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Abstract Single-molecule localization fluorescence microscopy constructs super-resolution images by sequential
imaging and computational localization of sparsely activated fluorophores. Accurate and efficient fluorophore

localization algorithms are key to the success of this computational microscopymethod. We present a novel localization

algorithm based on deep learning which significantly improves upon the state of the art. Our contributions are a novel

network architecture for simultaneous detection and localization, and new loss function which phrases detection

and localization as a Bayesian inference problem, and thus allows the network to provide uncertainty-estimates. In

contrast to standard methods which independently process imaging frames, our network architecture uses temporal

context from multiple sequentially imaged frames to detect and localize molecules. We demonstrate the power

of our method across a variety of datasets, imaging modalities, signal to noise ratios, and fluorophore densities.

While existing localization algorithms can achieve optimal localization accuracy at low fluorophore densities, they are

confounded by high densities. Our method is the first deep-learning based approach which achieves state-of-the-art

on the SMLM2016 challenge. It achieves the best scores on 12 out of 12 data-sets when comparing both detection

accuracy and precision, and excels at high densities. Finally, we investigate how unsupervised learning can be used to

make the network robust against mismatch between simulated and real data. The lessons learned here are more

generally relevant for the training of deep networks to solve challenging Bayesian inverse problems on spatially

extended domains in biology and physics.
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Introduction
Super-resolution microscopy techniques such as stochastic optical reconstruction microscopy (STORM) [1] and photo-

activated localization microscopy (PALM) [2] have made it possible to observe biological structures and processes

that where not accessible through optical microscopy due to the Abbe diffraction limit. These techniques, commonly

referred to as Single Molecule Localization Microscopy (SMLM), critically rely on computational methods for accurately

localizing sparsely activated fluorophores [3] (Fig. 1a). State-of-the-art localization algorithms typically operate in two

steps: first, single fluorophore candidates are detected and extracted from the images, and second, fluorophores are

localized by fitting a high resolution “generative”model of the point-spread function (PSF) to the image. To deal with

overlapping fluorophores, peaks are either rejected based on a statistical test for the presence of multiple fluorophores

(single emitter fitting [4–6]), or emitters are added throughout the fitting procedure until a predetermined threshold

for the goodness of fit is met (multi-emitter fitting [7–9]). More recently, deep learning approaches have been used to

perform the localization step [10, 11].

This general approach can be highly effective under favourable conditions of high SNR and low fluorophore density

[12]. However, even multi-emitter approaches produce sub-par results in datasets with high fluorophore densities. As

was noted in a systematic comparison of multiple algorithms on public benchmark data-sets (SMLM2016) [13], they

perform even worse than single-emitter algorithms for 3D data. These limitations imply that current fitting-based

approaches to SMLM can not be applied to experiments with high emitter densities, which would be critical for the

investigation of living or moving structures. Furthermore, most previous algorithms base their predictions on a single

observed image. Thus, they ignore potentially useful information in the sequence of imaging frames which can enable

detecting and separating fluorophores in crowded high density data by taking into account their temporal dynamics.

Nevertheless, attempts at using information from multiple images during inference are rare [14, 15], and have not yet

yielded state-of-the-art performance.

Deep learning methods have revolutionized computer vision, and biological image analysis is no different [16–19].

Many of these advances are the result of the supervised training of deep neural networks using large training datasets

of pairs of example input images and desired output predictions. While the analysis of SMLM data is not a standard

supervised learning problem, ground truth localization data for training a deep network can be generated by simulating

the imaging of fluorophores. The two first applications of deep learning to SMLM, DeepSTORM3D [20] and DeepLoco

[21] took this approach and used simulated synthetic SMLM to train deep networks to localize single molecules, an

approach we call “simulator learning” (SL) [22] in this paper. These two deep learning methods differ in the output

representation used by the networks. DeepSTORM3D directly predicts a high resolution 3D volume which has the

advantage of simplicity but the disadvantage that increasing the resolution of the predictions requires increasing

the computation. In contrast, DeepLoco predicts continuous localizations for a fixed number of particles, and has

the advantage that its computational complexity scales with the maximum number of possible particles, rather than

size of the volume predicted. While both approaches produce detection uncertainty, neither predicts localization

uncertainty.

We present a new method for fast, efficient, and accurate single-molecule localization based on a new deep

neural network architecture we call DECODE (DEep COntext DEpendent) which achieves state of the art performance.

DECODE also uses simulator learning, but is based on three main innovations: First, we introduce a novel network

architecture which uses temporal context for inferring fluorophore locations. This single DECODE network is trained

to produce accurate predictions at both low and high densities, alleviating the need for analysis methods which

deal with these ‘single emitter’ and ‘multi emitter’ cases separately. Second, we phrase localization as a Bayesian

inference problem, and provide a novel cost-function which makes it possible for the DECODE network to also predict

uncertainty-estimates for each localized fluorophore. These uncertainty-estimators can, for example, be used for

post-processing algorithms. Third, simulator learning depends on the faithfulness of the generative model, and might

show reduced performance when there is a mismatch between the simulated and experimental data. We provide

an alternative training approach, Combined Learning (CL) which combines Simulator Learning and Variational Auto

Encoder learning (AEL) [23, 24], and evaluate its performance on simulated data.

We apply DECODE to data-sets from the public SMLM 2016 challenge [13], and show that it outperforms all existing

methods which have been evaluated on this challenge so far, on 12 out of 12 data-sets for which DECODE is applicable

[13]. Our DECODE method leads to a improvement in performance which is 7× as big as the improvement of the
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Figure 1. Source reconstruction for Single-Molecule Localization Microscopy (SMLM): a) Fluorophores are stochastically
activated and recorded using fluorescence microscopy. A localization algorithm infers the underlying sources from noisy and blurred

imaging measurements. Rendering methods turn inferred sources into an estimate of the underlying structure. b) Classical
image-processing algorithms for SMLM source localization (such as CSpline [7]) are based on a two-step approach (detect/localize),

whereas our approach (DECODE) uses a neural network for simultaneous detection and localization. c) DECODE network for
simultaneous detection and localization of fluorophores. Hidden features are extracted from each consecutive imaging frame by the

first stage of the network by the frame analysis module. These frame specific features are integrated by a temporal context module
leading to a prediction of 8 output maps: a binary map of fluorophore detections pt , a map predicting the brightness of the

corresponding detected fluorophore αt , three maps of the three spatial coordinates of the detected fluorophore , relative to the to

the center of the detected pixel,∆xt , ∆yt , ∆zt , and three maps of the associated uncertainties (standard deviations) σxt ,σyt ,σzt .

second best algorithm over the third best algorithm. Performance benefits are particular pronounced on high-density

data-sets, on where the advantage from using DECODE increases to 10× over the next best method . We also apply
DECODE to four datasets where the same sample of labeled Tubulin-A647 protein was imaged with different densities

of fluorophore activation, and demonstrate that we achieve high quality reconstructions with 10x less imaging time

by accurately localizing fluorophores at high densities. To demonstrate the flexibility of our approach, we adapted

it to reconstructing a large 3D volume of an entire COS7 cell with intracellular membranes densely labeled using

PAINT, and imaged by lattice light sheet microscopy, imaged over several days. Our method significantly improved the

reconstructions, but also enabled high quality reconstructions with only a fraction of the imaging time. Finally, we

explore the performance benefits brought about by the use of local context, and the different training approaches.

