference
to it is created then it is annotated with an I (for incremented). A more sub-
tle phenomenon is that some generator routines take an argument object and
reference it within the object they are making, or even more strongly, take the
argument object and make it a sub-object of the object they are making. In the
later case we annotate the argument with the letter S (for either sub-object or
subsumed) and the former case with the letter C (for consumed). In the case of
being consumed one can think of it as an increment and free combined; other
parties can reference the object but the reference you passed in has been taken
over by the generated object. In the case of being subsumed, the generator
routine more strongly checks that this is the only reference to the object as the
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generated object is going to completely take it over, and may even modify the
argument object as it pleases. We give some real examples:

Coordinate *G(Coord)(char *list);

Coordinate *AddCoord(int d, Coordinate *R(M(coord)));

int Coord2IdxA(Array *array, Coordinate *F(coord));

XCanvas *G(Begin_Xfig_Drawing)(char *name, XTransform *F(xform));

void Finish_Xfig_Drawing(XCanvas *K(canvas));

Level_Tree *G(Build_Level_Tree)(Pixel_APart *I(image), int iscon2n);

LU_Factor *G(LU_Decompose)(Double_Matrix *S(m), int *O(stable));

An integer coordinate vector is typically a short-lived small object that allows
one to conveniently produce indices into arrays. The generator Coord creates
one, the routine AddCoord modifies one by adding an extra index, and the
converter routine Coord2IdxA converts coord into an index into the flat data
space of Array array, freeing the input coordinate when it is done. The xfig
drawing module allows one to start a canvas by creating an XCanvas object
with Begin Xfig Drawing and then later when you finish the drawing with
Finish Xfig Drawing the XCanvas is killed. When one generates a water shed
object with Build Level Tree the image for which it is built gets referenced by
the new object. Finally, when one produces an LU-decomposition of a square
matrix m, the matrix is modified and becomse a sub-object of the generated
LU Factor object. Note carefully the difference in the fate of the two arguments
in these last two examples. The image is still yours after building the watershed,
a new reference is created and given to the watershed object. But the matrix
becomes part of the LU Factor object, and if you had, more than one reference
to the matrix an error would have been flagged.

1.7 Convention 7: Read and Write routines

Most object classes have routines that read and write an instance of an object
of the class from or to a file. The write routine has the specification void

Write <X>(<X> *x, FILE *output) where <X> is the class name, and the read
routine is a generator of the form <X> *Read <X>(FILE *input). On output,
sub-objects of a class are automatically written as part of the write of the object,
where as references to another object are not. Thus on input, the read routine
sets an object’s references to NULL. The user must subsequently re-establish any
such references using routines that should be provided by the object class for
this (and other) purposes.

In some exceptional cases it doesn’t make sense for a class to have a read and
write routine, in which case they don’t. For example, the object classes Tiff and
XCanvas don’t have such routines as they are each controlling an input/output
process. The value of these objects is a function of the file they are reading or
writing and as such one can’t really record or recreate the object’s value unless
one went to the ridiculous length of re-establishing the state of the I/O process.
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Objects may be read and written sequentially from a file. Each reader as-
sumes that the input cursor of the file is at the same position the write of an
object of its type began. The reader is guaranteed to move the cursor to the
beginning of the next object on the input stream. Moveover we take the extra
precaution of beginning the write of an object by outputting the ASCII name
of the object class, e.g. "Array", at the start so that (a) a user has the ability
to see what objects are in a file (even though the rest of the file is coded in
binary), and (b) so that the read routine can verify that it is trying to read an
object of the class.

12



2 Memory Management Support

The copy, pack, inc, free, kill, reset, read, and write routines for each data ab-
straction or class are stylistically so similar that I decided to build a preprocessor
that given a few parameters about the class, automatically generates most of
the C code realizing the required operations. The preprocessor is of a complex-
ity beyond the capabilities of the standard C preprocessor, so I wrote a custom
preprocessor in C to implement the desired transformations including the initial
allocation of an object, the sizing of any memory blocks, and maintenance of the
reference count if present. This complicates compilation of a source file in that
first one must run the memory management preprocessor on the file and then
compile the resulting C code. The simple makefile that compiles the library
of all modules for the mylib library clearly illustrates how this is done should
you want to write your own module and add it to the build.

