
Command Line Processing and

Guarded System Calls

Gene Myers

July 28, 2009

In the course of writing any complete Unix program in C one must use the
standard library and process command line arguments. In this appendix we
present a library of routines for these core functions in the module utilities.
It consists of a collection of routines that guard the return results of standard
library calls for memory allocation and file handling, and a collection of routines
to facilitate the processing of command line arguments.

1 Guarded System Calls

When writing a standard Unix pipe, a C programmer uses standard library rou-
tines such as malloc and fopen, for allocating memory, opening files, and other
system level functions. These routines can fail for a number of reasons in which
case one should detect and handle the failure. In interactive applications involv-
ing a GUI one should inform the user and recover. But for the common case
that one is building a batch-oriented UNIX command, we supply the routines
below that simply stop execution after reporting to stderr that an exception
occured in routine routine.

1. void *Guarded_Malloc(int size, char *routine);

A guarded version of malloc.

2. void *Guarded_Realloc(void *array, int size, char *routine);

A guarded version of realloc.

3. char *Guarded_Strdup(char *string, char *routine);

A guarded version of strdup.

4. FILE *Guarded_Fopen(char *file_name, char *options, char *routine);

A guarded version of fopen. On exception, report the name of the file.

1

2 Command Line Processing

All UNIX programs take arguments from the command line as an array argv of
argc strings. It becomes quite tedious to copy and retailor code for processing
the command line each time you write a new program. To alleviate this the core
library contains the routine Process Arguments that interprets the command
line arguments from a specification, where the specification can be a complex
pattern that also serves as the usage statement shown to a user of the program
in the event a user invokes the program improperly. Process Arguments stores
the results of its command-line interpretation in a permanent table so that
you can then get the value of any command-line argument at any time during
the subsequent computation of your program with a number of simple access
routines.

We assume that the reader is familiar with UNIX command line conventions
and syntax, but we quickly review the range of possibilities to set the stage. A
typical UNIX program takes a sequence of required arguments that must occur
in a given order and a number of optional arguments that begin with ‘-’ and
can occur any where in the command list. Some optional arguments can take
additional arguments which must immediately follow them, e.g. -f myfile,
and others serve simply as boolean indicators that we call pure options, e.g.
-catenate. In many cases a single letter is used for a boolean option and these
are called flags. The special feature of flags is that any number may be strung
together in a single argument, e.g. ps -axl. Often one can iterate or repeat
an argument, e.g. mv file1 file2 ... target. Finally, in some cases the
number and type of the arguments determine the nature of the interpretation.

Our design goal for this utility was to encompass as many of the features
and styles of command line interfaces and conventions as possible. To do this
required a quite flexible and powerful specification language whose semantics
are compicated enough that (a) it takes a bit of effort to understand, and (b)
you can create some pretty surprising patterns if you wish. Since designing it
I have not encountered a situation where I could not specify the command-line
syntax that I desired and I have created some rather interesting ones in less
than a couple of minutes of coding effort. I hope you find it useful too.

2.1 Units: Basic Matchable Items

Conceptually we consider a command-line specification to be a sequence of units
of one of three types. A required unit consists of a name and a type between
angle-brackets separated by a colon, e.g. <query:string>. The name can be
any string that is descriptive of the intended meaning of the argument, and
the type can be one of int, double, or string. On the command line, this
unit matches an argument of the given type and within your program you can
retrieve the matched value by its name. To further enhance expression, you
may actually give any descriptive string as a type, e.g. fasta, in which case the
type will be considered to be string.