Results
DECODE network for simultaneous detection and localization of fluorophores
We designed and trained a deep neural network to simultaneously detect and localize fluorophores in SMLM measure-

ments. The input to the deep network is a sequence of image frames containing sparsely activated fluorophores, and

the desired outputs are locations of an unknown number of active fluorophores in each frame.
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Deep network design for predicting detection, localization, and uncertainty using spatial and temporal

context

Previous deep learning approaches to SMLM have processed each frame independently, using one of two approaches,

which we combine in our work. DeepSTORM3D [20] produces predictions on a super-resolved 3D voxel grid. For

each super-resolution voxel, a detection probability is predicted for the presence of a fluorophore. DeepLoco [21]

combines classification and regression by predicting a fixed sized 256× 4matrix for each imaging frame, with each

row representing the presence or absence of a fluorophore, followed by the 3D vector containing the x , y and z

coordinate of the molecule. This has the advantage that the computational complexity of the output scales only

with the maximum number of possible active fluorophores in any frame, but not the volume of imaged field of view.

However, it requires the network to learn a highly non-local and non-linear transformation from images into 3D

coordinates in an undetermined ordering.

The DECODE network architecture is a hybrid of these two approaches: for each image frame it predicts eight

channels for each imaged pixel (Fig. 1c). The first two channels indicate the detection probability of a fluorophore

near that pixel in an imaging frame p and its brightness α. The next three channels describe the continuous valued

localization of the fluorophore with respect to the center of the pixel, ∆x , ∆y , ∆z . This hybrid approach allows

DECODE to scale only with the number of imaged pixels (not super-resolution-pixels), and avoids a highly nonlinear

and non-local mapping of pixels to coordinates.

DECODE is the first approach to provide fully probabilistic prediction of both fluorophore detection and localization.

In addition to the first 5 output channels, three further channels estimate the uncertainty of the localization along each

coordinate given by σx , σy , σz . A final channel represents the uncertainty in the DECODE prediction of the brightness

σα. Thus DECODE directly predicts and independently represents uncertainty about detection, localization, and particle

brightness.

Using temporal context

We introduce a new mechanism to integrate information across frames, and show that it leads to improved detection

and localization. The temporal dynamics of the fluorophores are such that a fluorophore can be active across multiple

adjacent frames, inducing correlations which are local in time. We designed the DECODE network architecture (Fig.

1c) to infer the hidden states from three consecutive images and then use the combined information for the final

localization. Using context has a substantial positive impact on performance.

Training the DECODE network using simulator learning

We want to train the parameters of the DECODE network to simultaneously detect and localize fluorophore particles

from images of sparsely activated fluorophores. As ground truth particle localizations are not easily available for real

data, we can not directly use supervised learning. However, the forward image formation model of how a given set

of fluorophores gives rise to the detected image is well understood. To detect and localize active fluorophores, we

need to train a neural network to invert this forward model. We investigate two different approaches for training the

DECODE network to do this: The first method simulates data from our forward model and uses the simulated data to

train the deep network using supervised learning [22, 25, 26]. We call this method “simulator learning” (SL, Fig. 5a).

The advantage of the method is its simplicity. However, its accuracy depends crucially on the quality of the simulation

and how well it matches the dataset being analyzed. We will describe a second method (called “auto encoder learning”,

AEL, Fig. 5a) below.

Simulator learning has been used by previous deep learning approaches to SMLM [20, 21]. Since the physics

describing how the camera image is generated by the imaging of a biological sample is well understood [27], we can

use a simulation of biological samples consisting of point source emitters representing active fluorophores distributed

randomly across a small image patch. We then model the forward generative process of image formation as follows:

We simulate the noise- and background-free image of the fluorophores by convolving the point emitters with a model

of the point spread function. A random homogeneous background intensity is added to generate a mean intensity

image, and finally the noisy measured camera image is then simulated by sampling from a gamma distribution. The

density, brightness, activation and inactivation times of the simulated fluorophores, and the background intensity

values are chosen randomly to generate a large diversity of simulated images.

We developed a specialized loss function for our representation of the final localizations by the discrete pixel
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positions and the in-pixel offset variables. We interpret the binary values p as the probability that an activation exists

in that pixel while the outputs α, ∆x , ∆y , ∆z ,σα,σx ,σy ,σz parametrize Gaussians which are components of a Gaussian

mixture model (GMM) which describes the spatial distribution of emitter activations. We then maximize the likelihood

of the simulated continuous ground truth positions under this GMM. This allows us to optimize all the output variables

jointly and to obtain uncertainty estimates which can be used to filter out localizations or to convolve the localizations

with a Gaussian parametrized by the uncertainty for improved rendering [28]. To determine the correctness of our

uncertainty estimates we compared them to parametric estimates of the Cramér–Rao bound obtained with the

equation from [29]. Such estimates generally only take the brightness, the background and the PSF shape into account

but not other important factors that increase uncertainty like other close-by PSFs or inhomogeneous background. We

observe that under optimal conditions, with a single emitter per frame and a Gaussian PSF, our uncertainty estimates

agree well with the parametric estimates. For denser data our method generally produces higher uncertainties, except

when temporal context is used (see Fig. S4).