A single line in a file of the form that begins with MANAGER followed by
a number of parameters will be expanded into code that when coupled with
a little additional code tailored for the class will realize the required memory
management routines for the class. The specific syntax is as follows:

‘MANAGER’ [-cpkfr[iI][oO]] <class names> <field descriptor> ∗

<class names> → <visible class name>(‘(’<hidden class name>‘)’)?

<field descriptor> → <block field>‘:’<wrapper size name>
| <block field>‘!’<64-bit wrapper name>
| <subobject field>‘*’<subobject class>
| <reference field>‘@’<reference class>

The keyword MANAGER must begin at the far left of its line, and is followed first
by some optional flags, then a class name parameter, and then zero or more
field descriptors, all of which must be separated by white space. The class name
parameter gives the name of the class visible to the user, and if this hidden,
i.e. declare to be of type void, then one further gives within parenthesis the
type name used within the class module to define the top-level structure of the
object. In the case that the object has pointers to sub-objects or to variable-
sized component arrays, then a field descriptor for each needs to be given to
the preprocessor. Each field descriptor consists of the relevant field name in the
top-level structure followed by a punctuation mark — either : , !, *, or @ —
followed by a unique name to be used in the object wrapper in the case of a 32-
or 64-bit memory block field, the type name of a sub-object, or the type name
of a reference, respectively (See Convention 4).

In response to a MANAGER specification line, the object management prepro-
cessor replaces it with

1. a type declaration for the object wrapper and global variables for the class

2. code for Copy <X>, or copy <i> if the -c flag is set

3. code for Pack <X>, or pack <i> if -p flag is set
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4. code for Free <X>, or free <i> if the -f flag is set

5. code for Kill <X>, or kill <i> if the -k flag is set

6. code for Reset <X>, or reset <i> if the -r flag is set

7. code for Write <X> if the -O flag is set, or write <i> if the -o flag is set

8. code for Read <X> if the -I flag is set, or read <i> if the -i flag is set

9. code for Inc <X>, <X> Refcount, <X> Usage, and <X> List

10. for each memory block, the following two routines are generated:

static inline int allocate_<i>_<block_field>(<I> *<i>, (uint32|uint64) <size_name>,

char *routine);

static inline (uint32|uint64) sizeof_<i>_<block_field>(<I> *<i>);

11. and a routine allocates a new object:

static inline <I> *new_<i>((uint32|uint64) <size_name>, ..., char *routine);

where <X> is the visible class name and <I> is the hidden class name or the
visible class name if a hidden name is not given. Moreover, <x> and <i> are all
lower-case versions of <X> and <I>, respectively. For example, if <X> is Array,
then <x> is array. Note that we are assuming by our coding conventions that
<X> and <I> are capitalized.

Note in items 10 and 11 that the type of some parameters or return values
can be either uint32 or uint64. If you declare a memory block with a : as the
separator then the memory block is assumed to by less than 4Gb and uint32

is used as the type of its block field. But if ! is used as the separator, then one
is designating that a memory block can be very large and a uint64 is used as
the type where appropriate.

Every routine produced by the object manager calls the simple routine
Guarded Realloc in utilities.h whenever it needs a new memory block or
whenever it needs to resize one. Guarded Realloc as written, either does the re-
allocation (it calls realloc) or it prints an error message and stops the program.
This behavior is fine for batch-oriented command-line programs (the main in-
tended use for mylib), but it is not so in other possibly desired scenarios, for
example, as subroutines in an interactive user-interface. To change the behav-
ior, simply re-implement a static version of Guarded Realloc in the relevant
module(s), so that it returns NULL if it can’t perform the reallocation. All the
routines produced by the object manager are designed to work in this scenario
and will either return NULL to signal they failed (new <i>, Pack <X>, read <i>,
and Read <X>), or a non-zero value if they failed (allocate <i> <block field>

and pack <i>).
The creation routine new <i> is used by every generator (including the copy

routine the manager creates), to get a new object, either from the recycle list, or
from the system heap if necessary. The parameters <size name>, ... are the
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requested sizes for the memory blocks in the field descriptor list, in the order
given. The parameter routine is the routine name to report should an out-
of-memory error occur when new <i> requests memory from the system heap,
assuming the typical behavior of Guarded Realloc (see paragraph above). If
Guarded Realloc is re-programmed to not stop the program, then new <i> will
return NULL if it can’t allocate the object as requested.

