Main Menu (Mobile)- Block

Main Menu - Block


janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
node_title | node_title
node_body | node_body

Collaboration projects:

1.     Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex.

Nguyen AH, Thomsen ARB, Cahill TJ 3rd, Huang R, Huang LY, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D, Samaan F, Dandey VP, Tan YZ, Hong C, Mahoney JP, Triest S, Little J 4th, Chen X, Sunahara R, Steyaert J, Molina H, Yu Z, des Georges A, Lefkowitz RJ.

Nat Struct Mol Biol. 2019 Dec;26(12):1123-1131. doi: 10.1038/s41594-019-0330-y.

2.     Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.

Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM.

Cell. 2019 Nov 27;179(6):1319-1329.e8. doi: 10.1016/j.cell.2019.10.036.

3.     T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly.

Hu J, Worrall LJ, Vuckovic M, Hong C, Deng W, Atkinson CE, Brett Finlay B, Yu Z, Strynadka NCJ.

Nat Microbiol. 2019 Nov;4(11):2010-2019. doi: 10.1038/s41564-019-0545-z.

4.     Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry.

Majewski DD, Worrall LJ, Hong C, Atkinson CE, Vuckovic M, Watanabe N, Yu Z, Strynadka NCJ.

Nat Commun. 2019 Feb 7;10(1):626. doi: 10.1038/s41467-019-08477-7.

5.     Structure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complex.

Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, Healer J, Hodder AN, Kanjee U, Tonkin CJ, Heckmann D, Soroka V, Søgaard TMM, Jørgensen T, Duraisingh MT, Czabotar PE, de Jongh WA, Tham WH, Webb AI, Yu Z, Cowman AF.

Nature. 2019 Jan;565(7737):118-121. doi: 10.1038/s41586-018-0779-6.

6.     Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.

Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NCJ.

Nat Commun. 2018 Sep 21;9(1):3840. doi: 10.1038/s41467-018-06298-8.

7.     Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.

Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM.

Nature. 2018 Apr 5;556(7699):64-69.

8.     Cryo-EM structure of an essential Plasmodium vivax invasion complex.

Gruszczyk J, Huang RK, Chan LJ, Menant S, Hong C, Murphy JM, Mok YF, Griffin MDW, Pearson RD, Wong W, Cowman AF, Yu Z, Tham WH.

Nature. 2018. doi: 10.1038/s41586-018-0249-1.

9.     Best Practices for Managing Large CryoEM Facilities

Bart Alewijnse, Alun W. Ashton, Melissa G. Chambers, Songye Chen, Anchi Cheng, Mark Ebrahim, Edward Eng, Wim J. H. Hagen, Abraham J. Koster, Claudia S. López, Natalya Lukoyanova, Joaquin Ortega, Ludovic Renault, Steve Reyntjens, William J. Rice, Giovanna Scapin, Raymond Schrijver, Alistair Siebert, Scott M. Stagg, Valerie Grum-Tokars, Elizabeth R. Wright, Shenping Wu, Zhiheng Yu, Z. Hong Zhou, Bridget Carragher, Clinton S. Potter

J Struct Biol. 2017 Sep; 199(3): 225–236. doi: 10.1016/j.jsb.2017.07.011

10.  Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis.

Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA, Vuckovic M, Huang RK, Massoni SC, Camp AH, Yu Z, Strynadka NC.

Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7073-E7081. doi: 10.1073/pnas.1704310114.

11.     Structural basis of bacterial transcription activation.

Liu B, Hong C, Huang RK, Yu Z, Steitz TA.

Science. 2017;358(6365):947-951

12.     Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.

Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC.

Nature. 2016; 540:597-601.


Representative publications with data obtained at the facility:


13.  In vivo structure of the Legionella type II secretion system by electron cryotomography.

Ghosal D, Kim KW, Zheng H, Kaplan M, Truchan HK, Lopez AE, McIntire IE, Vogel JP, Cianciotto NP, Jensen GJ.

Nat Microbiol. 2019 Dec;4(12):2101-2108. doi: 10.1038/s41564-019-0603-6.


14.  Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.

Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB, Marto JA, Engen JR, Rapoport TA.