Quantitative evaluation on simulated datasets from the SMLM challenge show DECODE outper-
forming all algorithms across a variety of conditions
The 2016 SMLM challenge

1
is the second generation comprehensive benchmark evaluation developed for the

objective, quantitative evaluations of the plethora of available localization algorithms [13, 30]. The benchmark offers

synthetic datasets for training and evaluation that were created to emulate various experimental conditions. A direct

comparison of DECODE with other contenders (Fig. 2) in the SMLM 2016 challenge shows DECODE outperforming

other approaches across datasets
2
. DECODE outperforms all 39 currently ranked algorithms on 12 out of 12 datasets,

and often by a substantial margin. The datasets include high (N1) and low (N2) signal to noise ratios (SNR), with low

(LD) or high (HD) emitter densities, with 2D, Astigmatism (AS) and Double Helix (DH) point spread function based

imaging modalities Fig. 2. We quantified performance using RMSE lateral or volume localization error, as applicable

for 2D and 3D data respectively, and the Jaccard index JI which measures single molecule detection accuracy. The

SMLM 2016 benchmark also reports a single score which combines particle localization and detection accuracy into a

measure called efficiency.

DECODE achieves an average efficiency score of 66.61 out of the best possible score of 100 (achievable only by a

hypothetical algorithm that accurately detects 100% particles with 0 nm localization error). This is compared to an

average score 48.3, and 45.6 for all non-DECODE second and third place algorithms respectively. The improvement in

performance by using DECODE is substantial, leading to 7 × the accuracy improvement gained by using the second
best algorithm over the third best algorithm. The difference is particularly large under difficult imaging conditions,

when high emitter densities and low SNR can conspire to make detection and localization challenging, particularly

so for the double helix point spread function. For example, in the Low SNR/high density/Double Helix condition,

DECODE achieves an efficiency score of 44.23, whereas no other algorithms achieves a non-negative efficiency score.

DECODE achieves an average efficiency of 57.29 on the six challenging high density datasets, while the average second

best and third best algorithms achieve only scores of 30.76 and 27.16 respectively. This represents an average 10

× improvement relative to the improvement by the second best algorithm over the third best algorithm on these
challenging datasets.

DECODE is the best algorithm on all 12 datasets, across a variety of imaging modalities, SNR and density conditions.

In contrast no other algorithm previously achieved such universal superiority, instead specializing on a limited range

of imaging conditions. Qualitatively, DECODE improves super-resolution reconstructions by improving both the

detection and the localization of single molecules. An example of this can be seen in Fig. 2a, where we compare

the reconstructions obtained with DECODE to the multi-emitter fitting approach CSpline [7] on two 3D double-helix

datasets with high fluorophore densities
3
. DECODE detects more fluorophores, and localizes them more accurately

than CSpline for this dataset.

1
http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=datasets

2
Note that currently not all of our results are displayed in the plots on website, but all results can be downloaded from

http://bigwww.epfl.ch/smlm/challenge2016/leaderboard.csv. Our results uploaded January 16 2020, results are current as of July 06 2020.

3
We used settings provided by the authors: https://github.com/ZhuangLab/storm-analysis
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DECODE enables accurate reconstructions with shorter imaging times at high emitter densities
In SMLM, there is a trade-off between the imaging time and the activated fluorophore density. Sparsely activating

fluorophores leads to the best localization accuracy, but requires long imaging times in order to localize sufficient

numbers of particles to reconstruct the sample faithfully. By enabling accurate particle localizations at higher densities,

DECODE can yield accurate super-resolution reconstructions with significantly shorter imaging times. We demonstrate

this by imaging and reconstructing the same sample of labeled microtubules at four different emitter densities using

dSTORM (direct stochastic optical reconstruction microscopy) [31]. For the first dataset the experimental conditions

roughly correspond to high SNR and low density settings modelled in the challenge, with an average upper limit of

emitter density of 0.14 fluorophores µm−2
per image

1
. The other three datasets consisted of 2.5 ×, 4.5 × and 12 ×

fewer imaging frames, while the total number of active fluorophores is roughly constant across datasets.

We trained and applied one common DECODE model to all four datasets (Fig. 3 a: reconstruction on subsection of

low density dataset). We compared DECODE reconstructions with those of CSpline across all four data sets (Fig. 3 b) to

investigate how the quality of reconstruction deteriorates for denser datasets. Similarly to the simulated challenge

datasets we observe a sharper image and less spurious localizations for the original low density dataset. As the density

increases, DECODE consistently yields reconstructions with similar accuracy, while the reconstructions produced by

CSpline degrade for high densities.

To quantify the reconstruction performance across the different conditions, we calculated the resolution of the

reconstructed image using Fourier Ring Correlation (FRC) [32]. The FRC estimates resolution by measuring the

correlation of two different reconstructions of the same image across spatial frequencies. We split the localizations

ordered in time into blocks of 10000 and created two different reconstructions of the same sample coming from even

and odd blocks. We then used the spatial frequency at which the correlation drops below a threshold value of 0.143

[33] to estimate the resolution of the reconstruction. DECODE consistently improves resolution by 10 nm - 25 nm over

CSpline across all imaging densities (Fig. 3c and d), and requires 10× fewer imaging frames for the same quality of
reconstruction.

1
Measured by dividing the DECODE predictions into 1 /µm−2

bins and calculating the 99 percentile of densities.

7 of 23



DECODE enables high fidelity reconstructions of 3D lattice light sheet PAINT imaging with reduced
imaging time
To illustrate the general applicability of DECODE, we applied it to 3D lattice light sheet (LLS) microscopy combined with

the PAINT (point accumulation for imaging of nanoscale topography labeling) technique [34, 35]. In PAINT microscopy,

the fluorophore labeling a sample stochastically binds and unbinds from the sample, providing dense labeling. In

lattice light sheet microscopy, thick volumes can be imaged at high resolution by scanning a thin (1.1um) light sheet,

with axial localization within the sheet enabled by astigmatism. We reconstructed a previously reported dataset of a

chemically fixed COS-7 cell with intracellular membranes preferentially labeled by azepanyl-rhodamine (AzepRh) [36]

consisting of 147, 500 3D volumes comprising more than 20 million 2D images acquired in 270nm steps.

For this dataset, one complete scan of the volume involved moving the probe 141 times by 500nm. The detection

axis was oblique to the coverslip, resulting in emitters that are active in successive frames, and thus appear to move in

the x- and z-direction by a fixed distance. We adjusted our algorithm to account for this movement, so that we could

still employ local context. Furthermore, we used a modified noise model, as the images were made with a sCMOS

camera (see methods for details).