The routine allocate <i> <block field> has the effect of making sure that
<block field> points to a block of memory equal to or larger than the requested
size. If the current block isn’t large enough then it increases its size, or returns
a non-zero value if it can’t and Guarded Realloc hasn’t stoped the program.
Incidentally, new <i> calls this routine for each memory block in the object.
The routine sizeof <i> <block field> returns the padded size of the mem-
ory block pointed at by <block field>. This allows a generator to realize a
buffering scheme that knows when the padding for a block has become excessive.

All the fields that point to sub-objects or references are set to NULL by
new <i>. The generator that calls this routine will presumably set the values
of these fields along with all the others. Moreover, you can pass 0 as a size to
new <i>, in which the relevant memory block does not get allocated and the field
pointer is to NULL. This allows you to do the allocation/resizing of a memory
block with its appropriate allocate <i> routine later. This is especially useful
when the size of a block isn’t known until you are further into the generation
of the object. Lastly, care has been taken that the codes for all the operations
generated by the object manager are careful to not manipulate a pointer field
whose value is NULL. Moreover, a size of 0 can be assigned to a memory block
by calling its allocate <i> routine with 0 as the size. If the given object is
subsequently packed, then that memory block is returned to the system heap
and its field is set to NULL. In summary, if you are careful, you can realize objects
in which fields can be undefined if desired.

While the MANAGER macro generates a great deal of the required code,
it may still need a little extra code from you. First, if the object has memory
blocks then for each one you need to supply a routine of the form:

static inline (uint32|uint64) <i>_<size_name>(<I> *<i>)

that returns the size in bytes of the value sitting in the memory block. Note
carefully that this is the actual size of the used portion of the block, the manager
already knows the padded size, and indeed will give it to you with a call to the
appropriate sizeof <i> routine described earlier. The return type depends on
whether you have declared this to be a regular block or a 64-bit block.

Based on the information you’ve given it, the manager may not be able to
produce code that does everything that you might like your copy, pack, free, kill,
reset, read and write routines to do. For example, the manager can only produce
code for a reset that kills and removes all objects on the recycle list. But you
may also wish to reset any buffering size limits and free any working storage
used by the class. For each of these seven routines setting the appropriate flag
produces a core routine (e.g. copy <i> if the -c option is set) as opposed to
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an external routine (e.g. Copy <X> as described in items 2 through 8 above. If
such a core routine is requested then the implementor must write the external
routine. This external routine must call the core routine as well as perform the
additional functions the implementor desires. Note that in the case of read, an
external routine is produced only if the -I is set, and if neither the -i or -I

flag is set then no read code is produced. The same is true of write as from
Convention 7 a class need not always have read and write routines. We list each
core routine declaration followed by a description of what precisely the routine
does and suggest when you might need or want to supply the external routine.

static inline <I> *copy <i>(<I> *<i>);

This routine makes a copy of the object record, assigns each block
field of the copied record to a copy of each memory block, assign
each sub-object field of the copied record to the result of calling
each sub-object’s copy routine, and increments each reference. If
a memory block contains information, such as pointers, that are
relative as opposed to absolute, then you need to write the external
Copy <X> routine and after calling the core routine adjust the relative
information.

static inline int pack <i>(<I> *<i>);

This routine packs each of the object’s memory blocks and calls
each sub-object’s pack routine on the sub-object. The circumstances
requiring the writing of the external routine are the same as for the
copy routine because when a realloc is called on a memory block, it
might be moved to a new location by the system heap.

static inline void free <i>(<I> *<i>);

This routine decrements the object’s reference count and returns if
it is not zero. Otherwise the routine puts the object on the recycle
list, calls each sub-object’s and referenced object’s free routine, and
adjusts a global counter of how many objects are currently in use.
If a memory block contains pointers to other objects or memory
blocks, then you need to write the external free routine in order to
free or kill those objects and blocks.

static inline void kill <i>(<I> *<i>);

This routine first decrements and checks the reference count. If
the count is zero or the option is not set, then the routine returns
all memory blocks to the system heap, calls each sub-object’s and
referenced object’s kill routine, and adjust the global in-use counter.
The reason for an explicitly supplied kill routine is the same as for
the free routine.