An optional unit always begins with a ‘-’ and thereafter is a string that (a)

2

may have imbedded within it value templates that are one of the three types
between angle-brackets, e.g. -r<int>:<int>, and (b) may be followed by a se-
quence of value templates separated by white space, e.g. -range <int> <int>.
In the second example the optional unit will match three arguments on the com-
mand line and we say it has a span of 3, e.g. it will match -range 20 50 on the
command line, where -range, 20, and 50 are each an argument with respect to
the parsing of the command line into the array argv by the operating system.
The first example has a span of 1 and will, for example, match -r20:50 on the
command line. Note that one can obviously give ambiguous templates such as
-a<string>:<string> which can match -afoo:boo:too in two different ways.
We assume as the designer that you will avoid such ambiguous specifications.
Our software simply returns the first match it finds if more than one match is
possible.

An optional unit that consists of a single letter, e.g. -r, is a flag. As a special
shorthand, a ! followed by a sequence of letters is a flag unit that matches any
combination of the letters except the empty set, e.g. !axl denotes the flags -a,
-x, and -l, and it matches any combination such as -al, -x, and -lax.

Required units must be found on the command line in the order in which
they occur in the specification whereas optional and flag units may occur in any
order. Flags in a flag unit may also be set in separate command-line arguments.
For example, consider the specification:

!axl -r <int> -v:<int> <a:int> <b:string>

This specification matches any of the following sample command lines:

-lax -r 10 -v:20 30 i_match_b

30 -la -v:20 i_match_b -x -r 10

-xl 30 -r 10 -xa -v:20 i_match_b

All three command lines match the specification with the same values and are
equivalent in every way. Note that for the option -r that has a span of 2,
the option can appear anywhere but its follow-on argument must always occur
immediately after it, that is, the components of an option with a span of more
than one must occur consecutively and in order on the command line. The

3

following grammar gives a formal definition of units and their syntax:

<unit> ← <required> | <optional> | <flag>

<required> ← <named>

<optional> ← <dash>(<value><text>)*<value>?(<white><value>)*

<flag> ← <list>

<named> ← ‘<’<name>‘:’<type>‘>’

<dash> ← ‘-’<text>

<list> ← ‘!’<text>

<text> ← any string not containing ‘(’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, ‘|’, ‘@,
‘’’, or ‘...’ save those escaped by ’ (right quote)

<value> ← ‘<’<type>‘>’

<white> ← any string of spaces, tabs, or new-lines

<name> ← any string not containing ‘:’

<type> ← ‘int’ | ‘double’ | ‘string’ | any string not containing ‘>’
The restriction on the characters that can occur in a <text> item will become
apparent momentarily when the special meaning of the restricted characters is
introduced.

2.2 Specifications

A specification is actually not a sequence of unit definitions, but a regular ex-
pression of the atoms: <named>, <dash>, <list>, <text>, <value>, and
<white> introduced in the grammar for units in the previous section. These
atoms may be combined with the operators: | for alternation, juxtaposition for
concatenation, surrounding square brackets [] for optional, and ... as a unary
suffix operator for 1-or-more repetition. Specifically, the grammar defining a
specification is as follows:

<specification> → <or>

<or> → <con> (‘|’ <con>)*

<con> → <rep> <rep> *

<rep> → <fact> ‘...’

<fact> → ‘(’ <or> ‘)’ | ‘[’ <or> ‘]’ | ‘{’ <or> ‘}’ | <atom>

<atom> → <named> | <dash> | <list> | <text> | <value> | <white>

We’ll defer giving an explanation of the meaning of curly braces until the next
subsection. As an example consider:

[-matrix <string>] [-thresh’(<int>’)] <query:fasta> <target:fasta> ...

In this case the options -matrix and -thresh are optional, and the required
argument target can be repeated. Note that the parentheses need to be escaped

4

for the option -thresh, which will match, for example, -thresh(40) on the
command line. As a more powerful example consider:

[!Ccu] <1:string> | [!CuU] -s <1:string> <2:string>

This specification allows the command line to have one or two required argu-
ments and different flags available depending on whether or not the -s flag is
set. For example,

foo foo boo

-s foo boo -s foo

-uc foo -U foo

-Us foo boo -cs foo boo

all the command lines at left match the specification, whereas all those on the
right do not.