We compare our reconstructions to the original reconstructions described in [36] which used a custom-made

iterative MLE fitter with a parametric PSF model [36]. DECODE detects 1.25 billion particles, compared to 400million

particles detected by the original algorithm. While LLS-PAINT microscopy yields high resolution reconstructions over

large 3D volumes, its usability is limited by the long imaging times required to localize a sufficient numbers of particles

for reconstruction. For example, the dataset we analyzed was obtained in over 3 days of imaging time. We show that

DECODE provides sharper images using a smaller number of frames, and could thus be used to obtain the same

quality of reconstructions using only a fraction of recorded frames which is confirmed by FRC resolution estimates (Fig.

4, S5). We note that one challenge of long imaging times is that performance can be limited by nonlinear swelling of

the sample over the time course of the imaging, which can only be partially corrected by non-rigid registration. Thus,

reducing imaging time by improved reconstruction algorithms could also lead to better reconstructions with fewer

artifacts.

Combining simulator learning with auto encoder learning to learn to simulate better
The effectiveness of simulator learning depends on the availability of an accurate forward generative model at training

time, as deviations of the true forward model from the simulated forward model can degrade performance. This

problem can be solved by simultaneously estimating the parameters of the true forward model, and training the

DECODE network using the real measurements, rather than a fictitious simulation. This is possible using the recently

developed framework of variational autoencoders (VAEs) [23, 24]. In the VAE framework, the stochastic forward

generative model and the DECODE network are stacked to form a stochastic autoencoder. This autoencoder is

then used to simultaneously optimize the parameters of the deep network and the forward model, with the goal of

achieving image-reconstructions which are similar to the original measurement.

Formally, this can be achieved by maximizing a so-called ‘evidence-lower bound’ via stochastic gradient optimization

(see methods for details). VAEs have, e.g., previously been used on the related problem of inferring action potentials

from calcium imaging data [37]. A drawback of VAE-based approaches are that gradients for training the DECODE

network need to be approximated using Monte Carlo sampling, which can make optimization more challenging.

Simulator learning and autoencoder learning are two sides of the same autoencoder coin, as can seen by comparing

Fig 4a to Fig 4b: In simulator learning, a known PSF is used to transform (encode) simulated emitter locations into

a microscope image, and the DECODE network is used to recover (decode) the original simulated emitter locations.

The network is optimized to minimze the discrepancy-measure computed by comparing simulated and inferred

localizations.

In what we call autoencoder learning (due to the relationship to VAEs) the image measured by the microscope is

stochastically transformed (encoded) by the DECODE network into predicted emitter locations, and these predicted

emitters are then transformed (decoded) by the estimated PSF back into a reconstruction of the measured image.

The objective function used to train the DECODE network is the difference between the measured and reconstructed

images. Because AEL relies on autoencoding the real measured data, it enables learning of both the encoder (DECODE

network) and the decoder (PSF). In contrast, SL only allows training of the decoder (DECODE network). Empirically, we

found that combining SL and AEL in a manner we call combined learning (CL) often leads to the best performance.
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Figure 4. DECODE resolves structural details with only 10 % of frames in LLS-PAINT dataset. a) COS-7 cell imaged with
LLS-PAINT microscopy. Viewing angle lies perpendicular to the specimen. b)Magnified reconstructions of boxed sections in panel a.
First row: DECODE renderings on all 147,500 recorded volumes. Below: Renderings of DECODE and those provided by Legant et al.

[36] from 10 % of the available volumes. 1: DECODE resolves the hollow structure of endosomes more clearly. 2: DECODE avoids
distortions of structures around fiducials. 3: Mitochondrial substructures (like the cristae in yellow) are better resolved. 4: DECODE
can help to distinguish whether ER tubules are continuous or broken.
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To highlight the difference between simulator and autoencoder learning we show how the two approaches behave

for different degrees of mismatch in the assumed point spread function. To simulate PSF mismatch we generated

datasets using a 2D elliptical Gaussian PSF with increasing ellipticity and then trained DECODE models that use a

non-elliptical circular Gaussian (Left panel Fig. 5e, solid lines show performance of models with fixed generative

parameters). For an ellipticity of zero the models have access to the true underlying generative model. In this case SL

training sets an upper bound to the achievable performance with a given network as it is able to generate an infinite

amount of labelled data with the correct simulation parameters, and so outperforms AEL. However, pure simulator

learning is brittle and more sensitive to parameter mismatch as the DECODE network never ‘sees’ elliptical PSFs during

training. Autoencoder learning can still try to infer the correct positions as placing the circular PSF into the middle of

the elliptic one achieves the best reconstruction. Alternating between the two methods retains the advantages of

both: Performance is virtually the same as simulator learning when there is no mismatch and performance degrades

more gracefully when the mismatch is increased. When we add training of the generative model parameters (dashed

lines), our PSF model learns to account for some of the PSF-mismatch, which further improves performance.

To test these findings in a more realistic setting, we trained DECODE methods using simulator and combined

learning and submitted them to the SMLM 2016 challenge (see Fig. 2). We also evaluated them on the training datasets

to more precisely evaluate differences in performance (Fig. 5d). For astigmatism and double helix data we fit the PSF

model to the provided bead-data. For 2D we instead used a more heuristic estimate, choosing sigma values and a

z-dependent scaling that covers the PSF observed in the dataset. Furthermore we used combined learning in two

different settings: one for variational inference (VI) where autoencoder learning is performed on the same dataset

on which performance is evaluated and one for amortized inference (AI) where training and testing takes place on

different datasets. These two models where trained using both local and global temporal context, while for simulator

learning we only used local context. Overall performance of the three submissions is very similar, which is to be

expected given that we are able to approximate the generative model of the data very accurately. Adding autoencoder

learning is especially helpful for 2D data where we did not fit the PSF model to beads-data and instead adjusted it

during training of the model. As can be seen in Fig. S2 the algorithm learned to add diffraction rings to the PSF model

without any access to bead-data. Additionally we observe the combined learning (VI) performs better on the high

density / low SNR datasets. As described below, this can be attributed to the fact that global context is especially

helpful in these difficult conditions.
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Figure 5. DECODE performance for training approaches and settings. a) Simulator learning (SL). Synthetic images are
constructed by the simulated imaging of randomly located fluorophore point sources using a generative model, and a network is

trained to detect and localize the fluorophores using supervised learning. b) Auto-encoder learning (AEL). A neural network used to
infer putative locations from a measured camera image, and subsequently the generative model is used to reconstruct the original

camera image. Both the parameters of the generative model and of the DECODE network are optimized. Loss is computed between

measured end reconstructed images. c) Performance of different training methods for different degrees of PSF mismatch. Models
using a circular PSF are fit to 5 datasets simulated from PSFs with varying ellipticity. PSF parameters for AEL / AEL+SL learning could

be either fixed (solid line) or learned (dashed line). d) Performance of DECODE trained with different methods on the 6 high density
challenge test datasets. e) DECODE evaluated on the 6 high density challenge training datasets. Models were trained using combined
learning either without context, local, global and both forms of context.