static inline void reset <i>();
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This routine removes and kills every object on the recycle list. If you
want to perform additional reset activities, such as resetting buffer
limits and freeing working storage, then you should write your own
external Reset <X> routine.

static void write <i>(<I> *<i>, FILE *output);

The routine writes an encoding of the object pointed at by <i> to
the file output in a single segment starting at the current cursor
position within the file. Upon completion the cursor is at the end
of the object’s encoding on the file output. On may chose to write
their own external routine in the event that they wish to write some
prologue or epilogue information around the segment written by the
core routine.

static inline <I> *read <i>(FILE *input);

The routine reads and generates an object of type <I> from file
input starting at the current cursor position within the file. Upon
completion the cursor is at the end of the object’s encoding on the file
input. Any references within such an object are set to NULL and it
is up to the user to re-establish them if they wish. If a memory block
contains information, such as pointers, that are relative as opposed
to absolute, then you need to write the external Read <X> routine
and after calling the core routine adjust the relative information.
Moreover, you may need to read wrapper information on the input
file around the input segment read by the core routine in case you
did such for the corresponding write routine.

As a smallest possible example, the XPoint object of module xfig.p has no
variable-sized components, no sub-objects, and its record is externally visible.
In this case, all the code we needed to write is:

MANAGER XPoint

Recall from the examples of Convention 4, that a Tiff object defined in the
image.p module is opaque (i.e. declared void), but internal to the module it is
realized by a Tio record that has a Tiff Reader and a Tiff Writer sub-object.
All that is required is the MANAGER line:

MANAGER Tiff(Tio) reader*Tiff_Reader writer*Tiff_Writer

As another example, let’s consider the Array object introduced in Conven-
tion 1 which has three variable-sized blocks pointed at by the fields dims, text,
and data, where the block pointed at by data has a size modeled by a uint64.
In this case you need to supply a routine array <size name> for each of the
three blocks that returns the size of the given block. Also note the subtle dif-
ference that this class has read and write routines as indicated by the flags -IO
on the MANAGER line:
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static inline uint32 array_nsize(Array *a)

{ return (sizeof(int)*a->ndims); }

static inline uint32 array_dsize(Array *a)

{ return (a->size*type_size[a->type]); }

static inline uint32 array_tsize(Array *a)

{ return (strlen(a->text)+1); }

MANAGER -IO Array dims:nsize data!dsize text:tsize

As a final example, consider the Level Tree object from the examples of
Convention 4 that is in the module level.set.p and that is opaque with in-
ternal definition Comtree. This object has a vector of vertex records pointed
at by level tree. The number of elements in the vector is in the field csize.
The object also has a reference apart ref to the Array or Slice from which
it was made. An interesting aspect of this example is that the -p option is
set as the pack routine needs to readjust a pointer regtrees that is relative to
level tree which might be moved by the pack.

static inline uint32 comtree_lsize(Comtree *tree)

{ return (tree->csize * sizeof(vertex)); }

MANAGER -pIO Level_Tree(Comtree) level_tree:lsize apart_ref@APart

Level_Tree *Pack_Level_Tree(Level_Tree *etree)

{ Comtree *tree = (Comtree *) etree;

int pack_failed = pack_comtree(etree);

etree->regtrees = etree->level_tree - 1;

if (pack_failed) return (NULL);

return (etree);

}

Hopefully, these examples are enough to get your started. For more exam-
ples, simply grep the .p files of mylib for the word MANAGER to find all the
places where these object manager macros have been used.
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3 Memory Management Macro Transformations

Here we will describe in detail the code generated in response to a MANAGER

declaration. As introduced in the previous section, the notations <X>, <I>, <x>,
and <i> will denote the external and internal class name in upper and lower
case, respectively. In addition,

1. <block field> and <size name> will denote each memory block field and
its associated size name

2. <subo field> and <subo name> will denote each sub-object field and its
associated class name

3. <ref field> and <ref name> will denote each reference field and its as-
sociated class name

The manager generates the same code fragment for every field/name pair and
this will be denoted by giving the code for a pair and then follow it by ellipses.
Occasionally the same code is generated for different kinds of field/name pairs
and as an example we would use the template <(subo|ref) field> to denote
every sub-object and reference field.

