Main Menu (Mobile)- Block

Main Menu - Block

Hess Lab

janelia7_blocks-janelia7_secondary_menu | block
More in this Lab Landing Page
custom_misc-custom_misc_lab_updates | block
node:field_content_header | entity_field
Research Ambition
node:field_content_summary | entity_field
We aim to understand and transcend bioimaging challenges.
Two programs characterize this effort: 
node:body | entity_field

I. Super-Resolution Optical Microscopy for Three Dimensions: iPALM & CLEM

iPALM: Majority of biological problems are 3-dimensional. However, most of the original super-resolution microscopy methods only had high resolution in lateral plane, and suffered substantially poorer resolution in axial (z-) direction. We developed an interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy (PALM) with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. Watch a video of the personal story of how PALM was invented by Harald Hess and Eric Betzig.

CLEM: Correlative light and electron microscopy (CLEM) is attractive because it exploits two microscopy techniques that give very different and very complementary information. By combining light microscopy (LM) and electron microscopy (EM), one is able to achieve protein specific localization in the context of a global structure. We develop different correlative optical super-resolution and electron microscopy methods optimized for various types of biological problems and sample configurations.

II. High-Throughput Electron Microscopy for Three Dimensions: 3D FIB-SEM

3D FIB-SEM: Full neuronal circuit reconstruction demands high resolution and high throughput in all three dimensions. Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) generates 3D images with isotropic voxels well below 10x10x10 nm3. However, the key barriers to wide adoption are the slower imaging speed and lack of long-term system stability, which in turn limit the maximum acquisition volume. Here we develop an innovative customized solution overcoming these barriers and paving the way for 3D FIB-SEM to become the mainstream imaging solution for connectomics. We have successfully sped up the image acquisition and implemented a stabilizing control-automation mechanism, thus improving the system reliability. These improvements have enabled the extension of the continuous imaged volume to more than 100x100x100 µm3 while maintaining 8x8x8 nm voxel resolution, with the system operating for several months seamlessly. Alternatively, image volume can be traded off for even finer resolution, for example a continuous volume of ~ 30x30x30 µm3 at 4x4x4 nm voxel resolution can be easily accommodated.  We note that the ultimate volume size could be further extended with the aid of ultrathick partitioning. The greater ease of automated processing of such isotropic voxel data can improve the imbalance in connectomics studies pipeline among image acquisition, analysis, and the large human proof reading effort.  Some exemplary data sets illustrating unique access to cell biology are also presented. The extended regime of fine resolution and total volume will arm researchers with a powerful new technique accelerating discoveries in connectomics and cell biology.
node:field_pullquote_text | entity_field

In the long history of humankind (and animal kind too) those who learned to collaborate and improvise most effectively have prevailed.
Charles Darwin
(1809-1882)

janelia7_blocks-janelia7_block_right_hand_rail | block

 

 

 

 

By harnessing and introducing new technologies that are relevant, we bridge diverse fields, nucleate collaborations, and foster innovations. We hope our technologies can be your window to new discoveries. If you are inspired by our research, please contact us for collaboration!