Local temporal context is more informative than global context
Imaging frames from SMLM contain correlations in time across short and long time-scales. Once activated, fluo-

rophores are usually active for more than one imaging frame and are therefore visible in multiple consecutive frames

at the same position, leading to short time-scale correlations in the images. The spatial distribution of fluorophores in

a sample is non-uniform and is concentrated around the biological structures labeled by the fluorophores. This spatial

distribution of fluorophores leads to temporally global correlations. Our DECODE network is designed to exploit both

kinds of temporal correlations via local and global context windows across imaging frames to improve the detection

and localization of single molecules. We studied the contributions of local and global context to the performance of

the DECODE network.

We trained DECODE models using CL on the 6 high density datasets of the challenge, using either no context, local

context, global context or both forms of context. Local and global context have different effects on the performance

(Fig. 5e). While we find that both local and global context individually improve performance, local context is generally

more helpful than global context. Together, global and local context give the best possible performance but at a minor

improvement over local context alone.
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It should be noted that a straight forward way of using local context called “grouping” is commonly used to improve

localizations as a post-processing step in SMLM [38]. Localizations occurring in consecutive images that are closer

to each other than a fixed threshold are assumed to belong to the same emitter and their localization is averaged,

potentially weighted by the uncertainty of each localization. We applied grouping to the DECODE models trained with

and without local context as well as CSpline (Fig. S3) . We observe that grouping is almost as effective as our method

in reducing the localization error for the easiest condition (high SNR / low density) but performs worse for any of the

more difficult datasets. Furthermore, our method for using context also improves detection accuracy while grouping

only influences the localization error. Lastly, using grouping on top of DECODE with local context results in a small

improvement which would further increase performance on the challenge if one used it.

Discussion
We here described DECODE, a new deep-learning based method for single molecule localization for reconstructing

super-resolution images. DECODE differs from existing localization algorithms by simultaneously performing detection

and localization of particles. DECODE yields substantial improvements in performance over previously evaluated

algorithms in a publicly available benchmark challenge: It achieves best performance in every condition, and often

improves prediction performance by a large margin. When applied to high density dSTORM imaging of microtubules,

and LLS-PAINT imaging of whole cells, it leads to reconstructions which have markedly improved resolution due to

substantial improvements in particle detection. The performance benefits of DECDOE are especially pronounced in

high-density imaging conditions, thereby opening up new opportunities for faster imaging of fixed samples, and even

live imaging.

DECODE leverages the flexibility of deep learning – for its predictions, the network can benefit both from temporal

context (e.g. from fluorophores being active across multiple imaging frames), as well as spatial context (e.g. from

clustering of fluorophores in space). DECODE can be used in a very flexible and general manner and can easily be

applied to arbitrary PSFs and noise models – in this paper, we applied it to 4 different imaging modalities ranging from

engineering point spread functions to 3D lattice light sheet microscopy.

The DECODE network is trained to produce probabilistic point process predictions – it predicts both the probability

of detection and the uncertainty of localization for each detected particle. We showed that the localization uncertainties

predicted by our network are superior to conventionally used CRLB uncertainties and are particularly useful for filtering

particles to produce high resolution reconstructions.

We presented and evaluated two ways to train the DECODE network, using simulator learning and autoencoder

learning. Simulator learning allows for fast an easy training of a DECODE network when the optical properties of

the microscope are precisely known. Autoencoder learning uniquely enables the in situ estimation and refinement
of imaging parameters such as the empirical point spread function and noise model directly from the experimental

measurements, in principle enabling the tracking of drift in the optical system over the course of long imaging

experiments, or the estimation local point spread functions across large fields of view in the presence of sample

dependent optical aberrations.

One weakness of DECODE is that it currently requires the training of a new neural network whenever the optical

properties of the microscope change. This training can currently take over 10 hours on a single GPU. However, it may

be possible to train a single network to predict robustly across minor variations in the point spread function or noise

distribution, i.e. to amortize simulator-learning across setups [26, 37]. This can enable real-time reconstruction on a
single GPU without the need for re-training, even under the most challenging conditions, since the computational

complexity of the predictions depend only on the size of the image and not the number of particles in each imaging

frame.
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Methods
Software availability

All methods were implemented in Python and PyTorch [39]. Code and hyper-parameter settings for the challenge

results are available at https://github.com/mackelab/DECODE/

Approximate Bayesian inference with DECODE

DECODE is a Bayesian inference method which requires a formal probabilistic description of the entire SMLM

measurement process. This description amounts to a stochastic simulator (known as a generative model) which can

generate synthetic SMLM data, but which can also be optimized to fit the data. In our framework, at each time point,

each active fluorophore i has a location in 3D at xi , yi , zi , and a brightness αi . The set ofNt single molecule locations and

their brightness at each time point are the unknown hidden causes or latent variables h = {{xi}t , {yi}t , {zi}t , {αi}t} that
give rise to the noisy low resolution images which constitute the measured data d = {It}. A complete description of the
generative model in Bayesian framework includes the prior distribution p(h) which describes the spatial distribution

and temporal dynamics of fluorophores, and the likelihood distribution p(d |h) which describes the stochastic process

describing the distribution of images generated by the microscope for a given configuration of fluorophores. The

likelihood is formalized in terms of the point spread function describing the transfer function of the microscope, and

the measurement noise at the camera.

The DECODE network is trained to perform approximate Bayesian inference, using simulator learning and autoen-

coder learning to approximate the true posterior distribution p(h|d) and predicts the hidden single molecule locations

and brightness from the measured images.

Spatial distribution and temporal dynamics of fluorophores.

We assume that on each imaging frame, a fluorophore can be activated in any given pixel with a constant probability

of pon. An active fluorophore on any given frame has a probability of poff of turning off in the next frame. The location

of an active fluorophores within a pixel is drawn from a uniform distribution in x and y . For z we chose a Gaussian

distribution with a mean centered at the focal plane and a variance chosen to cover the range of the point spread

function of the microscope instead, as the bulk of the recorded structure is usually located around the focal plane.

The brightness of an active fluorophore is sampled from a uniform distribution U(0.1, 1) times the maximum possible

expected brightness of a single fluorophore. This describes the prior distribution over particle locations and brightness

p(h).

