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Mapping the structure of the nervous system provides a foun-
dation for understanding its function. However, compre-
hensive mapping at the scale of neuronal circuits requires 

imaging with both high resolution and large fields of view (FOVs). 
EM has sufficient resolution, but obtaining three-dimensional (3D) 
EM volumes of even small neural circuits requires collecting millions 
of EM images across thousands of thin sections and, therefore, can be 
prohibitively costly in terms of time and resources1–4. Conventional 
LM is limited in spatial resolution due to the diffraction limit 
(~250 nm, although super-resolution5,6 and expansion microscopy7,8 
techniques can exceed this) and, thus, requires sparse fluorescent 
labeling to resolve individual cells. Furthermore, visible light does 
not easily penetrate tissue, requiring physical sectioning or tissue 
clearing for thick samples (>1 mm). As a result, the comprehensive 
set of cells comprising most neural circuits remains unknown. Thus, 
an imaging modality capable of resolving densely packed neurons 
over millimeter-scale tissue volumes could enable more complete 
characterization and understanding of neural circuits.

High-energy X-rays (>10 keV) have the potential to image thick 
specimens with high spatial resolution owing to their strong pen-
etration power and sub-nanometer wavelength. Attenuation-based 
X-ray microscopy techniques offer volumetric imaging of 
millimeter-scale samples, but these techniques rely on sparse labeling 
owing to limited contrast9. Phase-contrast imaging techniques, such 
as X-ray interferometry10–12, X-ray ptychography13,14, single-distance 
free-space propagation imaging15,16 and X-ray holography17–21, have 
brought substantial improvements to image quality but have yet to 
achieve the combination of resolution, FOV and contrast required 
for reconstruction of densely stained neuronal morphologies. Thus, 
until now, tracing of individual neuron morphologies from X-ray 
image data has been possible only through sparse labeling9,16,22.

Here we demonstrate X-ray imaging of densely stained neural 
tissue at resolutions down to 87 nm across millimeter-sized vol-
umes, enabling reconstruction of the main branching patterns of 
neurons within the imaged volume. To achieve this, we employed 
X-ray holographic nano-tomography (XNH)23,24 and made improve-
ments by customizing sample preparation, incorporating cryogenic 
imaging and optimizing phase retrieval approaches. We show that 
targeted EM can be used to measure synaptic connectivity of neu-
rons previously reconstructed via XNH. We used this correlative 
approach in mouse cortex to quantify how the balance of inhibitory 
and excitatory inputs onto apical dendrites (ADs) varies by pyrami-
dal cell type (that is, layer). XNH imaging also allows reconstruction 
of structures that are difficult to physically section, such as the adult 
Drosophila leg. We present an XNH dataset of an intact leg in which 
we reconstructed internal structures, such as muscle fibers and 
sensory receptors, and traced their associated motor and sensory 
neurons back to circuits in the fly’s central nervous system. Finally, 
we applied a convolutional neural network (CNN) to automatically 
reconstruct neurons from XNH data. These results establish XNH 
as a key technique for biological imaging, which bridges the gap 
between LM and EM (Fig. 1a) to enable dense reconstruction of 
neuronal morphologies on the scale of neuronal circuits.

Results
XNH imaging of central and peripheral nervous systems. We 
imaged samples of mouse cortex and adult Drosophila brain, ven-
tral nerve cord and leg at the ID16A beamline of the European 
Synchrotron Radiation Facility (ESRF). The positioning of the sam-
ple relative to the focal spot and the detector allows the voxel size 
and FOV to be flexibly adjusted (Fig. 1c). Figure 1b–e shows XNH 
imaging and the resulting 3D rendering of the central brain of an 
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adult Drosophila (120-nm voxels), in which large individual neuro-
nal processes can be resolved (Extended Data Fig. 1a, Supplementary 
Video 1 and Methods). Figure 1f shows a rendering of an XNH scan 
from mouse cortex (100-nm voxels), in which cell bodies and larger 
dendrites can be resolved across multiple cortical layers. Figure 1g 
shows a virtual slice from a higher-resolution mouse cortex scan 
(30-nm voxels; Supplementary Video 2). At this resolution, many 
ultrastructural features are resolved, including mitochondria, endo-
plasmic reticulum, dendrites and myelinated axons (Fig. 1g, insets 
and arrows). However, identification of these ultrastructural fea-
tures depends, in part, on prior knowledge of their 3D structure—
for example, the tubular shape of mitochondria and dendrites.

To quantify the spatial resolution of XNH image volumes, we 
used Fourier shell correlation (FSC)25 (Methods). We performed 
scans with voxel sizes between 30 and 120 nm and measured  
spatial resolutions between 87 and 222 nm (Fig. 1h, Extended  
Data Fig. 1b–d,h Supplementary Data Table 1 and Supplementary 
Videos 1–4). We verified these values using an independent edge 
fitting measurement (Extended Data Fig. 1e–g).

To verify that XNH images faithfully reproduce tissue ultra-
structure, we collected thin sections of samples after XNH imaging 
and imaged the same regions at higher lateral resolution with EM  
(Fig. 1i). We found that most of the larger neurites (>200 nm in 
diameter) in the EM image could be accurately identified from 
XNH (Extended Data Fig. 1i,j). This confirms that XNH image 
volumes contain sufficient membrane contrast and spatial resolu-
tion to resolve and reconstruct dense populations of large-caliber 
neurons (generally long-distance connections) without specific 
labeling. However, thin processes (such as axon collaterals and  
distal dendritic branches) are currently difficult to resolve with 
XNH alone. Although the focus of this study was densely stained 
tissue (that is, label free), we also demonstrated that XNH imaging 
is compatible with specific labeling of genetically defined cell types 
(Extended Data Fig. 5a).

Correlative XNH and EM for connectomic analysis. Pyramidal 
cells constitute the majority of neurons in the cerebral cortex and 
are vital for cortical function, but mapping their synaptic inputs 
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Fig. 1 | XNH technique and characterization. a, Schematic depicting pixel and FOV sizes for XNH imaging, along with comparisons to other modalities 
(assumes a 4-Mpixel detector). Note that EM imaging is generally performed on thin sections or surfaces, whereas XNH, LM and micro computed 
tomography can penetrate thicker tissue samples. b, A Drosophila brain (blue arrow) embedded in resin and mounted for XNH imaging. c, Imaging setup: 
the X-ray beam is focused to a spot using two Kirkpatrick–Baez (KB) mirrors and traverses the sample before hitting the detector. Holographic projections 
of the sample (a result of free-space propagation of the coherent X-ray beam) are recorded for each angle as the sample is rotated over 180° (Extended 
Data Fig. 1a and Methods). d, Phase map of the sample shown in Fig. 1b, calculated by computationally combining holograms recorded at four different 
distances from the beam focus and the detector. Computed pixel values indicate phase in radians. e, 3D rendering of XNH volume of the central fly brain 
(120-nm voxels). The tissue outline is shown in blue, whereas neurons are highlighted in orange. f, 3D rendering of an XNH volume of mouse posterior 
parietal cortex (PPC) (100-nm voxels). Boundaries between cortical layers are shown in red. g, Virtual slice through a higher-resolution XNH volume 
of mouse primary somatosensory cortex (30-nm voxels). Insets: detailed views showing ultrastructural features, including mitochondria (magenta 
arrowheads), endoplasmic reticulum (magenta arrows), nucleolus (magenta asterisk), large dendrites (cyan) and myelinated axons (red). Scale bar, 
10 μm. Insets are 10 μm in width. h, Measured resolution (obtained using FSC; see Methods and Supplementary Table 1) for different XNH scans plotted 
as a function of voxel size and FOV. Data points and error bars show mean ± IQR of sub-volumes sampled from each XNH scan. Number of sub-volumes 
used for each scan is shown in Supplementary Data Table 1. i, Comparison of XNH (50-nm voxels) and TEM (12-nm pixels and 100-nm section thickness) 
images of the same sample, the prothoracic leg nerve of an adult Drosophila.
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is challenging because their dendrites extend several hundreds of 
micrometers. In particular, ADs ascend to layer I, where they inte-
grate long-range excitatory and local inhibitory inputs26 (Fig. 2a), 
but it is not known in detail how AD connectivity differs across 
pyramidal cell types. A recent study using large-scale EM revealed 
that ADs from superficial (layers II and III) pyramidal cells receive 
proportionally more inhibition than deep-layer (layer V) cells27. 
However, this study relied on relatively small sample sizes (n ≈ 20 
cells per sample) owing to the FOV limitations of EM. In this study, 
we combined large FOV XNH (100-nm voxels) with targeted serial 
section transmission electron microscopy (TEM)28 on the same 
sample to characterize hundreds of pyramidal cell ADs in the poste-
rior parietal cortex (PPC), an association area known to be involved 
in perceptual decision-making29. We first acquired two partially 
overlapping XNH scans of mouse PPC that span layers I–V (~8 h 
of imaging time) and then acquired a synapse resolution EM data-
set from the bottom of layer I that contains the initial bifurcations 
of pyramidal ADs (~150 h of imaging time) (Fig. 2a–d, Extended 
Data Fig. 2a,b and Methods). All 3,234 cells within the XNH vol-
umes were identified as excitatory pyramidal cells, inhibitory inter-
neurons or glia based on morphology and subcellular features30 
(Extended Data Fig. 2c). We observed a particularly high density 
of neuronal somata (both excitatory and inhibitory) concentrated 

at the top of layer II (designated layer IIa here) (Fig. 2e), which is 
consistent with histological data (Extended Data Fig. 2d).