Science. 2019 Aug 2;365(6452). pii: eaax1033. doi: 10.1126/science.aax1033.


15.  Coupling of ATPase activity, microtubule binding, and mechanics in the dynein motor domain.

Niekamp S, Coudray N, Zhang N, Vale RD, Bhabha G.

EMBO J. 2019 Jul 1;38(13):e101414. doi: 10.15252/embj.2018101414.


16.  Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS.

Ghosal D, Jeong KC, Chang YW, Gyore J, Teng L, Gardner A, Vogel JP, Jensen GJ.

Nat Microbiol. 2019 Jul;4(7):1173-1182. doi: 10.1038/s41564-019-0427-4.


17.  Cryo-EM Studies of TMEM16F Calcium-Activated Ion Channel Suggest Features Important for Lipid Scrambling.

Feng S, Dang S, Han TW, Ye W, Jin P, Cheng T, Li J, Jan YN, Jan LY, Cheng Y.

Cell Rep. 2019 Jul 30;28(5):1385. doi: 10.1016/j.celrep.2019.07.052.


18.  Transposon molecular domestication and the evolution of the RAG recombinase.

Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG.

Nature. 2019 May;569(7754):79-84. doi: 10.1038/s41586-019-1093-7.


19.  eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response.

Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, Tsai JC, Miller-Vedam LE, Walter P, Frost A.

Science. 2019 May 3;364(6439):491-495. doi: 10.1126/science.aaw2922.


20.  Structural insight into TRPV5 channel function and modulation.

Dang S, van Goor MK, Asarnow D, Wang Y, Julius D, Cheng Y, van der Wijst J.

Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8869-8878. doi: 10.1073/pnas.1820323116.


21.  The complete structure of the human TFIIH core complex.

Greber BJ, Toso DB, Fang J, Nogales E.

Elife. 2019 Mar 12;8. pii: e44771. doi: 10.7554/eLife.44771.


22.  Cryo-EM of retinoschisin branched networks suggests an intercellular adhesive scaffold in the retina.

Heymann JB, Vijayasarathy C, Huang RK, Dearborn AD, Sieving PA, Steven AC.

J Cell Biol. 2019 Mar 4;218(3):1027-1038. doi: 10.1083/jcb.201806148.


23.  Structure of the post-translational protein translocation machinery of the ER membrane.

Wu X, Cabanos C, Rapoport TA.

Nature. 2019 Feb;566(7742):136-139. doi: 10.1038/s41586-018-0856-x.


24.  Cryo-electron microscopy structure of the lipid droplet-formation protein seipin.

Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV Jr, Walther TC.

J Cell Biol. 2018 Dec 3;217(12):4080-4091. doi: 10.1083/jcb.201809067.


25.  Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition.

Ruhe ZC, Subramanian P, Song K, Nguyen JY, Stevens TA, Low DA, Jensen GJ, Hayes CS.

Cell. 2018 Nov 1;175(4):921-933.e14. doi: 10.1016/j.cell.2018.10.033.


26.  Structural Basis for Cholesterol Transport-like Activity of the Hedgehog Receptor Patched.

Zhang Y, Bulkley DP, Xin Y, Roberts KJ, Asarnow DE, Sharma A, Myers BR, Cho W, Cheng Y, Beachy PA.

Cell. 2018 Nov 15;175(5):1352-1364.e14. doi: 10.1016/j.cell.2018.10.026.


27.  Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor.

Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E.

Cell. 2018 Nov 29;175(6):1520-1532.e15. doi: 10.1016/j.cell.2018.10.043.


28.  Partially Open HIV1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion.

Wang H, Barnes CO, Yang Z, Nussenzweig MC, Bjorkman PJ.

Cell Host Microbe.2018 Oct 10;24(4):579-592.e4. doi: 10.1016/j.chom.2018.09.003.


29.  Structural principles of SNARE complex recognition by the AAA+ protein NSF.

White KI, Zhao M, Choi UB, Pfuetzner RA, Brunger AT.

Elife. 2018 Sep 10;7. pii: e38888. doi: 10.7554/eLife.38888.


