Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Spiking neural networks (SNNs) offer a promising paradigm for modeling brain dynamics and developing neuromorphic intelligence, yet an online learning system capable of training rich spiking dynamics over long horizons with low memory footprints has been missing. Existing online approaches either incur quadratic memory growth, sacrifice biological fidelity through oversimplified models, or lack end-to-end automated tooling. Here, we introduce BrainTrace, a model-agnostic, linear-memory, and automated online learning system for spiking neural networks. BrainTrace standardizes model specification to encompass diverse neuronal and synaptic dynamics; implements a linear-memory online learning rule by exploiting intrinsic properties of spiking dynamics; and provides a compiler that automatically generates optimized online-learning code for arbitrary user-defined models. Across diverse dynamics and tasks, BrainTrace achieves strong learning performance with a low memory footprint and high computational throughput. Critically, these properties enable online fitting of a whole-brain-scale Drosophila SNN that recapitulates region-level functional activity. By reconciling generality, efficiency, and usability, BrainTrace establishes a foundation for spiking network modeling at scale.