We traced ADs in the XNH data from pyramidal cell bodies 
in layers II, III and V up to the layer I/II boundary and identified  
the same ADs in the aligned EM dataset (n = 261 cells; Extended 
Data Fig. 2e,f and Methods). We annotated all synaptic inputs 
onto the ADs within the EM volume (that is, the bottom of layer I, 
near the initial bifurcations), labeling each as excitatory (targeting 
dendritic spines) or inhibitory (targeting dendritic shafts or spine 
necks) (Fig. 2d)26. We found that layer IIa cells received more inhibi-
tory synapses and fewer excitatory synapses near the initial bifurca-
tions than did deeper-layer cells (Fig. 2f), consistent with previous 
EM analysis27.

We hypothesized that the increased inhibitory synapse fraction 
onto ADs of layer IIa cells was due to the proximity of their somata 
to the initial AD bifurcations, because pyramidal cell bodies receive 
strong inhibitory input from basket cell interneurons, and proximal 
AD trunks generally have fewer spines26. To test this, we measured 
the relationship between inhibitory fraction and distance from the 
soma (Fig. 2g–i and Methods). We found that, over the first ~100 µm 
of path-length from the soma, the fraction of inhibitory input onto 
ADs dropped dramatically. Interestingly, this drop was steepest 
for layer IIa cells (Fig. 2i and Extended Data Fig. 2g,h), such that 
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Fig. 2 | Correlative XNH–eM analysis of the connectivity statistics of pyramidal apical dendrites in the posterior parietal cortex. a, Experimental 
approach: XNH imaging covers superficial and deep layers of the PPC with sufficient resolution to resolve cell bodies and ADs. Targeted 3D EM volume 
captures the layer I/II interface region, enabling analysis of synaptic inputs onto the ADs near their initial bifurcations. b, Virtual slice of XNH data (4-µm 
coronal section, maximum projection). Cell somata and ADs are visible. Example layer II/III (green) and V (magenta) pyramidal cells are highlighted.  
c, 3D EM reconstruction of an AD bifurcation. Postsynaptic densities (PSDs) of excitatory (targeting spines, blue) and inhibitory (targeting shafts or spine 
necks, red) synaptic inputs are shown. d, Example EM images of inhibitory (red) and excitatory (blue) synapses onto the AD. e, Density of cell somata 
as a function of soma depth (micrometers below the layer I/II interface), classified as excitatory pyramidal cells (blue), inhibitory interneurons (red) or 
glia (yellow) (Extended Data Fig. 2c). The top of layer II (~30 µm) contains a high density of both excitatory and inhibitory neurons. n = 3,234 neurons. 
f, Left: synapse density plotted as a function of soma depth (micrometers below the layer I/II boundary). Excitatory and inhibitory synapses densities 
are shown in blue and red, respectively. Right: inhibitory synapse fraction plotted as a function of soma depth. Small markers correspond to one neuron. 
Large markers and error bars indicate mean and 95% confidence interval for each layer calculated via bootstrap analysis. n = 39, 99, 75 and 38 neurons 
for layers IIa, IIb, III and V, respectively. g, Schematic of dendrite fragment connectivity analysis. ADs within the EM volume were divided into fragments 
10 µm in length. For each fragment, the density of synapses was recorded along with the path-length distance from the soma (AD path-length). h, Synapse 
densities (excitatory in blue, inhibitory in red) plotted as a function of path-length to soma. Each marker corresponds to a 10-µm-long dendrite fragment. 
Lines and shaded areas indicate binned average (20-µm bins) and IQR. i, Inhibitory synapse fraction plotted as a function of path-length to soma. Each 
marker corresponds to one dendrite fragment, colored based on soma type. Lines and shaded areas indicate binned average and IQR (mean ± s.e.)  
for each soma type.
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the transition from inhibition-dominated to excitation-dominated 
input was spatially compressed for layer IIa cells.

This multi-scale approach combining XNH and EM in the same 
tissue sample enabled us to identify three unique properties of layer 
IIa cells: higher soma density, inhibition-dominated synaptic bal-
ance near the initial bifurcations of the ADs and spatially compressed 
transitions from inhibition-dominated to excitation-dominated 
input on the AD tufts. These distinct structural properties likely 
underlie unique functional properties and suggest that association 
cortex has pyramidal cell specializations beyond the canonical layer 
structure. Future work will be needed to determine the computa-
tional role of these layer IIa cells and whether similar cells exist in 
other cortical areas.

Millimeter-scale XNH imaging of a Drosophila leg at single- 
neuron resolution. The Drosophila leg and ventral nerve cord 
(VNC) are model systems for studying limb motor control31–33, but 
we currently lack a detailed map of the sensory and motor neu-
rons that innervate the fly leg. Leveraging the capability of XNH 
to penetrate millimeter-scale samples without physical sectioning, 
we imaged an intact Drosophila front leg (coxa, trochanter, femur 
and first half of the tibia segments) and the region of the VNC that 
controls this leg’s movements (Fig. 3a–c, Extended Data Fig. 3a,  
Supplementary Data Table 2 and Supplementary Video 4). By 
stitching ten XNH scans together into a single 3D volume covering 

over 1.4 mm along the leg’s main axis (Fig. 3c and Extended Data  
Fig. 3b), we obtained a comprehensive, high-resolution view of the 
leg’s structure, revealing not only motor and sensory neurons but 
also muscle fibers and sensory organs.

First, we comprehensively mapped the sensory organs and their 
associated sensory neurons in the leg (Supplementary Data Table 3). 
Our count of organs on the surface of the leg was quantitatively con-
sistent with previous studies that employed scanning EM to visu-
alize these structures34 (Extended Data Fig. 3c–f). In contrast, we 
identified more internal sensory structures (Extended Data Fig. 3g) 
than were previously detected with genetic driver lines35. Because 
XNH is equally capable of resolving surface and internal structures, 
we were able to complete an exhaustive list of the mechanosensory 
organs in the fly’s coxa, trochanter, femur and first half of the tibia 
(Supplementary Data Table 3).

Next, we reconstructed axons of different classes of sensory 
neurons to map their projections into the VNC. In doing so, we 
found systematic variation in the axon diameter of different sen-
sory neuron types, suggesting that some types of sensory signals 
(namely those from coxal hair plates and trochanteral campaniform 
sensilla) are conducted to the VNC faster36 or more reliably37 than 
others (Fig. 3c and Extended Data Fig. 3h–k). Our reconstructions 
revealed that, although most sensory axons enter the VNC through 
the main leg nerve, the three different coxal hair plates project their 
axons into the VNC through three different nerves (Fig. 3c, cyan, 
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and Extended Data Fig. 3c,e). These results reveal a topographic 
organization for how these differently positioned (and, therefore, 
differently tuned) mechanoreceptors project their signals into the 
central nervous system.

We then turned to motor structures, reconstructing muscle 
fibers, tendons and motor neurons. Motor neurons and muscle fibers 
had large diameters (1–2 µm and 8–16 µm, respectively), enabling 
straightforward reconstruction throughout the dataset (Fig. 3c–h 
and Extended Data Fig. 3l). We identified 97 muscle fibers in the 
femur (Fig. 3h), significantly exceeding the 33–40 fibers reported 
previously using fluorescence microscopy38. Because XNH imaging 
also resolves the tendons that connect the muscle fibers to the exo-
skeleton, we were able to unambiguously define muscle groups by 
identifying muscle fibers that attach to the same tendon (Fig. 3c,h).  
For example, we found that six muscle fibers in the femur attach 
to the long tendon, rather than three as previously reported38. Two 
of the six (light red fibers) attach at the proximal tip of the long 
tendon and are innervated by a single motor neuron (Fig. 3c,g, 
light green), whereas the other four (dark red fibers) attach more 
distally and are innervated by two different motor neurons (one 
shown in Fig. 3c,g, dark green). This demonstrates that these two 
muscle fiber groups are under distinct neural control despite con-
necting to the same tendon. By comparing our reconstructions of 
motor neuron axons to single-neuron LM images, we were able to 
identify individual neurons in this dataset that have previously been 
studied in functional39 or developmental contexts40 (Extended Data  
Fig. 3m,n). These results highlight how a set of overlapping XNH 
scans can reveal the precise structural relationships between  

neurons, sensory receptors and muscle fibers crucial for adaptive 
control of limb movements.

Automated segmentation of neuronal morphologies using CNNs.  
Although XNH imaging of millimeter-sized circuits can be accom-
plished in time scales of hours, manual tracing of neurons can take 
months. To address this bottleneck, we applied machine learning 
algorithms to accelerate neuron reconstruction from XNH image 
data. We adapted an EM segmentation pipeline41 and applied it to 
an XNH image volume of a fly VNC encompassing most of a T1 
neuromere and part of the front leg nerve (Fig. 4a, Extended Data  
Fig. 4a, Supplementary Video 2 and Methods). This pipeline uses 
a 3D U-NET CNN (Extended Data Fig. 4b) to make membrane 
predictions (in the form of an affinity graph; Fig. 4b,c) from XNH 
image data. Subsequently, voxels are agglomerated into distinct 
neuron objects based on the predicted affinities (Fig. 4d,e). The 
resulting neuronal reconstructions (Fig. 4f) contain 3D geometri-
cal information, such as axon and dendrite caliber, that is usually 
absent from manual tracing.