The manager first produces a declaration of the wrapper object <I> (Lines
1-7) that contains an object of type <I> (Line 6), fields to hold the sizes of each
memory block (Lines 5 repeated), a reference count (Line 4), and link fields
next and prev (Line 2-3) used to implement the recycle list Free <I> List

declared in Line 8 and the inuse list Use <I> List declared in Line 9. The free
list is singly-linked with the next field and the inuse list is, in order to support
deletion within the list, doubly-linked with both fields.

1. typedef struct __<I>

2. { struct __<I> *next;

3. struct __<I> *prev;

4. int refcnt;

5. (uint32|uint64) <size_name>;

...

6. <I> <i>;

7. } _<I>;

8. static _<I> *Free_<I>_List = NULL;

9. static _<I> *Use_<I>_List = NULL;

Then the manager generates a declaration for the global variable <I> Offset

(Line 1) that is set up to hold the offset in bytes from the top of a container to
the proper object it contains. A global mutex, <I> Mutex (Line 2) is declared
and initialized for use in the portions of the code for the object routines that
are intrinsically not re-entrant. Specifically any updating of the free and in-use
lists and counts as well as changes to the reference count of an object instance.
The global variable <I> Inuse (Line 3) holds the number of objects currently
in use and is the value returned by <X> Usage() (Lines 4-5). The routines
<X> Refcount and <X> List are also generated. <X> Refcount simply returns
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the current reference count of an object (Lines 6-8). and <X> List walks the
forward link of the use list and calls a handler on each object (Lines 9-13).

1. static int <I>_Offset = sizeof(_<I>) - sizeof(<I>);

2. static pthread_mutex_t <I>_Mutex = PTHREAD_MUTEX_INITIALIZER;

3. static int <I>_Inuse = 0;

4. int <X>_Usage()

5. { return (<I>_Inuse); }

6. int <X>_Refcount(<X> *<x>)

7. { _<I> *object = (_<I> *) (((char *) <x>) - <I>_Offset);

8. return (object->refcnt);

}

9. void <X>_List(void (*handler)(<X> *))

10. { _<I> *a, *b;

11. for (a = Use_<I>_List; a != NULL; a = b)

12. { b = a->next;

13. handler((<X> *) &(a-><i>));

}

}

For each block field / size name pair a routine allocate <i> <block field>

is generated that is passed the object with internal type, the requested size of
the memory block, and the name of the generator requesting the block (Line
1). It returns a non-zero result if it could not allocate the block. The routine
first gets a pointer to the wrapper (Line 2) and if the requested size is larger
than the current size of the block (Line 3) then it attempts to expand the block
(Line 4). If it cannot (Line 5) then it returns a non-zero value without having
made any changes to the object. Otherwise it updates the block pointer and
its size field in the wrapper and returns 0 (Line 6-8). In addition, the manager
generates the small routine sizeof <i> <block field> which given the object
returns the padded size of the memory block recorded in the wrapper (Lines
10-12).

1. static inline int allocate_<i>_<block_field>(<I> *<i>, (uint32|uint64) <size_name>,

char *routine)

2. { _<I> *object = (_<I> *) (((char *) <i>) - <I>_Offset);

3. if (object-><size_name> < <size_name>)

4. { void *x = Guarded_Realloc(<i>-><block_field>,<size_name>,routine);

5. if (x == NULL) return (1);

6. <i>-><block_field> = x;

7. object-><size_name> = <size_name>;

}

8. return (0);

}

10. static inline (uint32|uint64) sizeof_<i>_<block_field>(<I> *<i>)

11. { _<I> *object = (_<I> *) (((char *) <i>) - <I>_Offset);

12. return (object-><size_name>);