Point spread functions

We used the sum of a parametric function PSFparametric and a non-parametric interpolated pixel map PSFpixmap to

model arbitrarily complex point spread functions PSF (x , y , z) = PSFparametric (x , y , z) + PSFpixmap(x , y , z). In principle,

the non-parametric interpolated pixel map is sufficient to represent any possible PSF within the support of the pixel

map, we found that the parametric component helps with the learning when using AE training.

In this paper, we analyzed data imaged or simulated using three PSF models – one for 2D localization, and two

for 3D localization. For 3D localization, we used the astigmatism (AS, [40]) and the double helix (DH, [41]) PSFs. The

parametric components of these parametric PSFs as a function of the spatial coordinates x , y , and z is given below,

along with the parameters of the PSF after the semi-colon.

PSF2D (x , y , z ; a1, a2, b1, b2) =
∑

n=1,2

(an · e−bn(x2+y2)/(1+|z|)2

) (1)

PSFAS (x , y , z ; a, bx , by , c) =e−ax2/((z−bx )2+c)e−ay2/((z−by )2+c)
(2)

PSFDH (x , y , z ; a, b, c, d) =e−a(x−sx (z))2+a(y−sy (z))2

+ e−a(x+sx (z))2+a(y+sy (z))2

(3)

sx (z) = d · cos(b · z + c) sy (z) = d · sin(b · z + c). (4)

PSF2D is a weighted sum of two circular Gaussians whose variance increases as a function of the distance of the

point source away from the focal plane. PSFAS is described by an elliptical PSF whose eccentricity is a function of the

defocus z [8]. PSFDH is a double helical PSF modelled as two circular Gaussians that rotate around the fluorophore at

a distance d as a function of z .
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PSFpixmap enables the approximation of arbitrarily complex PSFs and is a 3D image volume with the same pixel size

as camera and with a z-spacing of 100 nm. This pixel map is interpolated by trilinear interpolation to evaluate the

point spread function at any location within the support of the pixel map.

Imaging fluorophores and camera noise

The number of photons emitted from a fluorophore follows a Poisson distribution. To model the noisy imaging

by an EMCCD camera, the distribution of photon counts can be convolved with a gamma distribution that models

the electron-multiplying (EM) gain and with a Gaussian distribution that accounts for read-out noise. The resulting

distribution can not be expressed analytically. This is irrelevant for simulator learning, however autoencoder learning

requires a differentiable expression for the probability distribution of the measured image I (x , y) as a function of the

mean intensity image Ī (x , y). Therefore, we approximate the noise model using a single Gamma distribution with

parameters that are given by the camera baseline BL, its electron-multiplying gain EM and electron conversion factor

EC . Given N activated fluorophores, each located at xn, yn, zn and with a brightness of αn, and a constant background

fluorescence of β, the intensity of a pixel I (x , y) located at x , y of the resulting imaging frame is simulated as:

Ī (x , y) =
N∑

i=1

αiPSF (x − xi , y − yi ,−zi ) + β (5)

I (x , y) ∼Gamma((Ī (x , y)− BL)/η, η) + BL (6)

η = 2 · EM/EC . (7)

This describes the likelihood function p(d |h).

Fitting of 3D PSFs from bead stacks

For 3D inference, it is common to calibrate the PSF model on data with known axial offset as the exact relationship

between its shape and the position cannot be estimated from unlabeled data. We estimated the AS and DH PSF’s

using calibration bead stacks, i.e. images of single fluorophores at different offsets with high signal to noise ratios. We

first obtain a rough estimate of the bead locations using a basic peak-finding routine. We then maximize the likelihood

pθ(d |h) by performing stochastic gradient descent on the exact x− and y− coordinates of each bead (which are
constant across images), the shape parameters of the PSF model (1) and the the pixel maps δxy . This simple method

achieves localization errors of less then 0.3 nm on the challenge calibration stacks where the ground truth locations

are available. During training of the DECODE network we generally keep the PSF model fixed (see example fits in

Fig. S1). For 2D datasets the PSF model can be learned simultaneously with the network parameters in a completely

unsupervised way, i.e. without requiring access to bead stacks (See pixel maps δxy in Fig. S2). We emphasize that

neither the training algorithm, nor the network architecture, depends on the specifics of the generative model or the

PSF model, and both could well be combined with more flexible functional forms of PSFs.

DECODE network architecture for probabilistic single molecule detection and localization

Our frame analysis module as well as our temporal context module are U-nets with two up- and downsampling stages

and 48 filters in the first stage. Each stage consists of three fully convolutional layers, where in each downsampling

stage the resolution is halved, and the number of filters doubled, and vice versa in each upsampling stage. Upsampling

is performed using nearest neighbor interpolation to avoid checkerboard artifacts [42]. The final output representation

is predicted after two additional convolutions layers.

For each camera pixel, the DECODE network predicts the probability that a fluorophore was detected near that

pixel p, the location of the detected fluorophore relative to the center of the pixel, ∆x , ∆y , ∆z and the predicted

fluorophore brightness α, and the uncertainties associated with each of these predictions σx ,σy ,σz ,σα. We used

ELU nonlinear activation function [43] for all hidden units, the hyperbolic tangent nonlinearity for the coordinate

outputs ∆x , ∆y , ∆z and the logistic sigmoid nonlinearity for the non-negative brightness and uncertainty outputs

α,σx ,σy ,σz ,σα.

The output channels of the DECODE network together represent a distribution of possible interpretations of a

measured image q(h|d) and constitute an approximation to the true posterior distribution over possible detections

and localizations p(h|d). Our approximate posterior q(h|d) is a type of Gaussian mixture model, with one Gaussian

mixture component per camera pixel. It can represent at most as many particles as there are camera image pixels,
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and for each pixel represents the detection probability and localization mean and variance of one particle. In the

following sections we describe how this architecture is trained and how deterministic detections and localizations of

particles can be obtained from the output of the DECODE network at test-time.

