Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Priming is a process by which exposure to a stimulus affects the response to a subsequent stimulus in humans. In this study we found that in Drosophila, a prior encounter with an aversive stimulus results in enhanced preference for a following novel odor, while an appetitive stimulus leads to reduced preference for a new odor. This priming behavior of flies relies on the well-studied olfactory memory circuits including Kenyon cells (KC), dopaminergic neurons (DANs), and mushroom body output neurons (MBONs). Aversive stimulus results in increased odor responses in reward DANs that innervate the γ4 lobe of the mushroom body (MB) and decreased odor responses in a γ4γ5-innvervating repulsive MBON. We concluded that these neurons are required for the priming effects in flies. These results characterized the newly found priming behavior in flies and demonstrated the sheer influence of unconditioned stimulus on odor perception during associative learning.