Accessing large populations of neuronal morphologies by seg-
mentation of XNH data can reveal how circuits are organized. 
Leveraging this automated segmentation pipeline, we recon-
structed 100 neurons that enter the VNC via the main leg nerve 
and identified them as motor or sensory neuron subtypes based on 
their axon caliber and main branching patterns31,40,42,43 (Fig. 4e–g, 
Supplementary Video 5 and Methods). We observed that axons 
are spatially organized in the nerve, such that neurons of the same 
morphological subtype tend to also have their axons physically 
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into a 3D morphology based on the affinities. In this visualization, each neuron has a unique color. e, Cross-section of the main leg nerve, showing motor 
and sensory axons reconstructed via automated segmentation. Coloring corresponds to neuron type, revealing spatial organization of neurons within the 
nerve. f, 3D visualization of 100 automatically segmented neurons in the Drosophila VNC. Coloring corresponds to neuron types determined based on 3D 
morphology. The dotted circle indicates the boundary of the T1 neuropil associated with control of the front leg. g, Example morphologies of VNC neuron 
subclasses (only four example neurons per type shown for clarity).
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clustered within the nerve (Fig. 4e,f). Furthermore, these recon-
structions constitute a database of neuron morphologies that can 
be corresponded with LM and EM data. For example, by examining 
the main branching patterns of the largest-diameter motor neuron, 
we were able to identify it as a fast tibia flexor motor neuron39 that 
is known to receive direct synaptic input from campaniform sensil-
lum neurons28 (Extended Data Fig. 4c).

To quantify segmentation accuracy, we compared the segmenta-
tion to manual tracing of selected neurons, counting the number of 
split errors (in which different pieces of a neuron are erroneously 
labeled as separate neurons) and merge errors (in which two dif-
ferent neurons are erroneously joined) (Extended Data Fig. 4d,e). 
Tuning the segmentation parameters to minimize merge errors 
while still maintaining an acceptable number of split errors resulted 
in ~0.75 mergers and ~13 splits per neuron (Extended Data Fig. 4f 
and Methods). Generally, split errors were found in the most dis-
tal branches where the processes became thin, whereas the main 
branches were segmented with lower error rates. Nevertheless, we 
found that fixing segmentation errors via proofreading (merging 
~13 fragments) was much faster than reconstruction via tracing 
(placing ~500 nodes).

These results suggest that automated segmentation of XNH data 
can be used to rapidly reconstruct morphologies for dense popula-
tions of neurons. Segmentation networks can also be transferred to 
different types of tissue. By adding a small amount of cortex-specific 
training data, we adapted the network to segment XNH data from 
mouse cortex (Extended Data Fig. 4g–k). Continued progress in 
neuron segmentation from EM data will likely also benefit seg-
mentation of XNH data, and new approaches for automatic trans-
fer learning might make it possible to generalize EM segmentation 
algorithms to XNH without needing substantial new training data44.

Discussion
Applications of XNH to neural circuits. We demonstrate that XNH 
enables imaging of neural tissue with sufficient resolution and FOV 
to densely reconstruct individual neurons across millimeter-sized 
volumes. The resolutions achieved here enable reconstruction of 
the main dendritic and axonal branches of neurons, but smaller 
branches are not yet resolved. That said, these resolutions are suf-
ficient for many applications, because a neuron’s main branches 
often clearly indicate its cell type45. In this fashion, we were able 
to identify pyramidal neuron cell types in mouse cortex (Fig. 2) 
and to differentiate sensory and motor neurons in the fly VNC  
(Figs. 3 and 4).

Given these results, XNH is poised to help address several fun-
damental questions in neuroscience. For instance, what are all 
the cellular components in a neuronal circuit, and how are those 
components arranged? Because heavy metals stain all cells, XNH 
represents an unbiased approach to mapping neural circuits that 
can reveal cell types that have previously gone undetected. Because 
genetic expression is not required, XNH can map millimeter-sized 
neural circuits in any animal, enabling comparative studies of neu-
ral circuit structure across species. With high imaging throughput, 
multiple samples can be imaged to reveal differences among indi-
viduals, developmental stages or disease models. With the large 
FOV, projectomes (that is, atlases of all large-caliber axonal pro-
jections between brain regions) can be rapidly mapped to provide 
a detailed framework for how information flows between brain 
regions. Projectomes have previously been painstakingly assembled 
using large-scale EM or built up from sparse fluorescent labeling46,47, 
but now the entire brain of smaller model organisms can be mapped 
in a typical beamline experiment (1–2 weeks) with XNH. Finally, 
compatibility with EM enables local synaptic connectivity to be 
studied in the same sample after XNH. This combined approach 
allows relatively small EM volumes to reveal new patterns of synap-
tic connectivity for different cell types.

Approaches for volumetric imaging. The penetration power and 
sub-nanometer wavelength of high-energy X-rays makes them 
an ideal illumination probe for imaging thick (millimeter-scale), 
metal-stained tissue samples with nanometer resolution. For neu-
ral tissue, phase-contrast imaging at X-ray energies above 17 keV 
provides over 1,000-fold increase in contrast over attenuation con-
trast48. The technique we used in this study, XNH, combines the 
advantages of phase contrast with today’s smallest and brightest 
high-energy X-ray focus23 to reach resolutions needed for resolving 
individual neurons.

XNH imaging is much faster than volumetric EM, in part because 
EM is typically performed at ~100× smaller voxel size. In principle, 
low-resolution serial blockface EM (with voxel sizes similar to XNH) 
can achieve imaging rates only ~2–3 times slower than XNH27,49. 
However, EM imaging of large samples is fundamentally limited by 
the need for physical sectioning, requiring either destructive sec-
tioning (serial blockface EM) or painstaking collection of thousands 
of thin sections (serial section EM). With destructive sectioning, it 
is not feasible to survey large volumes quickly at lower resolution, 
followed by high-resolution imaging of sub-regions of interest, 
but this is possible with a combined XNH–EM approach (Fig. 2).  
Furthermore, not all samples can be reliably thin-sectioned—for 
example, the fly leg (Fig. 3) sections poorly owing to the material 
properties of the exoskeleton. Thus, XNH offers unique capabilities 
for non-destructive mapping of large circuits in both the central and 
peripheral nervous systems.

Because XNH is a wide-field imaging technique, teravoxel-sized 
datasets can be rapidly acquired within days of imaging, enabling 
a range of applications requiring high-resolution imaging of 
large FOVs. This aspect sets XNH apart from X-ray ptychogra-
phy, another phase-contrast technique capable of high-resolution 
imaging of biological tissues13,50. Ptychography is a scanning 
technique; thus, data collection is slower. Furthermore, sam-
ples typically need to be smaller than ~100 µm in thickness  
for ptychography.

In all wide-field imaging modalities, the ratio of FOV to voxel size 
is determined by the size of the detector (effectively 2,048 × 2,048 
for this work), but this ratio can be increased by using larger detec-
tors or detector arrays. XNH offers additional flexibility because 
samples can be larger than the FOV of a single scan, and multiple 
sub-volumes can be imaged and stitched together to extend tissue 
coverage at high resolution. This allows users to select the optimal 
voxel size to ensure sufficient resolution for neuron reconstruction 
while maximizing imaging throughput.

Outlook. Although XNH imaging can be implemented using a 
commercial X-ray source19, synchrotron sources are more suitable 
for obtaining high-quality data. Access to these facilities is usu-
ally granted via research proposals and, thus, is free for academic 
researchers. There are more than 50 synchrotron sources world-
wide, and an increasing number of these are developing coherent 
imaging beamlines that could support XNH imaging.

It is worth noting that the resolutions achieved here (87–222 nm) 
are still far from the theoretical limits for hard X-rays, which have 
sub-nanometer wavelengths. In practice, XNH resolution is lim-
ited by focusing optics, mechanical stability and precision of stage 
movements, sample warping and performance of reconstruction 
algorithms, rather than by fundamental physical limits. Similarly, 
we expect continued improvements in imaging speed. Data collec-
tion can be accelerated by using faster and larger detectors, faster 
actuators and increased coherent photon flux. The upgrade of 
the ESRF source, completed in August 2020, along with planned 
improvements to X-ray optics and detectors, might enable faster 
imaging with the ability to resolve the thinnest neuron branches 
and the synapses between them, opening an array of applications in 
mapping neuronal circuit connectivity.
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Accession codes. Raw XNH data are available in publicly accessible 
repositories under the following accession codes:

1. BossDB (https://bossdb.org/)
https://bossdb.org/project/kuan_phelps2020
2. WebKnossos (https://webknossos.org/)
https://wklink.org/8122 (XNH_ESRF_mouseCortex_30nm)
https://wklink.org/7283 (XNH_ESRF_mouseCortex_40nm)
https://wklink.org/9034 (XNH_ESRF_drosophilaBrain_120nm)
https://wklink.org/6724 (XNH_ESRF_drosophilaVNC_50nm)
https://wklink.org/8452 (XNH_ESRF_drosophilaLeg_75nm)
3. ESRF (https://data.esrf.fr/public/10.15151/ESRF-DC-21772 

8238) (anonymous login)
DOI: https://doi.esrf.fr/10.15151/ESRF-DC-217728238
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Methods
Experimental animals. Experimental procedures were approved by the Harvard 
Medical School Institutional Animal Care and Use Committee and performed 
in accordance with the Guide for Animal Care and Use of Laboratory Animals 
and the animal welfare guidelines of the National Institutes of Health. Mice (Mus 
musculus) used in this study were C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J, 
male, 32 weeks old, and C57BL/6, male, 28 weeks old, ordered through Jackson 
Laboratory. Mice were housed up to four per home cage at normal temperature 
and humidity on reverse light cycle and relocated to clean cages every 2 weeks.

Flies (Drosophila melanogaster) used in this study were 1–7-day-old female 
adults with the w1118 genetic background. The transgenic approach for labeling 
GABAergic nuclei (used in Fig. 3 and Extended Data Fig. 5) is described below.

See Life Sciences Reporting Summary for more details.