Simulator learning

Given a set of simulated particles and the resulting images over time, simulated as described above such that h ∼ p(h)

and d ∼ p(d |h) we take samples from our generative model h ∼ p(h), d ∼ pθ(d |h) and maximize the loglikelihood

logqφ(h|d). This procedure amounts to minimizing the Kullback-Leibler divergence (DKL) between the posterior of the

generative model and the recognition network, averaged over the (simulated) data distribution:

Epθ(d)[−DKL(pθ(h|d)||qφ(h|d)] = Epθ(d ,h)[logqφ(h|d)] + const. (8)

Given our representation of the final localizations by the discrete pixel positions and the in-pixel offset variables

x = xp + ∆x y = yp + ∆y z = ∆z (9)

we developed a loss function that allows us to jointly optimize the different output variables. We interpret the

binary values p as the probability that an activation exists in that pixel while the outputs α, ∆x , ∆y , ∆z ,σα,σx ,σy ,σz

parametrize Gaussians N (~µ, Σ) which are components of a Gaussian mixture model (GMM) which describes the

distribution of emitter activations:

qφ(h|d) ∝
∏

i

∑
k

pk∑
k pk
N (~Xi |~µk , Σk ) (10)

where k indexes all pixels, and ~Xi are the ground truth location vectors.

The number of activations follows a Poisson Binomial distribution given that the binary probabilities vary strongly

across pixels. As the likelihood of this distribution is hard to evaluate we instead use its mean and variance to

parametrize a Gaussian approximation to the likelihood of counts:

qφ(h|d) ∝ N (
∑

k

Sk |
∑

k

pk ,
∑

k

pk − p2
k ) (11)

where
∑

k Sk is the true number of emitters.

As the GMM term scales linearly with the number of emitters, while the count term stays constant, we multiply it

by the number of emitters to balance the two terms. The resulting total log-likelihood we use to train our inference

network is:

logqφ(h|d) =
∑

i

∑
k

log
pk∑
k pk
N (~Xi |~µk , Σk ) +

∑
k

Sk · logN (
∑

k

Sk |
∑

k

pk ,
∑

k

pk − p2
k ) (12)

Auto encoder learning: Optimizing a lower bound on p(d)

For auto encoder learning we only treat the discrete outputs as stochastic latent variables, and use the deterministic

mean values for the continuous outputs. logqφ(h|d) is therefore calculated as the binary cross-entropy between the

inferred probabilities and the discrete pixel activations. We also performed experiments using the loss described in

(12) for autoencoder learning. In this case in addition to the discrete samples we also draw samples of our continuous

offsets from N (~µk , Σk ) and optimize them using the reparametrization trick [23]. However this resulted in far higher

gradient variance and overall reduced performance.

Using Jensen’s inequality we can derive a lower bound (ELBO) on the marginal likelihood p(d):

log p(d) = log Eq[
pθ(d , h)

qφ(h|d)
] ≥ Eq[log

pθ(d , h)

qφ(h|d)
] = L(d) (13)

by maximizing this ELBO with respect to θ we minimize the reverse DKL averaged over the true data distribution

Ep(d)[DKL(qφ(h|d)||pθ(h|d))] (14)
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Unlike simulator learning maximization with respect to φ also allows us to learn the parameters of the generative

model. If we instead use an importance weighted average over j samples from our recognition model to estimate

p(d), and again apply Jensen’s inequality we obtain a tighter lower bound (which is identical to the ELBO for j = 1):

Lj
IW (d) = Eq(h1:J |d)

 1

J

J∑
j=1

log

[
pθ(d , hj )

qφ(hj |d)︸ ︷︷ ︸
ωk (d ,hj )

] (15)

This objective is the basis for both the importance weighted autoencoder (IWAE) [44] and the reweighted wake-sleep

algorithm (RWS) [45].

Updating θ

For a given value of φ, unbiased gradients for θ can be obtained by sampling the discrete variables h1, ..., hj ∼ qφ and

calculating the gradients:

∇θLj
IW (d ∼ D) = ∇θ log(

1

J

J∑
j=1

ωj ) =
J∑

j=1

ω̃j∇θ log pθ(hj |d) (16)

ω̃j =
ωj (d , hj )∑J

j′=1 ω(d , hj′)
(17)

Updating φ

Obtaining gradients for φ is more involved, especially in the case of discrete latents when the reparametrization trick

cannot be applied.

The RWS algorithm includes two procedures to obtain gradients for φ. The sleep phase update matches simulator

learning which minimizes the DKL between p and q over data that is generated from the generative model pθ(d |h)p(z).

The wake phase update optimizes the same DKL, but over the true data distribution p(d) (i.e. using samples from

the data).

∇φDKL(pθ(h|d)||qφ(h|d)) '
J∑

j=1

ω̃j∇φ log qφ(hj |d) (18)

We also experimented with the VIMCO algorithm [46] and the The Thermodynamic Variational Objective [47] as

alternative approaches to obtain low variance gradients for discrete latent variable models. Performance was

comparable across methods, so we chose RWS for its easy implementation and low number of hyper parameters.

Wake phase updates can be very noisy, especially during the first iterations when the network basically produces

random samples. If the network predicts large numbers of detections training can fail to to memory restraints.

Therefore, we start training with a warm up phase of 1000 iterations of simulator learning, where one iteration

corresponds to the evaluation of the loss on one batch and a subsequent gradient update.

Training details and hyper-parameters

Training is performed on 40×40 pixel sized regions that are simulated or randomly selected from recorded images at
each iteration. If the network is trained to make use of global context, we use a running average of the hidden states

collected over the last 100 training batches. At test time we perform two passes over the dataset: the first one to

collect the average hidden state h̃ =
∑

T ht and the second one to obtain the inference results.

When training with local context we employ different strategies for SL and AE training steps. For simulator learning,

when sampling data we align the spatial variables ∆x , ∆y , ∆z = ~µ (but not the intensity) to be identical when a

fluorophore is active in consecutive frames. For AE training, for each set of variables St , ~µt which are inferred from the

images It−1, It , It−1 we also infer offset variables and uncertainties σx ,σy ,σz = Σ for t + 1 and t − 1 to provide context.

We use these variables to calculate an error term that is the sum of log-likelihoods of the offset variables at each

pixel under the Gaussian distribution given by the activations in consecutive images:

δxyz =
∑
x ,y

St · St−1(N (~µt |~µt−1, Σt−1) + St · St+1(N (~µt |~µt+1, Σt+1) (19)
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This term is subtracted from the objective function during training.

A base value of 0.01 is added to the uncertainties to avoid instabilities. We used the AdamW optimizer [48] with a

learning rate of 6·10−4
for the network parameters which is multiplied by 0.9 after every 1000 training iterations. When

also learning the PSF we used a learning rate of 0.015 for PSF model parameters and 3·10−6
for the pixel maps δxy . To

stabilize training and ensure that gradient steps of simulator and autoencoder learning are roughly equal in size when

performing combined learning we employ gradient norm clipping with a maximum norm of 0.03. We normalized the

inputs to the network by first subtracting the mean of the dataset and then dividing by the maximum of the mean

over the image dimension. To calculate the RWS objective we used 40 samples.