30.  Structural basis for activation of voltage sensor domains in an ion channel TPC1.

Kintzer AF, Green EM, Dominik PK, Bridges M, Armache JP, Deneka D, Kim SS, Hubbell W, Kossiakoff AA, Cheng Y, Stroud RM.

Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9095-E9104. doi: 10.1073/pnas.1805651115.


31.  Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5.

Ge J, Elferich J, Goehring A, Zhao H, Schuck P, Gouaux E.

Elife. 2018 Aug 2;7. pii: e38770. doi: 10.7554/eLife.38770.


32.  Cryo-EM structure of the polycystin 2-l1 ion channel.

Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE.

Elife. 2018 Jul 13;7. pii: e36931. doi: 10.7554/eLife.36931.


33.  Conformational control and DNA-binding mechanism of the metazoan origin recognition complex.

Bleichert F, Leitner A, Aebersold R, Botchan MR, Berger JM.

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5906-E5915. doi: 10.1073/pnas.1806315115.


34.  Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface.

Jenni S, Harrison SC.

Science. 2018 May 4;360(6388):552-558. doi: 10.1126/science.aar6436.


35.  Structures of human PRC2 with its cofactors AEBP2 and JARID2.

Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R, Nogales E.

Science. 2018 Feb 23;359(6378):940-944. doi: 10.1126/science.aar5700.


36.  3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound.

Brignole EJ, Tsai KL, Chittuluru J, Li H, Aye Y, Penczek PA, Stubbe J, Drennan CL, Asturias F.

Elife. 2018 Feb 20;7. pii: e31502. doi: 10.7554/eLife.31502.


37.  Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation.

Kim Y, Chen J.

Science. 2018 Feb 23;359(6378):915-919.


38.  Integrative structure and functional anatomy of a nuclear pore complex.

Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP.

Nature. 2018 Mar 22;555(7697):475-482.


39.  Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors.

Regan MC, Grant T, McDaniel MJ, Karakas E, Zhang J, Traynelis SF, Grigorieff N, Furukawa H.

Neuron. 2018 May 2;98(3):521-529.e3.


40.  Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.

Tsai JC, Miller-Vedam LE, Anand AA, Jaishankar P, Nguyen HC, Renslo AR, Frost A, Walter P.

Science. 2018 Mar 30;359(6383).


41.  Physical basis of amyloid fibril polymorphism.

Close W, Neumann M, Schmidt A, Hora M, Annamalai K, Schmidt M, Reif B, Schmidt V, Grigorieff N, Fändrich M.

Nat Commun. 2018 Feb 16;9(1):699.


42.  Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbühler K, Ye W, Qi L, Chen T, Craik CS, Jan YN, Minor DL Jr, Cheng Y, Jan LY.

Nature. 2017 Dec 21;552(7685):426-429.


43.  Decoding the centromeric nucleosome through CENP-N.

Pentakota S, Zhou K, Smith C, Maffini S, Petrovic A, Morgan GP, Weir JR, Vetter IR, Musacchio A, Luger K.

Elife. 2017 Dec 27;6. pii: e33442


44.  Structure of RNA polymerase bound to ribosomal 30S subunit.

Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, Grigorieff N, Nudler E, Korostelev AA.

Elife. 2017 Oct 13;6. pii: e28560.


45.  The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. 

Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E, Vance RE.

Science. 2017;358(6365):888-893.


46.  Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.

Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, Vale RD.

Cell. 2017;169(2):273-285.


47.  Ensemble cryo-EM elucidates the mechanism of translation fidelity.

Loveland AB, Demo G, Grigorieff N, Korostelev AA.

Nature. 2017;546(7656):113-117

48.  Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3.

Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M.

Nature. 2017 Aug 17;548(7667):352-355. doi: 10.1038/nature23314.

49.  Disabling Cas9 by an anti-CRISPR DNA mimic.

Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA.

Sci Adv. 2017;3(7):e1701620.

50.  Structural Bases of Desensitization in AMPA Receptor-Auxiliary Subunit Complexes.

Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI.

Neuron. 2017; 94(3):569-580

51.  Regulation of Rvb1/Rvb2 by a Domain within the INO80 Chromatin Remodeling Complex Implicates the Yeast Rvbs as Protein Assembly Chaperones.