Sample preparation. Tissue samples were prepared for XNH imaging using 
protocols for EM, including fixation, heavy metal staining, dehydration and resin 
embedding4,51. For heavy metal staining, we used an enhanced rOTO protocol51 for 
all mouse samples and some of the fly samples. For other fly samples, we modified 
the protocol to increase4 or decrease heavy metal staining, but these variations 
did not have a large effect on XNH image quality. After staining, samples were 
dehydrated in a graded ethanol series and embedded in either TAAB Epon 812 
(Canemco) or LX112 (Ladd Research Industries) resin. Resin-embedded samples 
were polymerized at 60 °C for 2–4 d. Polymerized samples were trimmed down to 
a narrow (1–2-mm diameter) rod using either an ultramicrotome or a fine saw and 
then glued to an aluminum pin. To smooth rough surfaces on the samples, which 
introduce noise into the XNH images, mounted samples were covered in a small 
droplet of resin, and the droplet was polymerized at 60 °C for 2–4 d.

For labeling APEX2-expressing cells (see below), we performed 
3,3′-diaminobenzidine (DAB) staining after fixation and before heavy metal 
staining. Briefly, the nervous system from an adult female was dissected, fixed 
(2% glutaraldehyde and 2% formaldehyde solution in 100 mM sodium cacodylate 
buffer with 0.04% CaCl2) at room temperature for 75 min and then moved to 4 °C 
for overnight fixation in the same solution. The next day, the sample was washed in 
cacodylate buffer and then 50 mM glycine in cacodylate buffer and then cacodylate 
buffer again. To stain APEX2-expressing cells, the sample was incubated with 
0.03% DAB in cacodylate buffer for 30 min, and then H2O2 was added directly 
to the incubating samples to reach an H2O2 concentration of 0.003%52. The 
reaction was allowed to continue for 30 min, after which the sample was washed 
in cacodylate buffer and inspected for visible staining product. Clusters of small 
brown puncta corresponding to the labeled nuclei were faintly visible (Extended 
Data Fig. 1g, top panel). The DAB and H2O2 incubations were repeated once  
more to increase the staining intensity. The sample was subsequently stained  
with 3-amino-1,2,4-triazole-reduced osmium4 and uranyl acetate and then 
dehydrated and embedded in LX112 resin.

We found that heavy metal staining, typical for EM studies51, improves 
membrane contrast in XNH images. However, heavy metal staining also increases 
X-ray absorption, causing heating and warping of the sample, thereby degrading 
image resolution. To counteract sample warping, we imaged in cryogenic 
conditions and optimized X-ray dosage to maximize signal but avoided excessive 
heating53. Samples that had major alignment artifacts due to warping or damage 
during X-ray imaging were excluded from further analysis.

We determined that, with optimal imaging conditions, even unstained tissue 
can generate sufficient contrast to trace large neurons (Extended Data Fig. 1h 
and Supplementary Video 6). The unstained sample (Extended Data Fig. 5b and 
Supplementary Video 6) was fixed in Karnovsky’s fixative, dehydrated in ethanol, 
cleared with xylene and embedded in paraffin. The embedded sample was trimmed 
down to a narrow (1–2-mm diameter) rod using a scalpel and inserted into a 
hollow aluminum pin with a 0.8-mm inner diameter for imaging.

Generation of nuclear-APEX2 flies. Based on the similarity between XNH and 
EM images, we reasoned that genetic labeling strategies previously developed for 
EM, such as APEX2 (refs. 52,54), could be adapted for XNH. We developed a fly 
reporter line that targets the peroxidase APEX2 (ref. 54) to cell nuclei (Methods) 
and demonstrated that labeled neurons could be identified in XNH datasets 
(Extended Data Fig. 5a).

To target APEX2 to the nucleus, we fused a targeting sequence 
consisting of a methionine and 38 amino acids of the Stinger sequence 
(MSRHRRHRQRSRSRNRSRSRSSERKRRQRSRSRSSERRR) to APEX2. The 
targeting sequence was first cloned into the pENTR vector and subsequently 
cloned by recombination using the Gateway system into a destination vector  
(gift from Frederik Wirtz-Peitz) containing UAS-attR-sbAPEX2-3xMyc. The 
resulting UAS-NLS-APEX2-Myc construct was used to generate a transgenic  
line by direct injection using φC31 site-specific integration at the attP40 docking 
site on chromosome 2.

To test whether APEX2-labeled cells could be identified via XNH imaging, 
we labeled GABAergic nuclei with APEX2. Fly lines containing the transgenes 
Gad1-p65AD, UAS-CD8-GFP and elav-Gal4DBD, UAS-CD8-GFP (gifts from 
Haluk Lacin) were crossed with the nuclear-APEX2 fly described above to generate 
flies with genotype w; elav-Gal4DBD, UAS-CD8-GFP / UAS-NLS-APEX2-Myc; 

Gad1-p65AD, UAS-CD8-GFP /+. The nervous system from a 5–6-day-old adult 
female fly was prepared for XNH imaging as described above.

To automatically detect APEX2-labeled cell nuclei in XNH images, a 3D 
random forest pixel classifier was created, trained and deployed using ilastik55. For 
training, a sparse set of pixel labels was interactively annotated for background 
pixels and labeled cell body pixels.

See Life Sciences Reporting Summary for more details.

Experimental setup and data acquisition. XNH imaging was performed at 
beamline ID16A at the ESRF in Grenoble, France. The end station of the beamline 
is placed 185 m from the undulator source for improved coherence. The X-ray 
beam was focused using fixed-curvature, multilayer-coated Kirkpatrick–Baez 
mirrors into a spot measuring about 15 nm at X-ray energy of 33.6 keV23 and 30 nm 
at 17 keV. The photon flux was on the order of 1–4 × 1011 ph s−1.

The sample stage and X-ray focusing optics were placed in a vacuum 
chamber (pressure ~10−8 mbar), and a liquid nitrogen-based cryogenic system 
was integrated inside the stage, keeping the sample at 120 K during imaging. For 
cryogenic imaging, the samples were transferred into the vacuum chamber with 
a Leica cryo-shuttle. The samples were placed on a high-precision rotation stage56 
downstream of the beam focus, and intensity projections (that is, holograms) were 
recorded using a FReLon 4,096 × 4,096 pixel charge-coupled device detector57 with 
2× binning, lens coupled to a 23-μm-thick GGG:Eu scintillator.

After traversing the sample, the beam was allowed to propagate and generate 
self-interference patterns (that is, holograms). The resulting intensity was recorded 
on the detector placed 1.2 m downstream of the sample. The divergent beam gives 
geometrical magnification M = (z1 + z2) / z1 with z1 = focus-to-sample distance and 
z2 = sample-to-detector distance. Therefore, the pixel size and the corresponding 
FOV are proportional to z1 when the detector position is fixed (Fig. 1b). For each 
scan, four tomographic series of projections (rotations of the sample over 180°) 
were recorded at different focus-to-sample distances. To eliminate ring artifacts in 
tomographic reconstructions, the samples were laterally displaced at each rotation 
angle by a randomly determined distance of up to 25 pixels using high-precision 
piezoelectric actuators24. For each tomographic scan of the mouse cortex, 1,800 
projections were recorded with exposure times of 0.1 s at X-ray energy 17 keV 
and 0.35 s at 33.6 keV. For the Drosophila scans at 17 keV, 2,000 projections were 
collected with 0.2-s exposure times.

Image reconstruction. The recorded holograms were initially pre-processed 
to compensate for distortions and noise specific to the optics and detector and 
normalized with the empty beam24. For each rotation angle, the four holograms 
corresponding to different propagation distances were aligned and brought to 
the same magnification. Normally, the holograms are cropped to the smallest 
FOV, corresponding to the targeted pixel size. To obtain an extended FOV, the 
information from the three larger FOVs at lower resolutions was integrated in the 
reconstruction as well.

From these sets of aligned holograms, phase maps were obtained through an 
iterative algorithm21,58–60. The initial approximations of the amplitude and phase 
were obtained through a method based on ref. 61, adapted for multiple propagation 
distance holograms59. For regularization, we used the ratio between the refractive 
index decrement δ and the absorption index β corresponding to osmium (δ/β = 27 
for X-ray energy 33.6 keV and δ/β = 9 for 17 keV). This regularization was used 
only to obtain the starting point of the iterative approach and only affects low 
spatial frequencies. At each iterative step, the amplitude term was kept constant, 
and the phase term was updated. Typically, ten iterations were sufficient for the 
phase term to converge. Computation time was approximately 15 min per phase 
map (single CPU node). Computation of the phase maps was done in parallel by 
treating the holograms for each rotation angle independently.

Lastly, a 3D image volume of the tissue was generated by combining the 
phase maps from all angles into a tomographic reconstruction using filtered 
back-projection62. Iterative computed tomography approaches and regularization 
were not used here. Because we acquire and combine four sets of angular 
projections at four different geometrical magnifications, we can use the lower 
resolution— larger FOV information to reconstruct extended FOV tomograms. In 
this case, the reconstructed volume is larger than the detector size (Supplementary 
Data Table 1); however, the image quality degrades gradually toward the edges of 
the extended field because less information is available (Extended Data Fig. 1d).

Resolution measurements. Although the voxel size is directly determined by the 
sample positioning, the effective resolution depends on multiple factors, including 
the focal point size and the coherence properties of the X-ray beam, mechanical 
stability, detector characteristics, sample composition and image reconstruction 
approach. To measure the effective resolution, we used FSC and edge fitting 
independently (see below) and found the results to be consistent.

FSC. To perform FSC25, we split the data into two independently acquired image 
volumes (see below) and measured the normalized cross-correlation coefficient 
between the two volumes over corresponding shells (size 6) in Fourier space. 
The intersection between the FSC line and the 1/2-bit threshold63 was used to 
determine the resolution (Extended Data Fig. 1c).
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The two image volumes were generated independently from half of the 
phase maps (even and odd phase projections were separated). FSC was applied 
by comparing chunks from the two image volumes at corresponding locations. 
The size of these chunks was varied to find a size at which the FSC metric was 
stable, which occurred at chunk sizes of ~2003 voxels or larger. Measurements on 
larger chunks (up to 1,0003 voxels) remained stable but took longer to compute. 
Computation was performed on evenly spaced chunks across the volume, 
excluding the regions containing only empty resin. Once the resolutions for all 
chunks were measured, the median and interquartile range (IQR) were calculated 
(Fig. 1h and Extended Data Fig. 1b).