}
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The routine new <i> returns a pointer to an object of type <I> that is within
a wrapper of type <I>, unless it cannot allocate it in which case it returns NULL.
The size requested for each memory block is passed as a parameter <size name>

in order of their declaration to the manager, along with the name routine of
the generator requesting the object (Line 1). If the recycle list is empty (Line
5) then a wrapper object is malloc’d if possible or NULL is returned if it is not
(Line 6-8). In addition, each memory block has its size set to 0 and its pointer
set to NULL (Lines 9-10 repeated). If the recycle list is not empty, then the
most recently freed object is taken from the list (Lines 11-12). In both cases, a
pointer <i> is established to the proper object with internal type (Lines 8 and
13). Thereafter, the reference count is set to 1 (Line 14), the number of objects
in use is increased by 1 (Line 15), and the object is prepended to the use list
(Lines 16-21). Then every sub-object or reference field is set to NULL (Line 22
repeated), and each memory block is created or expanded to the desired size
(Line 23-25 repeated) if possible, if not the nascent object is killed and NULL is
returned. A pointer to the object within the wrapper is returned (Line 26). All
the code dealing with the free and use lists and reference counts (Lines 5-20) is
locked by the object class mutex <I> Mutex in order to make sure that a race-
condition does not occur between two threads simultaneously manipulating the
same object.

1. static inline <I> *new_<i>((uint32|uint64) <size_name>, ... , char *routine);

2. { _<I> *object;

3. <I> *<i>;

4. pthread_mutex_lock(&<I>_Mutex);

5. if (Free_<I>_List == NULL)

6. { object = (_<I> *) Guarded_Realloc(NULL,sizeof(_<I>),routine);

7. if (object == NULL) return (NULL);

8. <i> = &(object-><i>);

9. object-><size_name> = 0;

10. <i>-><block_field> = NULL;

...

}

else

11. { object = Free_<I>_List;

12. Free_<I>_List = object->next;

13. <i> = &(object-><i>);

}

14. object->refcnt = 1;

15. <I>_Inuse += 1;

16. if (Use_<I>_List != NULL)

17. Use_<I>_List->prev = object;

18. object->next = Use_<I>_List;

19. object->prev = NULL;

20. Use_<I>_List = object;

21. pthread_mutex_unlock(&<I>_Mutex);

22. <i>-><(subo|ref)_field> = NULL:

...

23. if (allocate_<i>_<block_field>(<i>,<size_name>,routine))

24. { kill_<i>(<i>);
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25. return (NULL);

}

...

26. return (<i>);

}

The routine Inc <x> simply accesses the wrapper (Line 2), increments its
reference count by 1 (Line 4), and then returns a pointer to the object (Line 6),
where the increment is protected by the object class mutex lock (Lines 3 and
5).

1. <X> *Inc_<X>(<X> *<x>)

2. { _<I> *object = (_<I> *) (((char *) <x>) - <I>_Offset);

3. pthread_mutex_lock(&<I>_Mutex);

4. object->refcnt += 1;

5. pthread_mutex_unlock(&<I>_Mutex);

6. return (<x>);

}

If a flag for a core routine, e.g. -c for copy <i>, is not set, then code for the
external routine, e.g. Copy <X>, is generated wherein the routine simply calls
the core routine! For example,

<X> *Copy_<X>(<X> *<x>)

{ return ((<X> *) copy_<i>((<I> *) <x>)); }

Thus the core routine is always generated except for the read and write routines
when no flag for them is set. So from here on out we describe just the code for
the core routines.

The core routine copy <i> is generated as shown below. First a new object
is requested from new <i> where the size of each memory block is requested to
be its size in the object <i> being copied (obtained by calling the user-supplied
routine <i> <size name>) (Line 2). Then a copy, named <block field>, of
each block field pointer of the copy is saved (Line 3 repeated) before assigning
the structure of <i> to copy in order to set all scalar values of the record (Line
4). Then each memory block field pointer is restored and the value of the block
copied if it is not NULL (Lines 5-7 repeated). Also every sub-object field is
copied if the pointer is not NULL (Lines 8-9 repeated), and every reference field
is incremented if not NULL (Lines 10-11 repeated). The copy is returned as the
result (Line 12).

1. static inline <I> *copy_<i>(<I> *<i>)

2. { <I> *copy = new_<i>(<i>_<size_name>(<i>), ... <i>_<size_name_N>(<i>),"Copy_<X>");

3. void *_<block_field> = copy-><block_field>;

...

4. *copy = *<i>;

5. copy-><block_field> = _<block_field>;

6. if (<i>-><block->field> != NULL)
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7. memcpy(_<block_field>,<i>-><block_field>,<i>_<size_name>(<i>));

...

8. if (<i>-><subo_field> != NULL)

9. copy-><(subo_field> = Copy_<subo_name>(<i>-><subo_field>);

...

