Filter
Associated Lab
Publication Date
Type of Publication
2 Publications
Showing 1-2 of 2 resultsMaintaining physiological homeostasis requires a complex interplay among endocrine organs, peripheral tissues, and distributed neuroendocrine control circuits, all of which are coupled through feedback loops that operate over minutes to hours. Although many physiological needs are broadcast through hormones, metabolites, and other chemical compounds circulating in the bloodstream, we rarely observe more than a few of these messengers together and at high cadence during behavior. To address this, we developed a minimally disruptive workflow to measure the free fraction of hundreds of amines and small peptides at a 7.5-minute cadence for \~8 hrs in freely moving mice using chronic jugular microdialysis implants and chemical isotope labeling Liquid Chromatography-Mass Spectrometry. Single-compound profiles behave according to known physiology, such as purine turnover correlating with movement, delayed histamine/5-HIAA changes, and coordinated amino-acid dynamics. Our multiplexed measures enable high-dimensional analyses that uncover properties of the underlying dynamics. For example, systems-level analyses show that 10 dimensions explain over 70% of the variance in hormone/metabolite covariation, consistent with a low rank description of the physiological state space, with projections aligned to locomotion state transitions. Our work opens avenues for the discovery of hormonal dynamics, compound interactions, and their effects on behavior.
Animals evolved in complex environments, producing a wide range of behaviors, including navigation, foraging, prey capture, and conspecific interactions, which vary over timescales ranging from milliseconds to days. Historically, these behaviors have been the focus of study for ecology and ethology, while systems neuroscience has largely focused on short timescale behaviors that can be repeated thousands of times and occur in highly artificial environments. Thanks to recent advances in machine learning, miniaturization, and computation, it is newly possible to study freely moving animals in more natural conditions while applying systems techniques: performing temporally specific perturbations, modeling behavioral strategies, and recording from large numbers of neurons while animals are freely moving. The authors of this review are a group of scientists with deep appreciation for the common aims of systems neuroscience, ecology, and ethology. We believe it is an extremely exciting time to be a neuroscientist, as we have an opportunity to grow as a field, to embrace interdisciplinary, open, collaborative research to provide new insights and allow researchers to link knowledge across disciplines, species, and scales. Here we discuss the origins of ethology, ecology, and systems neuroscience in the context of our own work and highlight how combining approaches across these fields has provided fresh insights into our research. We hope this review facilitates some of these interactions and alliances and helps us all do even better science, together.