Because a specification is over atoms as opposed to units, one can write quite
complex patterns. For example, for a program that displays alignments between
pairs of potentially clipped DNA sequences, one might use the specification
-a[c[:<file>]] that matches either the flag -a, the pure option -ac, or the
option -ac:<file>. The meaning in this example, is that if -a is set then one is
requesting to see the alignments between sequence pairs. If -ac is set then one
wishes to see the alignments of the clipped sequences where a default clipping is
used. And lastly, if -ac:<file> is given then one wishes to see the alignments
of the sequences clipped according to coordinates given in <file>. What is
aesthetic here is giving the file makes no sense without the clipping option set,
and giving the clipping option makes no sense unless the user wishes to view
the alignments.

As another exmaple, -a(i <int>|d <double>) can match -ai <int>, or
-ad <double>. But not every regular expression of atoms is necesarily mean-
ingful as it may match a sequence of atoms that cannot be interpreted as a
sequence of units. For example, -a(i <int>|d <double>)x is not valid be-
cause -ai <int>x is not a unit. Formally, we say that a specification is valid if
and only if:

Every sequence of atoms matched by the specification can be parsed
as a sequence of white-space separated units.

The routine Process Arguments checks a specification to make sure that it is
valid and issues a hopefully meaningful error if not.

We also place some restrictions on the nature of repetitions. Although none
of these is absolutely necessary, the restrictions do little to limit your expressive
power yet make specifications easier to understand and process. Specifically,

Repetitions (a) cannot contain a fractional part of a unit, (b) cannot
contain flags or pure options, and (c) cannot nest.

5

As an example of (a), [-a(b -c)...d] is actually valid (-ab, -cb, and -cd

are all units), but it is difficult to see this at first, and one could just as well
have written [-ab [-bc...] -cd] where units are wholly contained within
repetitions. With regard to restriction (b), there is no value in being able to
repeat a pure option or flag: once it is set, it is redundant to set it again. Finally,
as we will see shortly, in order to access the value of an option or required unit
within a repetition you have to specify from which iteration you want the value.
Nesting complicates the indexing of values and I’ve yet to see a program that
employs it. Moreover, very few specifications involving nested repetitions are
unambiguous.

If a specification matches a command line in more than one way, but one
match involves more required unit matches to integers and doubles, than that
match is taken as it is more specific than one that uses string matches. For
example (<s:string> | <b:int> <e:int>)... matches foo 1 2 3 4 boo

in five ways, but there is only one match involving four numbers, namely, s
matching foo and boo, b matching 1 and 3, and e matching 2 and 4. As a
designer, you should strive to create specifications that always have a unique,
most-specific match to any given command line possibility. If a specification does
have two or more equally specific matches, then Process Arguments simply uses
the first of these that it finds and prints a warning message.

2.3 Synonyms and Default Values

Curly braces, {}, can be used within the textual part of an option to create
synonymous option names. For example -{m|matrix} specifies an option whose
name is either -m or -matrix, where the value of having two names for the same
thing is that the user can type in either at the command line, but you can choose
one name to access the value throughout your program. Note in this example,
that one form, -m is a flag and can be set as such, e.g. -xmu where -x and -u are
presumed to be other flags. We expect that the most typical use of this feature
is to introduce long and short forms of options as is conventional in a number
of popular UNIX programs.

Curly braces are restricted to enclosing just the non-value parts of an option
specification as they don’t make sense anywhere else. But you can still get quite
tricky if you’d like, for example, -{c|circle[cent(er|re)]} establishes -c,
-circle, -circle center, and -circle centre as synonyms.

A final specification convenience is that one can declare a default value for a
given option value by placing the value in parenthesis after the type indication.
For example, -matrix <file(PAM120)>, declares that the default scoring ma-
trix will come from the file PAM120 if the option is not matched on the command
line. As a more complex example, -center’(<int(0)>,<int(0)>’), declares
the default value(s) of -center to be (0,0). To recapitulate, the default value
is the value returned when one requests a value for an option that has not been
matched on the command line.