For characterization of resolution within a single scan (Extended Data Fig. 1d), 
FSC was performed on image cubes containing 1003 voxels, and each cube was 
plotted separately.

Edge fitting. For measuring resolution by edge fitting, line paths perpendicular 
to sharp edges in the image volumes were annotated manually using CATMAID 
(Extended Data Fig. 1e,f, left)45,64. The image intensity along these line paths was 
then calculated using the pyMaid Python API (https://github.com/schlegelp/
pyMaid). The points along the line paths were fit to the sigmoid function:

p3 þ
p0
2

1� tanh
x � p1
p2

� �� �

where x is the length along the line path, and p1–4 are free parameters determined by 
nonlinear regression (Extended Data Fig. 1e,f, middle).

Given a fit to an edge, the measured resolution is given by:

res ¼ asech
2ffiffiffi
2

p p2j j
 

The fits to each line path were inspected, and poor fits were refit with  
different initial parameters or removed. Edge fitting was used in the 30-nm mouse 
cortex dataset (Extended Data Fig. 1e) and the 50-nm Drosophila VNC dataset 
(Extended Data Fig. 1f). For each dataset, 30 measurements were taken (Extended 
Data Fig. 1e,f, right). For purposes of comparison, we also applied edge fitting 
measurements to EM images of thin sections of Drosophila VNC (Extended  
Data Fig. 1g; 4-nm pixels and 45-nm-thick section).

Variability in measured resolution. In XNH data, resolution is generally better 
for scans with smaller voxel size (Fig. 1h). However, measured resolution was 
significantly larger than the voxel size, between 1.5 and 3.5 times the voxel size. 
In EM images of nervous tissue, the ratio of measured resolution to pixel size 
was similar (Extended Data Fig. 1g). As the voxel size is reduced, the resolution 
per voxel deteriorates (Extended Data Fig. 1b). This is due to a combination of 
factors, such as more challenging conditions for phase retrieval and tomographic 
reconstruction and higher risk of sample warping during the scan. The photon 
flux density increases with smaller voxel sizes, so limiting the radiation dose and 
imaging at cryogenic temperatures is more critical.

Sample-to-sample differences also affect the resolution. Sample density can 
affect beam absorption and heating, and the location of the FOV relative to the 
mounting pin can affect heat dissipation. For one sample (fly leg), we imaged 
the same FOV with different voxel sizes and found that the measured resolution 
improved monotonically with smaller voxel size (Extended Data Fig. 1h).

We found that the measured resolution was approximately uniform across the 
scan volumes (that is, the tomographic reconstruction did not introduce major 
anisotropy in the image quality) (Extended Data Fig. 1d). However, the resolution 
near the axis of rotation (the center of the cylinder) appeared slightly better. 
Also, areas in extended FOV (areas outside the detector size, beyond the red line 
in Extended Data Fig. 1d) exhibited slightly degraded resolution. There might 
also be variation in measured resolution intrinsic to the evaluation method. For 
example, regions of empty resin (devoid of structure) within a sample exhibited 
poor resolution when measured by FSC. These regions were excluded from FSC 
calculations (Fig. 1h, Extended Data Fig. 1b and Supplementary Data Table 1).

Post hoc EM imaging. After completing XNH imaging, samples were 
re-embedded in a block of resin and trimmed for thin sectioning. Serial thin 
sections (45–100 nm) were cut using a 35° diamond knife (DiATOME) and 
collected onto LUXFilm-coated copper grids (Luxel Corporation). Sections were 
imaged on a JEOL 1200EX transmission electron microscope (80-kV accelerating 
potential and 1,500× magnification), and images were acquired with a 20 MPix 
camera system (AMT Corp) at 4–12-nm pixels.

For the fly VNC sample, several thin sections, including the main leg nerve, 
were collected and imaged with TEM (Fig. 1i). The XNH image volume was 
rotated to match the orientation of the TEM sections using Neuroglancer (https://
github.com/google/neuroglancer). The TEM image of the leg nerve was elastically 
aligned to a single matching image taken from the XNH dataset using AlignTK 
(https://mmbios.pitt.edu/aligntk-home). Neurons in corresponding images from 
XNH and EM were independently segmented using the manual annotation 
software ITK-SNAP65 (www.itksnap.org) (Fig. 1i and Extended Data Fig. 1i). 
The segmentation generated from the EM image was taken as ground truth, and 

the accuracy of the XNH segmentation was calculated by comparing it to the 
EM segmentation. For each neuron, segmentation was considered correct if the 
number of overlapping pixels shared between the EM and XNH segmentation 
was greater than half of the number of pixels for the neuron in both XNH and 
EM segmentations (Extended Data Fig. 1i, right). The size of each neuron was 
approximated as the diameter of the largest circle centered at the neuron’s center 
of mass that could fit entirely within the neuron (Extended Data Fig. 1j). Note that 
this analysis used only two-dimensional image data; additional 3D information 
would likely improve performance.

For the PPC sample, a 3D EM dataset in the PPC (Fig. 2) was collected and 
imaged using the GridTape pipeline for automated serial section TEM66. To find 
the region of tissue imaged with XNH, 1-µm-thick histological sections were 
collected and compared with XNH virtual slices. Next, 250 thin sections (~45-nm 
thick) were collected onto GridTape for a total of 11-µm total thickness. For each 
section, a region of interest overlapping with the XNH imaged region was imaged 
using a customized JEOL 1200EX TEM outfitted with a reel-to-reel GridTape stage. 
Total EM imaging time was approximately 150 h. In the EM images, the tissue 
ultrastructure, including chemical synapses, remained well preserved after XNH 
imaging (Extended Data Fig. 2b, inset and arrows). The EM images also contained 
small cracks (orange arrows) and bubbles (inset and pink arrows), which might 
have resulted from XNH imaging. These minor artifacts did not affect our ability 
to analyze the data, but it is possible that they can be reduced or eliminated by 
modifying XNH imaging protocols. However, more correlative XNH–EM data are 
needed to understand the origin of microcracks and nanobubbles.

The EM images were stitched together and aligned into a continuous volume 
using the software AlignTK (https://mmbios.pitt.edu/software#aligntk). The 
XNH datasets were aligned to the EM volume via an affine transformation 
based on manually annotated correspondence points (annotated using BigWarp 
(https://imagej.net/BigWarp)). Data annotation (tracing of AD morphologies and 
annotation of synapses) was done with CATMAID45,64.

Image volume stitching. For each pair of XNH scan volumes with overlapping 
FOVs, correspondence points identifying the same feature in each scan were 
annotated manually using the ImageJ plugin BigWarp67 (https://imagej.net/
BigWarp). Translation–rotation–scaling matrices were calculated based on 
least-squares fitting of these correspondence points (~10–20 pairs per image 
volume) using custom MATLAB code and then applied to each image volume 
using the ImageJ plugin BigStitcher68. To avoid blurring from misalignments in 
regions where two scans overlap, image volumes were combined without blending 
in overlapping regions (custom Python code).

Data analysis—PPC. Manual tracing of neurons was performed by a team of two 
annotators using CATMAID45,64. All cell somata within the XNH volume were 
identified manually and classified as non-neuronal, pyramidal neuron or inhibitory 
neuron (Fig. 2e and Extended Data Fig. 2c)30,69,70. For a subset of pyramidal  
neurons distributed across layers II, III and V, the ADs were traced in the XNH 
volume up toward the superficial layers until they intersected the EM volume  
(Fig. 2b and Extended Data Fig. 2e). The same ADs were then identified in the  
EM volume based on their location and shape (Extended Data Fig. 2b). Within 
the EM volume, all incoming synapses to the AD were annotated as excitatory 
(targeting dendritic spines) or inhibitory (targeting dendritic shafts or spine necks) 
(Fig. 2d). Presynaptic axons, which were resolvable in the EM data but not the 
XNH data, were not traced. Pyramidal cells were classified as layer II, III or  
V based on the distance of their cell body from the layer I/II boundary, which was 
estimated as a plane above which the density of cell somata drops dramatically  
(Fig. 2b and Extended Data Fig. 2a). All tracing was reviewed independently  
by a second annotator to ensure accuracy.

To calculate synapse densities, we wrote custom Python code using the pyMaid 
Python API (https://github.com/schlegelp/pyMaid) to access the CATMAID 
database. To calculate synapse densities for a given AD (Fig. 2f), the total number 
of inhibitory or excitatory synapses found in the EM volume was divided by the 
total path-length of the AD within the EM volume. For these analyses, the location 
of the excitatory synapses was defined as the location of the base of the spine neck, 
and only the dendrite trunk (excluding the spines) was used for calculating the 
dendrite path-length. The inhibitory synapse fraction was defined as (number of 
inhibitory synapses / total number of synapses). To calculate synapse densities 
as a function of AD path-length (Fig. 2h–i and Extended Data Fig. 2g,h), each 
AD was split into fragments 10 µm in length, and the synapse densities were 
calculated for each fragment individually. The AD path-length was defined as the 
along-the-arbor distance from the center of the dendrite fragment to the soma 
(Fig. 2h–i) or initial bifurcation (Extended Data Fig. 2g,h).

