Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
The lateral line system displays highly divergent patterns in adult teleost fish. The mechanisms underlying this variability are poorly understood. Here, we demonstrate that the lateral line mechanoreceptor, the neuromast, gives rise to a series of accessory neuromasts by a serial budding process during postembryonic development in zebrafish. We also show that accessory neuromast formation is highly correlated to the development of underlying dermal structures such as bones and scales. Abnormalities in opercular bone morphogenesis, in endothelin 1-knockdown embryos, are accompanied by stereotypic errors in neuromast budding and positioning, further demonstrating the tight correlation between the patterning of neuromasts and of the underlying dermal bones. In medaka, where scales form between peridermis and opercular bones, the lateral line displays a scale-specific pattern which is never observed in zebrafish. These results strongly suggest a control of postembryonic neuromast patterns by underlying dermal structures. This dermal control may explain some aspects of the evolution of lateral line patterns.