6

2.4 Looking Up Argument Values

We now turn to how one gets values from the command line once Process Arguments

has matched the command line arguments to the specification. Matters are com-
plicated by (a) the presence of union and option which mean that a particular
unit may or may not be matched in an overall command-line match to the spec-
ification, (b) the fact that an option can have multiple values, and (c) the fact
that units in loops can be matched multiple times.

But first a more basic question: what is the name of a unit? For a required
unit, you reference it by the name you gave in the first half of the angle-bracket
item defining it, e.g. the name of <query:string> is “query”. For a flag unit,
the name is a dash followed by the flag symbol in question, e.g. “-a”. For an
option, the name is obtained by (a) replacing each value with an ‘@’-sign, (b)
compressing any white space to a single blank, and (c) removing any escaping
quotes. For example, the name of -mat <int> is “-mat @”, and the name of
-def<string>’(<int>’) is “-def@(@)”. Since you designed the specification,
you know the set of all possible unit names. So if a prefix of a name unam-
biguously identifies a given unit then you may also use the prefix as the name
argument in the access routines. For example, if “-def” or “-mat” uniquely
identify the option examples above, then they can be used instead, thus avoid-
ing the somewhat cumbersome syntax of the full option name. In looking up
a name, a complete match is taken over a prefix match in the event that a
given name happens to be a prefix of another. For example, if one had a flag
-m and an option -mango, then the name “-m” refers to the flag and not the
option. Moreover, if two prefix matches are synonyms of each other, there is no
ambiguity since they identify the same option value(s).

There is an access routine for each type of value: Get Int Arg, Get Double Arg,
and Get String Arg. Each takes the name of a unit, and optionally the iter-
ation of the unit desired if it is in a repetition, and optionally the index of
the value desired if the unit is a multi-value option. For example, consider the
specification:

[!abc] [-r <double> [<double>]] ...

<db:string> (<list:string> | <beg:int> <end:int>) ...

and the command line:

<program> -ac data file1 5 6 7 8 file2 -r 1. 2. -r 3.

The call Get String Arg("db") returns “data”. Flags and pure options are
considered to be 0/1 integers, so the call Get Int Arg("-b") returns 0. Some
of the required arguments are in a repetition and in each iteration either a string
(list) is matched or a pair of integers (beg and end) are matched. In our sam-
ple command-line, the most specific match matches list to file1 and file2 in
the first and fourth iteration of the repetition, and beg,end to 5,6 and 7,8 in the
second and third iterations. So the call Get String Arg("list",4) would re-
turn file2. Similarly, 7 is returned by the call Get String Arg("beg",3). The

7

second value of the first match to the loop containing the option -r is returned
by the call Get Double Arg("-r @ @",1,2). Similarly, the first value, 3., in
the second match to the option is returned by the call Get Double Arg("-r

@",2). Note, in these last examples that one has to use the full option name
including @-signs in order to unambiguously specify the unit, and that one in-
cludes or does not include an option argument strictly on the bases of whether
or not the unit is in a repetition and whether or not the unit has multiple values.

The example above also serves to illustrate that you need to be able to ask
how many times a loop has been repeated and whether or not a particular item
has been matched, e.g. how does one know that there were two matches to the
-r option, and that the second match has one value as opposed to two ("-r @"

versus "-r @ @")? Get Repeat Count(name) returns 0 if the unit was not in
a repetition that was used to match the comand line, and otherwise it returns
the number of times that repetition was repeated in order to make the match.
For example, Get Repeat Count("beg") would return 4 above even though beg