Obtaining localizations and post-processing

The DECODE network predicts the probabilities of a fluorophore being located at a specific pixel. While we sample

from this distribution during training, we prefer to generate deterministic detections and localizations at test time.

To get deterministic, fast and precise pseudo samples we instead use a variant of non-maximum suppression to

obtain final localizations. To obtain a binary mask of fluorophore candidates for a given frame we identify probability

peaks, i.e. pixels with values that are above 0.3 and higher than all values in a surrounding 3x3 patch. We then

add the probability mass from the 4 directly adjacent pixels to the values at the candidate positions by convolving

the probability map with a cross shaped filter and applying the mask. All candidates with added probability values

above 0.7 are counted towards the localizations. The algorithm can be expressed purely in the form of pooling and

convolution operations and therefore runs efficiently on a GPU.

For difficult imaging conditions, i.e. high densities, low SNR values and high offsets from the focal plane the

lateral offset variables can be biased towards small absolute values. This effect scales with the uncertainty of the

predictions and can produce artifacts in the reconstructed image as localizations are concentrated at the pixel

centers. To counteract this we therefore divide all localizations into equally sized bins according to the total variance

vartot =
√
σ2

x + σ2
y + σ2

z . Then we calculate an empirical CDF F̂x , F̂y from the histograms of the ∆x and ∆y variables in

each bin. The variables∆x̂ , ∆ŷ = F̂x (∆x)−0.5, F̂y (∆y)−0.5 have a uniform distribution as desired. This transformation

effectively removes image artifacts while having no impact on the performance metrics.

As a final post-processing step our inferred uncertainties allow us to effectively filter bad localizations. As shown in

Fig. S4c this is very effective in reducing the overall localization error. For the challenge data removing between 0

and 20 % results in the best performance. For real data this threshold should be individually chosen according to the

amount of data collected.

Evaluating localization accuracy and reconstruction resolution

To evaluate performance on the challenge datasets, as well as our own simulations we use the lateral or volume

localization error in nm and the Jaccard index J which quantifies how well an algorithm does at detecting all the

fluorophores while avoiding false positives J = 100 · TP/(FN + FP + TP). Localizations are matched to ground truth

positions when they are withing a circle of 250 nm radius. As a single metric that evaluates the ability to reliably infer

fluorophores with high precision we use the efficiency metric:

E = 100−
√

(100− J)2 + α2RMSE2) (20)

Lateral and axial efficiency are calculated with alpha values of α = 0.5nm−1
and α = 1nm−1

respectively and then

averaged to obtain the overall 3D efficiency. Super-resolution images were rendered by convolving inferred positions

with a 2D Gaussian with a width of 5nm.

The Fourier ring correlation (FRC, [32, 33]) in 3 was calculated by constructing two super-resolution image volumes

of the same sample (σ=8.5nm, pixelsize=10nm) by dividing the localizations into two sets. We did this by alternating

blocks of 50k consecutive localizations.

DECODE for LLS-PAINT microscopy

The LLS dataset differs from the the other datasets we analyzed in two respects. First, due to the movement of the

light sheet, fluorophores that are active across multiple frames change their x and z position within a frame by a

fixed amount. While usually this can be accounted for in post-processing, in order to use local context we also have

to adjust our generative model. Therefore, when generating the image triplets for simulator learning, we move the
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emitters by the correct amount when they are active in multiple frames. Second, the images were recorded with a

sCMOS instead of an EMCCD camera, therefore requiring a different noise model. We follow the description of the

image generating process in [49] for our noise model. Given the mean intensity as calculated in (5) it is given by:

Ī (x , y) =
N∑

i=1

αiPSF (x − xi , y − yi ,−zi ) + β (21)

I (x , y) ∼Gamma((Ī (x , y))/η, η) (22)

η =
Var(x, y) + g · (Ī (x , y)− BL)

Ī (x , y)
. (23)

Here, we assumed the camera gain g to be constant, while Var(x, y) is the pixel specific noise that can we estimated

from dark images. For the results shown in Fig. 4 we trained DECODE with CL and local context. The PSF was optimized

on bead stacks, and the pixel maps δx ,y where further optimized during the training of the network.

The reconstructions shown in Figures 4 and S5 are rendered by convolving each localization with a 3D Gaussian

parametrized by the respective uncertainties to construct a 3D histogram of the volume with a voxel size of 10x10x20

nm. Histogram values are then clipped at 2.5 to remove most of the contribution from fiducials. We then plotted the

color-coded maximum projection over the z-axis with the maximum intensity set to the 99.5 percentile of histogram

values.
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Figure S1. PSF model fits PSFs were fitted on astigmatism and double helix challenge data. Contour plots show the underlying
parametric model and highlight the contribution from the pixel maps δxy .

2D

Figure S2. Learned pixel maps δxy for different absolute z-offsets learned when using combined learning on the high SNR widefield

2D challenge dataset. The model was clearly able to identify inference rings without the use of calibration bead stacks.
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Figure S3. Comparison of the impact of local context and grouping Performance on the four astigmatism challenge datasets for
DECODE models trained with and without local context, as well as CSpline. For each algorithm detection accuracy and RMSE are

shown for raw and grouped predictions. Across all conditions DECODE with local context and without grouping outperforms DECODE

without context as well as CSpline when using grouping.
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Figure S4. DECODE provides superior uncertainty estimates for dense data CRLB estimates were obtained using the analytical
approximation described in [29]. a) For sparse data with a single emitter per image the uncertainty estimates of DECODE closely
match the CRLB. b) For dense data DECODE without context produces strictly higher uncertainty estimates, taking into account the
reduced precision resulting from overlapping PSFs. When using local context the uncertainty can be lower than the CRLB which

doesn’t consider temporal dynamics. c) For dense data using the σ predicted by DECODE to filter out the worst localizations results
in lower localization error then using the predicted intensity or the CRLB.

Figure S5. Comparison of reconstructions of LLS data across number of framesMagnified reconstructions (boxed region 5 in
Fig. 4) using 10, 25, 50 and 100 % of the available frames.
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Figure S6. Resolution estimates for LLS reconstructions Resolution estimates obtained using the Fourier Ring Correlation and
0.143 criterion across different percentage of frames used for both methods. Evaluated on the region shown in Fig. S5
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