Data analysis—Drosophila leg and VNC. Sensory receptors, muscle fibers 
and neurons were annotated manually using CATMAID45,64. Sensory receptors 
and muscle fibers were large enough to be clearly resolved in the XNH volume 
(50–75-nm voxels). Larger axons were also clearly resolved throughout the leg and 
VNC (motor neurons, coxal hair plate neurons and trochanteral campaniform 
sensilla neurons), but other smaller axons (bristle neurons in particular) were too 
small to be accurately traced. 3D visualizations were produced using ITK-SNAP 
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(Fig. 2c), the 3D viewer widget in CATMAID (Fig. 3, Extended Data Fig. 2e, 
Extended Data Fig. 3e–g,m,n and Extended Data Fig. 4d), Neuroglancer (Fig. 4  
and Extended Data Fig. 4j,k), Paraview (Fig. 1e and Extended Data Fig. 3a) or  
Fiji (Fig. 1f and Extended Data Fig. 3c).

Automated segmentation. We used an automated segmentation workflow based 
on a segmentation pipeline for TEM data41. The pipeline consists of two major 
steps: affinity prediction and agglomeration. In the affinity prediction step, a 
3D U-Net CNN was used to predict an affinity graph from the image data. The 
value of the affinity graph at any given voxel represents a pseudo-probability that 
adjacent voxels (in the x, y and z axes) are part of the same object. Adjacent voxels 
crossing object boundaries should have low affinity values, whereas voxels within 
neurons should have high affinity to the voxels surrounding them (including voxels 
contained in organelles or other subcellular structures).

Network training. To expedite training a CNN on XNH data, we leveraged  
a CNN first trained on ground truth EM volumes from the CREMI challenge 
(https://cremi.org/), followed by training augmentation with corrected 
segmentation predicted on XNH data. We began by training an initial network 
on the CREMI ground truth data (4 nm × 4 nm × 40 nm) downsampled to 
match the voxel size of the XNH data (50 nm × 50 nm × 50 nm). We deployed 
this CREMI-trained network on a training volume of XNH data (320 × 320 
× 300 voxels) and used Armitage (Google internal development software) to 
correct the voxel-wise segmentation for a sparse set of neurons. The network 
was then deployed on two more training volumes (200 × 200 × 200 voxels, one 
in the main leg nerve and one in the T1 neuropil), which were densely traced 
(via skeletonization, not voxel-wise) by human annotators (using CATMAID). 
Skeleton tracing was used in lieu of voxel-wise error correction because it can be 
completed in much less time and is less likely to introduce human errors in the 
training volumes. The tracing in these training volumes was used to correct errors 
in the candidate segmentation, and the corrected training volumes were then used 
to train the network further, resulting in the final network. The final network was 
then deployed on the entire dataset. Deploying the network on a server that has 
40 CPU cores and ten Nvidia GTX 2080 Ti graphics cards across the full dataset 
(1,792 × 3,584 × 3,200 voxels) took less than 10 min.

Neuron reconstruction and proofreading. We developed a proofreading workflow 
based on Neuroglancer (https://github.com/google/neuroglancer) to rapidly 
reconstruct and error correct neurons from automated segmentation. Although 
split and merge errors exist in the automated segmentation, such errors are usually 
easy for humans to recognize in 3D visualizations of reconstructed neurons. Thus, 
proofreading automated segmentation results is much faster than manual tracing.

For reconstruction and proofreading, a blocked segmentation methodology (in 
which the volume was divided into independent blocks of 2563 voxels) was used. 
Neurons were seeded by selecting a neuron fragment (contained within a single 
block) in the main leg nerve and sequentially grown by adding neuron fragments 
in adjacent blocks. During each growth step, the 3D morphology of the neuron was 
visualized and checked for errors. When merge errors occur, the blocks containing 
the merge are ‘frozen’ to prevent growth from the merged segment. When a neuron 
branch stops growing (has no continuations), the proofreader inspects the end of 
the branch to check from missed continuations (split errors). In this way, both split 
and merge errors can be corrected. In the fly VNC XNH dataset, neurons took 
about 10–30 min each to reconstruct and proofread.

Neuron classification. Neurons were classified as motor neurons or sensory neuron 
subtypes based on their location in the nerve and 3D morphology28,40,42,43. The 
reconstructed neurons are likely missing branches or continuations where they 
become too small to be resolved by XNH. However, in most cases, the large-scale 
branching patterns were sufficient to classify the neurons. We reconstructed 166 
neurons from seeds within the main leg nerve, out of which 66 were not clearly 
classified into a subtype and were excluded from Fig. 4f and Extended Data Fig. 
4c. These unclassified neurons tended to be small fragments that did not extend 
substantially into the VNC, typically because they became too small to be reliably 
segmented (see also Extended Data Fig. 1i, j).

Segmentation error quantification. To assess the accuracy of automated 
segmentation, we manually traced 90 neurons from the XNH data (CATMAID) 
and compared them to the automated segmentation results. For each neuron, a list 
of all skeleton node (manually placed)–segmentation fragment ID (automatically 
generated) pairs was generated. In a perfect segmentation, all skeleton nodes for a 
given skeleton would correspond to the same segmentation ID. For each manually 
generated skeleton (neuron), a split error was counted for each extra segmentation 
ID associated with nodes in that skeleton. Split errors that did not change the 
topology of the neuron were not counted. For each segmentation ID, a merge 
error was counted for each segmentation fragment that was paired with skeleton 
nodes from multiple different neurons. To accurately count the number of such 
merge errors, the blocked segmentation was used (see ‘Neuron reconstruction and 
proofreading’ above). This way, if two neurons are merged in two different places, 
it will count as two merge errors. It is worth noting that, in this calculation, merge 

errors are only counted between the subset of neurons for which we performed 
manual skeletonization. Therefore, if portions of nearby un-skeletonized neurons 
were merged into the segmentation of a skeletonized neuron, that error would not 
be detected here. Visual inspection of the segmentation results suggest that this 
type of error is not overly common, but, nevertheless, the counts of merge errors 
reported here are likely an underestimate of the true rate of merge errors. It is 
important to note that, in the neurons shown in Fig. 4f and Extended Data Fig. 4c, 
most split and merge errors were corrected via reconstruction and proofreading.

Statistics and reproducibility. The quality of XNH reconstructions depended 
on imaging settings and sample characteristics and was generally reproducible 
for a given set of parameters. For example, eight XNH scans of the same fly leg 
sample were recorded with the same imaging parameters with similar results 
(Supplementary Data Table 2). The 11 datasets reported in Fig. 1h, Supplementary 
Data Table 1 and Supplementary Videos are a representative sample of XNH 
reconstruction quality over a range of imaging and sample parameters. Scans 
acquired during exploratory experiments that yielded poor-quality data were not 
included for data analysis.

For statistical analysis in Fig. 2, the number of annotated neurons (n = 261) 
was calculated to ensure that a large number of sample points (>30) exist in  
each of the four sublayers (IIa, IIb, III and V). No a priori statistical power 
calculations were performed to determine sample size, but our sample sizes are 
larger than those reported in previous publications (ref. 27). For bootstrap analysis 
of variance (Fig. 2f), 1,000 synthetic samples were generated from each layer  
(layer IIa, layer IIb, layer III and layer V) by randomly selecting data points  
with replacement until the number matched the original dataset size. Then,  
the mean synapse density or inhibitory synapse fraction was calculated for  
all 1,000 synthetic samples. The plotted 95% confidence intervals plotted in  
Fig. 2f are the 2.5th and 97.5th percentile values from this distribution of synthetic 
sample means. This bootstrap analysis is a non-parametric test and does not 
assume normality or equal variances.

EM micrographs shown in Fig. 1i and Extended Data Fig. 1i are representative 
images. Ten similar thin sections were prepared and imaged with similar quality, 
although some sections showed physical damage sustained during the sectioning 
process. EM micrographs shown in Fig. 2d and Extended Data Fig. 2b are 
representative images. More than 2 million images with similar quality were 
recorded from this sample using automated EM, although some regions exhibited 
small cracks and bubbles, which might have been caused by prior XNH imaging.

This study involved detailed anatomical analysis of nervous tissue samples. In 
most analyses, we examined fundamental organizational principles of neuronal 
morphology and connectivity, rather than comparing experimental and control 
samples. Therefore, randomization was not necessary. Our data were not allocated 
into groups; thus, blinding was not applicable. Data collection and analysis were 
not performed blinded to the conditions of the experiments.

See Life Sciences Reporting Summary for more details.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data and materials availability
Raw XNH image data from this study are available in the following publicly 
accessible repositories:
1. BossDB (https://bossdb.org/)
https://bossdb.org/project/kuan_phelps2020
2. WebKnossos (https://webknossos.org/)
https://wklink.org/8122 (XNH_ESRF_mouseCortex_30nm)
https://wklink.org/7283 (XNH_ESRF_mouseCortex_40nm)
https://wklink.org/9034 (XNH_ESRF_drosophilaBrain_120nm)
https://wklink.org/6724 (XNH_ESRF_drosophilaVNC_50nm)
https://wklink.org/8452 (XNH_ESRF_drosophilaLeg_75nm)
3. ESRF (https://data.esrf.fr/public/10.15151/ESRF-DC-217728238) (anonymous 
login)
DOI: doi.esrf.fr/10.15151/ESRF-DC-217728238
Source data for Fig. 2e,f,h,i are provided with the paper.
See https://lee.hms.harvard.edu/resources for access to skeleton reconstructions  
via CATMAID.
Other datasets, as well as the fly reporter line for nuclear-targeted APEX2 
expression, are available from the corresponding authors upon reasonable request. 
Please contact joitapac@esrf.eu or wei-chung_lee@hms.harvard.edu.