itself is only matched in the second and third iterations. Indeed, the call would
return 4 even if list was matched in all four iterations – all that matters is that
the loop containing the unit was traversed four times to make the match. To
determine things like whether or not list was matched in the third loop iter-
ation versus beg and end, we supply the routine Is Arg Matched(name[,no])

which returns a non-zero value only if the named unit was matched (in the noth

iteration if the unit is in a repetition). As an example, Is Arg Matched("-r

@",1) returns 0, where as Is Arg Matched("-r @ @",1) returns 1.
We conclude with some subtleties that would have overburdened the descrip-

tions above. First note that we have been very careful in our language about
when a unit is in a loop: for the specification — <a:int> | (-r <a:int>)...

— “a” may or may not be in a repetition in a given command-line match de-
pending on whether or not the -r option is present. Second, even if an option
has a default for every value in it, Is Arg Matched returns a non-zero value only
if the option was matched in the command line. However, calling the appropri-
ate Get-routine on a given option will return the default value regardless of its
match status.

2.5 The Programming Interface

We conclude with a description of the routines in the library that process the
command line and return argument values to the user.

1. void Process_Arguments(int argc, char *argv[], char *spec[], int no_escapes);

This should be one of the very first if not the first call in the main routine
of the program. The argc arguments in argv from the command line
are parsed and interpreted according to spec. Rather than giving the
specification as a single string, one gives it as an array of strings whose
last element is NULL and where the concatenation of the strings in the

8

array is the specification. The reason for this is to allow you to control
exactly what the usage statement will look like, as each string will be
output as a line of the specification, offset by the program name. For
example, consider the specification:

static char *Spec[] = { "[-m <int>] [!xyz] [-c’(<int>’)]",

" <arg1:int> <arg2:int>",

NULL;

};

and suppose that the compiled program is called, say my program. Then
the usage statement that will be printed by Print Argument Usage (see
below) is:

Usage: my_program [-m <int>] [-xyz] [-c’(<int>’)]

<arg1:int> <arg2:int>

provided that the argument no escapes is zero. Otherwise, the escaping
quotes before the parens in the option -c will not be printed.

Note carefully that the routine catches two classes of errors – those made
by the programmer and those made by the user. The author of the pro-
gram should be certain to thoroughly debug the specification and the
access calls so that the only errors a user sees are those due to their giving
the program invalid input on the command line. Messages to the user
always begin with the program name and messages to the implementor
always begin with “Error in <routine name>:”. Messages to the user
always end with a usage statement for the program, thus the necessity of
having no escapes as a parameter to Process Arguments.

Once the arguments have been processed by this routine, all the following
routines can be used to fetch information at any time.

2. char *Program_Name();

Return a pointer to the name of the program.

3. int Get_Repeat_Count(char *name);

Return 0 if the named unit is not in a repetition or if the repetition it
is in was not used in making the match to the command line. Otherwise
return the number of times the repetition containing the named unit was
iterated to match the command line. Note carefully that the name should
not contain any escaping quotes that might have been necessary in the
specification.

4. int Is_Arg_Matched(char *name [, int no]);

For a given unit name, return non-zero if the unit instance has been
matched.

9

5. int Get_Int_Arg(char *name [, int no] [, int an]);

Return the (integer) value of the argument whose name is name. If the
argument is in a repetition then you must supply the parameter no, and
the routine returns the noth instance. If the argument is one of several
in a multi-value option, then you must also supply the parameter an, and
the routine returns the anth value in the option.

6. double Get_Double_Arg(char *name [, int no] [, int an]);

Exactly like Get Int Arg save that the returned value is double.

7. char *Get_String_Arg(char *name [, int no] [, int an]);

Exactly like Get Int Arg save that the returned value is string.

8. void Print_Argument_Usage(FILE *file, int no_escapes);

Print a usage message for the program to stream file. The message is
taken directly from the specification as discussed under the description of
Process Arguments. If the argument no escapes is non-zero then any
escape characters are removed from the display of the specification.

10