Zhou CY, Stoddard CI, Johnston JB, Trnka MJ, Echeverria I, Palovcak E, Sali A, Burlingame AL, Cheng Y, Narlikar GJ.

Cell Rep. 2017;19(10):2033-2044.

52.  Asymmetric recognition of HIV-1 Envelope trimer by V1V2 loop-targeting antibodies.

Wang H, Gristick HB, Scharf L, West AP, Galimidi RP, Seaman MS, Freund NT, Nussenzweig MC, Bjorkman PJ.

Elife. 2017;6. pii: e27389


53.  Electron cryo-microscopy structure of the mechanotransduction channel NOMPC.

Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan LY, Jan YN, Cheng Y.

Nature. 2017 Jul 6;547(7661):118-122.

54.  Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1.

Yuan Z, Riera A, Bai L, Sun J, Nandi S, Spanos C, Chen ZA, Barbon M, Rappsilber J, Stillman B, Speck C, Li H.

Nat Struct Mol Biol. 2017;24(3):316-324

55.  Single-protein detection in crowded molecular environments in cryo-EM images.

Rickgauer JP, Grigorieff N, Denk W.

Elife. 2017;6. pii: e25648.

56.  Structure of the active form of human origin recognition complex and its ATPase motor module.

Tocilj A, On KF, Yuan Z, Sun J, Elkayam E, Li H, Stillman B, Joshua-Tor L.

Elife. 2017;6. pii: e20818.

57.  Structural Titration of Slo2.2, a Na+-Dependent K+ Channel.

Hite RK, MacKinnon R.

Cell. 2017;168(3):390-399.

58.  Structural basis of cooperativity in kinesin revealed by 3D reconstruction of a two-head-bound state on microtubules.

Liu D, Liu X, Shang Z, Sindelar CV.

Elife. 2017;6. pii: e24490.

59.  Cryo-electron tomography reveals novel features of a viral RNA replication compartment.

Ertel KJ, Benefield D, Castaño-Diez D, Pennington JG, Horswill M, den Boon JA, Otegui MS, Ahlquist P.

Elife. 2017;6. pii: e25940.

60.  CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody-Antigen Interface.

Liu Y, Pan J, Jenni S, Raymond DD, Caradonna T, Do KT, Schmidt AG, Harrison SC, Grigorieff N.

J Mol Biol. 2017;429(12):1829-1839.

61.  Conformational States of a Soluble, Uncleaved HIV-1 Envelope Trimer.

Liu Y, Pan J, Cai Y, Grigorieff N, Harrison SC, Chen B.

J Virol. 2017;91(10). pii: e00175-17.

62.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.

Zhang Z, Chen J.

Cell. 2016 Dec 1;167(6):1586-1597.


63.  Structural basis for gating the high-conductance Ca2+-activated K+ channel.

Hite RK, Tao X, MacKinnon R.

Nature. 2016 Dec 14. doi: 10.1038/nature20775.

64.  Structure of the transporter associated with antigen processing trapped by herpes simplex virus.

Oldham ML, Grigorieff N, Chen J.

Elife. 2016 Dec 9;5. pii: e21829. doi: 10.7554/eLife.21829.


65.  A near atomic structure of the active human apoptosome.

Cheng TC, Hong C, Akey IV, Yuan S, Akey CW.

Elife. 2016 Oct 4;5. pii: e17755.


66.  A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation.

Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW.

Structure. 2016 Nov 16. pii: S0969-2126(16)30342-2.


67.  Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop.

Wang H, Cohen AA, Galimidi RP, Gristick HB, Jensen GJ, Bjorkman PJ.

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7151-E7158.


68.  Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit.

Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Ramesh M, Espina N, Sun M, Tutuncuoglu B, Madison-Antenucci S, Woolford JL Jr, Tong L, Frank J.

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12174-12179.


69.  Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase.

Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, Rubinstein JL.

Nature. 2016 Oct 24:1-5. doi: 10.1038


70.  Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM.

Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Espina N, Madison-Antenucci S, Tong L, Frank J.