Software and code availability
Code is available as described below or from the corresponding authors upon 
reasonable request. Please contact joitapac@esrf.eu or wei-chung_lee@hms.
harvard.edu.
Data collection
X-ray holographic nano-tomography data were acquired using custom code based 
on TANGO (https://www.tango-controls.org/about-us/#mission) and SPEC 
(https://www.certif.com/content/spec/) software packages.
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Data pre-processing
X-ray holographic nano-tomography data were reconstructed using custom 
code written in Octave (https://www.gnu.org/software/octave/) and the PyHST2 
software package (https://software.pan-data.eu/software/74/pyhst2). Stitching of 
XNH image volumes was performed using ImageJ (https://imagej.net, v. 1.52p) 
with the BigWarp and BigStitcher plugins. Alignment of serial EM images was 
performed with AlignTK (https://mmbios.pitt.edu/software#aligntk, v. 1.0.2). 
XNH and EM data were aligned to each other using BigWarp (https://imagej.net/
BigWarp).
Data analysis
FSC analysis was performed using custom code (https://github.com/jcesardasilva/
toupy/tree/master/toupy/resolution). Manual data segmentation of XNH and 
EM images was performed using ITK-SNAP (www.itksnap.org, v. 3.6.0). Manual 
data annotation (tracing) was performed using CATMAID (https://catmaid.
readthedocs.io, v. 2018.11.09-682-g811c25a) and queried using the pyMaid  
API (https://pymaid.readthedocs.io, https://github.com/schlegelp/pyMaid,  
v. 1.1.2). Neuron segmentation was performed using a custom CNN pipeline  
(see Methods). Ground truth training data were prepared using Armitage  
(Google internal development software) and CATMAID. Neurons were 
reconstructed from segmentation data using Neuroglancer (https://github.com/
google/neuroglancer, v. 1.1.5). Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | X-ray Holographic Nano-Tomography (XNH) Technique and Characterization. a, Overview of XNH imaging and preprocessing. 
Left: Holographic projections of the sample (a result of free-space propagation of the coherent X-ray beam) are recorded for each angle as the sample is 
rotated over 180°, then normalized with the incoming beam. Center left: Phase projections are calculated by computationally combining four normalized 
holograms recorded with the sample placed at different distances from the beam focus. Center right: Virtual slices through the 3D image volumes 
are calculated using tomographic reconstruction. Right: The resulting XNH image volume can be rendered in 3D and analyzed to reveal neuronal 
morphologies. b, Quantification of resolution of XNH scans measured using Fourier Shell Correlation (FSC), normalized by each scan’s pixel size. At larger 
pixel sizes, the resolution per pixel improves, though the resolution itself is worse (see Fig. 1h). Datapoints and error bars show mean ± IQR of subvolumes 
sampled from each XNH scan. Number of subvolumes used for each scan is shown in Supplementary Data Table 1. c, Representative FSC curve shown 
with the half-bit threshold. The intersection between the FSC curve and the threshold is the measured resolution. d, Quantification of resolution within 
the 30 nm mouse cortex scan. Each dot represents an FSC measurement of a 100 voxel3 cube. Blue line and shaded band represent binned averages 
and standard deviation, respectively. The x-axis is the radial position of the center of the cube (distance from the axis of rotation). The red dotted line 
indicates the boundary of the scan – data points to the right of the line are from extended field of view regions (Methods). e, f, Edge-fitting measurements 
of spatial resolution. Although FSC is commonly used to quantify resolution in many imaging modalities including X-ray imaging, its implementation 
is somewhat controversial63. To ensure that FSC measurements were accurate, we also used an independent measure of resolution based on fitting 
sharp edges in the images (see Methods), which produced values consistent with those measured via FSC. Left: Example features used for edge-fitting 
resolution measurement. For both (e) mouse cortex and (f) fly central nervous system, mitochondria were primarily selected because they have dark 
contrast and sharp boundaries. Center: Example line scan (image intensity values along the orange lines in the feature images). The measured resolution is 
parameterized from a best-fit to a sigmoid function (Methods). Right: Distribution of edge-fitting resolution measurements for many features distributed 
throughout the image volumes. n = 30 features measured as shown; boxes shows median and IQR and whiskers show range excluding outliers beyond 
1.5 IQR from the median. The median resolution measured via FSC is shown for comparison. g, Comparison of edge-fitting resolution measurements for 
two XNH scans and high-resolution transmission EM images. EM data was acquired from a ~40 nm thick section of Drosophila VNC tissue, imaged with 
4 nm pixels. Resolution is plotted in units of pixels. n = 30 features for each dataset; boxes shows median and IQR and whiskers show range excluding 
outliers beyond 1.5 IQR from the median. h, Comparison of XNH images acquired from the same FOV in the same sample (fly leg) at different voxel sizes. 
Within this range, the resolution improves monotonically, but not linearly, with voxel size. i, Comparison of XNH and EM segmentations. The XNH and EM 
images shown in Fig. 1i were independently segmented. Colored patches in the left two images represent different neurons in the segmentation. The EM 
segmentation was taken as ground truth, and the XNH segmentation for each neuron was evaluated. The right-most image shows correct and incorrectly 
segmented neurons. j, Quantification of XNH segmentation accuracy. The proportion of correctly segmentation neurons is plotted as a function of neuron 
size. Neurons larger then 200 nm diameter were segmented correctly more than 50% of the time. Note that this analysis used only 2D image data – 
additional 3D information would likely improve performance. In addition to the size of the neurons, the membrane contrast is also an important factor in 
accurately segmenting neurons in XNH. In a few cases, membranes between two axons were not clearly visible in XNH, causing them to be erroneously 
merged (i). Motor neurons in the leg nerve were also challenging to segment because they contain complex glial wrappings that are not always clearly 
resolved in XNH (i, right size of images).
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Extended Data Fig. 2 | Correlative XNH - eM analysis of the connectivity statistics of pyramidal apical dendrites in the posterior parietal cortex (PPC). 
a, 3D rendering of two aligned and stitched XNH datasets in the mouse PPC. Cell somata are colored in green (based on voxel brightness). Magenta plane 
indicates location of serial EM dataset. b, Aligned XNH virtual slice (left) and EM image (right) of the same region of cortical tissue (horizontal section). 
After XNH imaging and thin sectioning, the ultrastructure of the tissue remains well preserved, allowing identification of synapses (inset right, arrows). 
The EM images also showed small cracks (orange arrows) and bubbles (inset, pink arrows), which may have been caused by XNH imaging. c, Examples 
of pyramidal neurons (top), inhibitory interneurons (middle) and glia (bottom) from the XNH data. Cells types were identified by classic ultrastructural 
features30,69,70. Pyramidal cells were identified by their prominent apical dendrites, while glia were identified from the relative lack of cytoplasm in the somata 
and the presence of multiple darkly stained chromatin bundles near the edges of the nuclei. Images are 40 ×40 µm virtual coronal slices (100 nm thick).  
d, Histological slice of Nissl stained coronal section including posterior parietal cortex from the Allen Brain Atlas (http://atlas.brain-map.org/). Higher 
density of cells is evident at the top of layer II (consistent with Fig. 2e). e, Rendering of cells included in connectivity analysis. Apical dendrites were traced  
in the XNH data (yellow) from somata (colored spheres) up to the layer I/II boundary where we collected an EM volume (cyan). Although the EM volume 
only contains short (< 50 µm) fragments of each AD, combining data across hundreds of neurons allowed us to map synaptic I/E balance over hundreds  
of micrometers of path length (Fig. 2h-i). f, Histogram of locations (cortical depth) of traced cells used for analysis of synaptic inputs onto apical dendrites. 
g, Synapse densities (excitatory in blue, inhibitory in red) plotted as a function of path-length to the initial bifurcation (as opposed to cell soma in Fig. 2i-j).  
Each marker corresponds to one dendrite fragment 10 µm long. Lines and shaded areas indicate binned average (20 µm bins) and interquartile range 
(mean ± SE). h, Inhibitory synapse fraction plotted as a function of path-length to the initial bifurcation. Each marker corresponds to one dendrite fragment 
colored based on the soma type. Lines and shaded areas indicate binned average and interquartile range (mean ± SE) for each soma type individually.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Millimeter-scale imaging of a Drosophila leg at single-neuron resolution. a, 3D rendering of the dataset after individual scans were 
stitched together to form a continuous volume. b, The image volume was computationally unfolded (ImageJ) to reveal the entire 1.4 mm length of the main 
leg nerve. c, Volume rendering of the three hair plates that sense the thorax-coxa joint. The clusters are positioned differently within the joint, implying 
that they are sensitive to different joint angle ranges. d, Cross-section through the group of eight campaniform sensilla on the trochanter, revealing the 
underlying sensory neurons and their axons (blue, see Fig. 3c). e-g, Locations of sensory receptors in the leg. See also Supplementary Data Table 3. 
(e) Anterior view of external sensory structures. TiCSv1 and TiCSv2 are on the reverse (ventral) side of the tibia. (f) Posterior view of the trochanter, 
where large number of external mechanosensory structures reside. (g) Partially-transparent view of the leg revealing internal sensory structures (see 
Supplementary Data Table 3). Coxal stretch receptor: a previous report identified stretch receptor neurons in each of the distal leg segments (femur, tibia, 
and tarsus) that sense joint angles and are required for proper walking coordination35. We identified a neuron in the coxa whose morphology is consistent 
with the other stretch receptors and was possibly missed previously due to incomplete fluorescent labeling. This demonstrates that each major joint in 
the fly leg, and not only the distal joints, are monitored by a single stretch receptor neuron. Coxal strand receptor: we identified a single strand receptor 
in the coxa, innervated by a single sensory axon for which no cell body was visible in the leg. Strand receptor neurons are unique sensory neurons that 
have a cell body in the VNC instead of the leg71, but this type of neuron has only been previously identified in locusts and other orthopteran insects72. 
In this reconstruction, the strand receptor neuron’s axon enters the VNC through the accessory nerve, but could not be reconstructed back to its cell 
body in the VNC. h-k, Axons of some sensory neurons were large enough to reconstruct at the 150–200 nm resolution achieved here. Sensory neurons 
innervating coxal hair plates (cyan) and some trochanteral campaniform sensilla (blue) had axons with large diameters, similar in size to motor neuron 
axons (yellow). In contrast, axons of all chordotonal and bristle neurons were narrower. (h) Cross-section through the main leg nerve at the location 
indicated in (b). Axons from different sensory clusters bundle together. Two TrCS8 neurons have unusually large diameters (1050 nm and 850 nm, white 
circles; see Fig. 3c for full reconstruction of these axons). The remaining TrCS neurons have axon diameters of 430 ± 140 nm. Motor neurons (yellow) 
have diameters of 1-2 µm. The unresolved axons (areas indicated by red arrows) are chordotonal neurons and bristle neurons. (i) Cross-section through 
the ventral prothoracic nerve at the location indicated in (e). Axons from CoHP8 sensory neurons (blue, axon diameters of 1030 ± 90 nm) travel in this 
nerve, which also contains seven motor neuron axons (yellow), five of which innervate muscles in the coxa (left, axon diameters of 1140 ± 130 nm), and 
two of which innervate muscles in the thorax (left, axon diameters of 1880 and 2150 nm). The unresolved axons (red arrows) are likely bristle neurons. 
(j) Cross-section through the prothoracic accessory nerve at the location indicated in (e). Axons from CoHP4 sensory neurons (cyan, axon diameters of 
1140 ± 240 nm) travel in this nerve. Shown here is a cross-section through one of two major branches of the prothoracic accessory nerve. This branch also 
contains five motor neuron axons (yellow, axon diameters 1610 ± 240 nm). (k) Cross-section through the dorsal prothoracic nerve at the location indicated 
in (e). Axons from CoHP3 sensory neurons (cyan, axon diameters of 1380 ± 20 nm) enter the VNC through this nerve. Shown here is the branch of the 
dorsal prothoracic nerve containing only the CoHP3 axons. Panels (h-k) are slices through reconstructed XNH volumes with 75 nm pixel size, subsequently 
Gaussian blurred with an 0.3 pixel radius. Axon diameters are reported as mean ± SD. l, Cross-section through the tibia. The nerve is substantially smaller 
than in Fig. 3d-g as only a subset of leg neurons extend into the tibia. m, Top: Morphology of a single motor neuron axon (green dye fill) innervating muscle 
fibers (red phalloidin stain) in the femur (image from Azevedo et al.39). Each fly has a single motor neuron with this recognizable morphology39,40. Bottom: 
XNH reconstruction of a motor neuron axon having the same recognizable morphology as the neuron as shown in the top panel. Red cylinders represent 
individual muscle fibers. n, Left: Morphology of the motor neuron LinB-Tr2 (image from Baek & Mann 200940, Copyright 1999 Society for Neuroscience). 
This motor neuron is born from Lineage B, the second largest lineage of motor neurons. Right: XNH reconstruction of motor neuron axon having the same 
recognizable morphology as the neuron shown in the left panel. The thin terminal branches were not resolved in the XNH reconstruction. References:  
71 – Bräunig, P. & Hustert, R. Proprioceptors with central cell bodies in insects. Nature 283, 768–770 (1980). 72 – Bräunig, P. Strand receptors with central 
cell bodies in the proximal leg joints of orthopterous insects. Cell Tissue Res. 222, 647–654 (1982).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Automated Segmentation of Neuronal Morphologies using Convolutional Neural Networks (CNNs). a, Overview of XNH image 
volume encompassing the anterior half of the VNC and the first segment of a front leg of an adult Drosophila (200 nm voxels). A smaller, higher resolution 
(50 nm voxels) volume centered on the prothoracic (T1) neuromere of the VNC and including the initial segment of the leg nerve was used for automatic 
segmentation. b, Schematic of U-NET CNN architecture used for automated segmentation (adapted from41). Each blue arrow represents two successive 
convolutions. c, Morphological comparison of the motor neuron with the largest-diameter branches out of all front leg motor neurons, reconstructed from 
three different flies using different modalities. Arrows indicate the largest-diameter branches, which match well across the three reconstructions. Left: 
Reconstruction using automated segmentation of XNH images. Gray segment indicates a merge error that was corrected during proofreading (Methods). 
Middle: Reconstruction from LM images of a dye-filled motor neuron labeled by 81A07-Gal4. This motor neuron controls the tibia flexor muscle and 
produces the largest amount of force of any fly leg motor neuron yet identified39. Adapted from Azevedo et al.39. Right: Skeleton reconstruction from EM 
images. Adapted from Maniates-Selvin et al.28. d, Population of 90 neurons used for evaluating segmentation error rates. Skeletons were categorized 
based on their morphologies (as in Fig. 4f)40,42,43. White circle indicates the boundary of the T1 neuropil. A, anterior; P, posterior. e, Examples of merge 
and split errors. True membrane locations are shown in black. Errors usually result from incorrect prediction of which voxels correspond to membranes. 
f, Average error rates of segmentation for the 90 neurons shown in (f). Automated segmentation is parametrized by an agglomeration threshold that 
amounts to a trade-off between split and merge errors. Data points indicate split and merge error rates for different agglomeration thresholds (Methods). 
The ideal segmentation minimizes the time needed to identify and fix split and merge errors during proofreading (red arrow). Merge error calculations 
based on comparisons to sparse manual tracing are likely an underestimate of the true number of merge errors. Note that the human-annotated, ground 
truth segmentation of XNH data excludes some areas where features are too small to resolve; thus these error metrics for XNH segmentation may 
not be directly comparable to what has been reported for EM. g-j, Automated segmentation of XNH data in mouse cortex (primary somatosensory, 
layer 5, 30 nm voxels). (g) Raw data (h) Affinities (zyx corresponding to RGB colors). i, selected segmentation labels corresponding to (e). (j) Selected 
3D renderings of segmented neuron fragments. k, Large FOV segmentation of myelinated axons in the white matter below mouse parietal cortex. 
Segmentation of such myelinated axons can enable tracing of long-range inputs between brain areas at single-cell resolution.