10. if (<i>-><ref_field> != NULL)

11. Inc_<ref_name>(<i>-><ref_field>);

...

12. return (copy);

}

The core routine void pack <i> first sets a pointer to the wrapper contain-
ing <i> (Line 2). Then for each memory block, it checks if the block is bigger
than the value within it (Line 3) and if so, the unpadded size is recorded in
the variable ns (Line 4). If ns is non-zero then the memory block is shrunk if
possible, if not a non-zero value is returned (Lines 6-8). If the unpadded size
is 0 then the block is freed and its pointer set to NULL (Lines 9-10). Then the
new size of the block is set (Line 11). For every sub-object, the associated pack
routine is called if the sub-object reference is not NULL and if the pack fails then
a non-zero value is returned (Lines 12-13 repeated). If all succeeds then zero is
returned (Line 14).

1. inline int pack_<i>(<I> *<i>)

2. { _<I> *object = (_<I> *) (((char *) <i>) - <I>_Offset);

3. if (object-><size_name> > <i>_<size_name>(<i>))

4. { uint64 ns = <i>_<size_name>(<i>);

5. if (ns != 0)

6. { void *x = Guarded_Realloc(<i>-><block_field>,ns,"Pack_<X>");

7. if (x == NULL) return (1);

8. <i>-><block_field> = x;

}

else

9. { free(<i>-><block_field>);

10. <i>-><block_field> = NULL;

}

11. object-><size_name> = ns;

}

...

12. if (<i>-><subo_field> != NULL)

13. if (Pack_<subo_name>(<i>-><subo_field>) == NULL) return (1);

...

14. return (0);

}

The core routine free <i> first gets a point to the object’s wrapper (Line
2). Then the object class mutex is locked (Line 3), the reference count is decre-
mented and if it is non-zero thereafter, the routine simply returns (Lines 4-6)
being careful to unlock the mutex. The routine also checks that the reference
count is not negative indicating this object is already free or killed (Lines 7-8).
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Otherwise the routine proceeds with freeing the object by removing it from the
use list (Lines 9-14), placing it on the recycle list (Lines 15-16), decrementing
the number of objects in use (Line 17), and finally unlocking the object class
mutex (Line 18). It finishes by freeing every non-null pointer to a sub-object or
reference (Lines 19-21 repeated),

1. void free_<i>(<I> *<i>)

2. { _<I> *object = (_<I> *) (((char *) <i>) - <I>_Offset);

3. pthread_mutex_lock(&<I>_Mutex);

4. if (--object->refcnt > 0)

5. { pthread_mutex_unlock(&<I>_Mutex);

6. return;

}

7. if (object->refcnt < 0)

8. fprintf(stderr,"Warning: Freeing previously released Array\n");

9. if (object->prev != NULL)

10. object->prev->next = object->next;

11. else

12. Use_<I>_List = object->next;

13. if (object->next != NULL)

14. object->next->prev = object->prev;

15. object->next = Free_<I>_List;

16. Free_<I>_List = object;

17. <I>_Inuse -= 1;

18. pthread_mutex_unlock(&<I>_Mutex);

19. if (<i>-><(subo|ref)_field> != NULL)

20. { Free_<(subo|ref)_name>(<i>-><(subo|ref)_field>);

21. <i>-><(subo|ref)_field> = NULL;

}

...

}

The core routine kill <i> first gets a point to the object’s wrapper (Line
2). Then the object class mutex is locked (Line 3), the reference count is decre-
mented and if it is non-zero thereafter, the routine simply returns (Lines 4-6)
being careful to unlock the mutex. The routine also checks that the reference
count is not negative indicating this object is already free or killed (Lines 7-
8). Otherwise the routine proceeds with killing the object by removing it from
the use list (Lines 9-14), and decrementing the number of objects in use (Line
15). At this point the mutex can be unlocked (Line 16) and the routine fin-
ishes by killing every non-null pointer to a sub-object or reference (Lines 17-18
repeated), returning every memory bock to the system heap (Lines 19-20 re-
peated), returning the object’s wrapper to the system heap (Line 21).