Protein Sci. 2016 Oct 17. doi: 10.1002/pro.3068.


71.  DNA Targeting by a Minimal CRISPR RNA-Guided Cascade.

Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA.

Mol Cell. 2016 Sep 1;63(5):840-51.


72.  Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation.

Hussain T, Llácer JL, Wimberly BT, Kieft JS, Ramakrishnan V.

Cell. 2016 Sep 22;167(1):133-144.e13.


73.  Design of a hyperstable 60-subunit protein icosahedron.

Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang PS, Ravichandran R, Yi S, Davis TN, Gonen T, King NP, Baker D.

Nature. 2016 Jul 7;535(7610):136-9.


74.  Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM.

Briegel A, Ortega DR, Mann P, Kjær A, Ringgaard S, Jensen GJ.,

Proc Natl Acad Sci U S A. 2016;113(37):10412-7


75.  Ribosome•RelA structures reveal the mechanism of stringent response activation.

Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, Korostelev AA.

Elife. 2016;5. pii: e17029.


76.  Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM.

Zhao Y, Chen S, Yoshioka C, Baconguis I, Gouaux E.,

Nature. 2016 doi: 10.1038/nature18961.


77.  Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy.

Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI.,

Science. 2016, 353(6294):83-6.


78.  Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA.,

Science. 2016, 351:867-71.


79.  Mechanism of NMDA Receptor Inhibition and Activation.

Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, Gouaux E.,

Cell. 2016, 165:704-14.


80.  Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome.

Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA,

Elife. 2016, 5. pii: e14874.


81.  Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.

Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H,

Nature, 2016,  doi: 10.1038/nature17679


82.  Architecture of the type IVa pilus machine.

Chang YW, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ.

Science. 2016, 351(6278): aad2001.


83.  Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation.

Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H;

Nature Structural and Molecular Biology, 2016, 23:217-24


84.  A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter.

Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J;

Nature, 2016, 529:537-40.


85.  Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel.

Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R;

Nature, 2015, 527:198-203.


86.  Glycine receptor mechanism elucidated by electron cryo-microscopy.

Du J, Lü W, Wu S, Cheng Y, Gouaux E;

Nature, 2015, 526:224-9.


87.  Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning.

Taylor DW, Zhu Y, Staals RH, Kornfeld JE, Shinkai A, van der Oost J, Nogales E, Doudna JA;

Science, 2015,348:581-5.


88.  Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G.

Li W, Liu Z, Koripella RK, Langlois R, Sanyal S, Frank J;

Science Advances, 2015, 1(4). pii: e1500169.


89.  Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces.

Gonen S, DiMaio F, Gonen T, Baker D;

Science, 2015, 348:1365-8.


90.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6.

Grant T, Grigorieff N;

Elife, 2015, 4:e06980.


91.  Electron cryotomography studies of maturing HIV-1 particles reveal the assembly pathway of the viral core.

Woodward CL, Cheng SN, Jensen GJ;

J Virol, 2015,89:1267-77.


92.  Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures.

Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK;

Science, 2014, 343:529-33.


93.  Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling.

Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, Fowler DJ, Chang YW, Thompson LK, Armitage JP, Jensen GJ;

Elife, 2014, 3:e02151.


94.  Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center.

Koh CS, Brilot AF, Grigorieff N, Korostelev AA;

Proc Natl Acad Sci U S A, 2014, 111(25):9139-44.


95.  Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations.

Svidritskiy E, Brilot AF, Koh CS, Grigorieff N, Korostelev AA;

Structure, 2014 Aug 5;22(8):1210-8.


96.  Structural basis for the prion-like MAVS filaments in antiviral innate immunity.

Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX;

Elife, 2014,3:e01489.


97.  New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography.

Briegel A, Wong ML, Hodges HL, Oikonomou CM, Piasta KN, Harris MJ, Fowler DJ, Thompson LK, Falke JJ, Kiessling LL, Jensen GJ;

Biochemistry, 2014, 53(10):1575-85.


98.  Structure of the ribosome with elongation factor G trapped in the pretranslocation state.

Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N;

Proc Natl Acad Sci U S A, 2013, 110(52):20994-9.