NATuRe NeuRoSCieNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Technical RepoRTNaTurE NEuroScIENcE

Extended Data Fig. 5 | Additional staining approaches for XNH imaging. a, Top: Photograph of fly brain with GABAergic nuclei labeled with APEX2 
(arrows). Middle: XNH images (120 nm pixels, 15 µm thick minimum intensity projection) of the same fly brain after heavy metal staining, showing clusters 
of dark, APEX2 labeled GABAergic cell nuclei (arrows). Bottom: XNH virtual slice (120 nm thick) and output from an automated Random Forest image 
classifier trained to detect labeled cells (green). b, XNH data (105 nm voxels) of a Drosophila brain that did not undergo heavy metal staining. Even in 
unstained soft tissue, phase-contrast imaging provides enough signal that single neurons can still be resolved. FOV encompasses the optic lobe and half of 
the central brain. See Supplementary Video 6 and Methods.
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Raw XNH image data from this study are available in the following publicly accessible repositories: 

1. BossDB (https://bossdb.org/) 

   https://bossdb.org/project/Kuan_Phelps2020 

2. WebKnossos (https://webknossos.org/) 

   wklink.org/8122 XNH_ESRF_mouseCortex_30nm  

   wklink.org/7283 XNH_ESRF_mouseCortex_40nm  

   wklink.org/9034 XNH_ESRF_drosophilaBrain_120nm  

   wklink.org/6724 XNH_ESRF_drosophilaVNC_50nm   

   wklink.org/8452  XNH_ESRF_drosophilaLeg_75nm  

3. ESRF (https://data.esrf.fr/public/10.15151/ESRF-DC-217728238) (anonymous login) 

   doi: doi.esrf.fr/10.15151/ESRF-DC-217728238 

 

See https://lee.hms.harvard.edu/resources for access to skeleton reconstructions via CATMAID 
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Sample size Fig. 1: Number of samples to be imaged was determined based on available granted beamtime. 

Fig. 2: (f,g) Number of annotated neurons (n = 261) was calculated to ensure that a large number of sample points (> 30) exist in each of the 4 

sublayers (IIa, IIb, III, V). No a priori statistical power calculations were performed to determine sample size but our sample sizes are larger 

than those reported in previous publications (ref. 27). 

Fig. 4: Number of reconstructed neurons (n = 100) included most of the large-diameter neurons present in the prothoracic leg nerve that 

were amenable to rapid proof-reading. This sample was used to qualitatively demonstrate the variety of neuronal morphologies and was not 

used for statistical tests. 

Data exclusions Samples that had major alignment artifacts due to warping or damage during X-ray imaging were excluded.

Replication 11 samples were imaged (see Extended Data Table 1), including multiple samples of Drosophila brain and mouse cortex. Several of them were 

imaged multiple times (see Extended Data Table 2), although for different fields of view. Across these samples, were observed reproducible 

image quality. Due to limitations in synchrotron beamtime, we did not image the same field of view more than once with the same imaging 

parameters.

Randomization This study involved detailed anatomical analysis of nervous tissue samples. In most analyses, fundamental organizational principles of 

neuronal morphology and connectivity were examined, rather than comparing experimental and control samples. Therefore, randomization 

was not necessary.

Blinding Our data was not allocated into groups, thus blinding was not applicable.
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Laboratory animals Mus musculus, C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J, male, 32 weeks and C57BL/6, male, 28 weeks. Housed up to 4 per home 

cage at normal temperature and humidity on reverse light cycle.  

 

Drosophila melanogaster, w1118 background, female, 1-7 day old adults. 

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee and 

were performed in compliance with the Guide for Animal Care and Use of Laboratory Animals and the animal welfare guidelines of 

the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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