1. void kill_<i>(<I> *<i>)

2. { _<I> *object = (_<I> *) (((char *) <i>) - <I>_Offset);

3. pthread_mutex_lock(&<I>_Mutex);
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4. if (--object->refcnt > 0)

5. { pthread_mutex_unlock(&<I>_Mutex);

6. return;

}

7. if (object->refcnt < 0)

8. fprintf(stderr,"Warning: Freeing previously released Array\n");

9. if (object->prev != NULL)

10. object->prev->next = object->next;

11. else

12. Use_<I>_List = object->next;

13. if (object->next != NULL)

14. object->next->prev = object->prev;

15. <I>_Inuse -= 1;

16. pthread_mutex_lock(&<I>_Mutex);

17. if (<i>-><(subo|ref)_field> != NULL)

18. Kill_<(subo|ref)_name>(<i>-><(subo|ref)_field>);

...

19. if (object-><size_name> != 0)

20. free(<i>-><block_field>);

...

21. free(((char *) <i>) - <I>_Offset);

}

The core reset routine reset <i> removes every object from the recycle list
and kills it (Lines 5-11). Each object is removed from the free list in Lines 6-8
and killed in Lines 9-11, by returning all of its memory blocks and the object
container to the heap. Note carefully that the code is locked by the object class
mutex (Lines 4 and 12).

1. void reset_<i>()

2. { _<I> *object;

3. <I> *<i>;

4. pthread_mutex_lock(&<I>_Mutex);

5. while (Free_<I>_List != NULL)

6. { object = Free_<I>_List;

7. Free_<I>_List = object->next;

8. <i> = &(object-><i>);

9. if (object-><size_name> != 0)

10. free(<i>-><block_field>);

...

11. free(object);

}

12. pthread_mutex_lock(&<I>_Mutex);

}

The core write routine write <i> first writes the string "<X>" to the output
(Line 2) and then writes the structure of the object (Line 3). Then it writes
each memory block (Lines 4-5) and sub-object (Lines 6-7) in the order in which
they are declared in the MANAGER specification line.
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1. void write_<i>(<I> *<i>, FILE *output)

2. { fwrite("<X>",<len(X)>,1,output);

3. fwrite(<i>,sizeof(<I>),1,output);

4. if (<i>_<size_name>(<i>) != 0)

5. fwrite(<i>-><block_field>,<i>_<size_name>(<i>),1,output);

...

6. if (<i>-><subo_field> != NULL)

7. Write_<subo_name>(<i>-><subo_field>,output);

...

}

The core read routine read <i> first reads a string of length equal to the
external class name and verifies that it is indeed the class name, returning NULL

if it is not (Lines 2-5). Then a new object is created with all memory blocks
initially unallocated (Line 6), NULL being returned if this fails. Then a copy of
the object record is made in read and each sub-object field is set to NULL so that
the kill in Line 20 works if the read needs to fail in what follows (Lines 8-9).
Next the top level structure is read (Line 10). Then it allocates and reads each
memory block of non-zero size (Lines 11-14), reads each non-NULL sub-object
(Line 15-17), and sets each reference field to NULL (Line 18) in the order in
which they are declared in the MANAGER specification line. All the allocations,
sub-object reads, and file reads are checked and if any fail, the code jumps to
error, the object is killed, and NULL is returned (Lines 20-22).

1. <I> *read_<i>(FILE *input)

2. { char name[<len(X>)];

3. fread(name,<len(X)>,1,input);

4. if (strncmp(name,"<X>",<len(X)>) != 0)

5. return (NULL);

6. <I> *obj = new_<i>(0 ... ,"Read_<X>");

7. if (obj == NULL) return (NULL);

8. <I> read = *obj;

9. obj-><subo_field> = NULL;

...

10. if (fread(obj,sizeof(<I>),1,input) == 0) goto error;

11. <i>-><block_field> = NULL;

12. if (<i>-><size_name>(obj) != 0)

13. { if (allocate_<i>_<block_field>(obj,<i>_<size_name>(obj),"Read_<X>")) goto error;

14. if (fread(obj-><block_field>,<i>_<size_name(obj),1,input) == 0) goto error;

}

...

15. if (read.<subo_field> != NULL)

16. { obj-><subo_field> = Read_<subo_name>(input);

17. if (obj-><subo_field> == NULL) goto error;

}

...
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18. obj-><ref_field> = NULL;

...

19. return (obj);

20. error:

21. kill_<i>(<I>);

22. return (NULL);

}
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