Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4132 Publications

Showing 1-10 of 4132 results
08/21/25 | A protein tunnel helps stressed lysosomes swell.
Lippincott-Schwartz J
Science. 2025 Aug 21;389(6762):782-783. doi: 10.1126/science.aea5377

The endoplasmic reticulum donates lipids through a tunnel-like protein to help lysosomes expand.

View Publication Page
08/22/25 | An essential experimental control for functional connectivity mapping with optogenetics.
David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
Genetics. 2025 Aug 22:. doi: 10.1093/genetics/iyaf174

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments in Drosophila, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into multiple genomic locations. While these false-positive signals may complicate the interpretation of functional connectivity experiments, we illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

View Publication Page
08/06/25 | An expanded palette of bright and photostable organellar Ca2+ sensors
Moret A, Farrants H, Fan R, Zingg KG, Silva B, Roselli C, Oertner TG, Gee CE, Hadjieconomou D, Rangaraju V, Schreiter ER, de Juan-Sanz J
eLife. 2025 Aug 26:. doi: 10.7554/elife.107845.1

The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources has been hindered by the lack of bright, photostable, and multiplexed measurements in different organelles, limiting our ability to define how Ca2+ shapes cell physiology across fields of biology. Here we introduce a new toolkit of chemigenetic organellar Ca2+ indicators whose color is tunable by reconstituting their fluorescence with different exogenous rhodamine dye-ligands, which significantly expand the capacity for multiplexing organellar Ca2+ measurements. These sensors, which we named ER-HaloCaMP and Mito-HaloCaMP, are optimized to report Ca2+dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons, and show significantly improved brightness, photostability and responsiveness when compared to current best-in-class alternatives. Using either red or far-red dye-ligands, both ER-HaloCaMP and Mito-HaloCaMP enable visualizing ER and mitochondrial Ca2+ dynamics in neuronal axons, a subcellular location that only contains a few ER tubules and small mitochondria, structural limitations that have impaired measurements with previous red sensors. To show the expanded multiplexing capacities of our toolkit, we measured interorganellar Ca2+ fluxes simultaneously in three different subcellular compartments in live cells, revealing that the amplitude of ER Ca2+release controls the efficacy of ER-mitochondria Ca2+ coupling in a cooperative manner. Organellar HaloCaMPs enable also measuring Ca2+ dynamics in intact brain tissue from flies and rodents, demonstrating their versatility across biological models. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling across fields of biology in health and disease.

View Publication Page
08/22/25 | Imaging cellular activity simultaneously across all organs of a vertebrate reveals body-wide circuits
Ruetten VM, Zheng W, Siwanowicz I, Mensh BD, Eddison M, Hu A, Chi Y, Lemire AL, Guo C, Kadobianskyi M, Renz M, Lelek-Greskovic S, He Y, Close K, Ihrke G, Dev A, Petruncio A, Wan Y, Engert F, Fishman MC, Judkewitz B, Rubinov M, Keller PJ, Satou C, Yu G, Tillberg PW, Sahani M, Ahrens MB
bioRxiv. 2025 August 22:. doi: 10.1101/2025.08.20.670374

All cells in an animal collectively ensure, moment-to-moment, the survival of the whole organism in the face of environmental stressors1,2. Physiology seeks to elucidate the intricate network of interactions that sustain life, which often span multiple organs, cell types, and timescales, but a major challenge lies in the inability to simultaneously record time-varying cellular activity throughout the entire body.We developed WHOLISTIC, a method to image second-timescale, time-varying intracellular dynamics across cell-types of the vertebrate body. By advancing and integrating volumetric fluorescence microscopy, machine learning, and pancellular transgenic expression of calcium sensors in transparent young Danio rerio (zebrafish) and adult Danionella, the method enables real-time recording of cellular dynamics across the organism. Calcium is a universal intracellular messenger, with a large array of cellular processes depending on changes in calcium concentration across varying time-scales, making it an ideal proxy of cellular activity3.Using this platform to screen the dynamics of all cells in the body, we discovered unexpected responses of specific cell types to stimuli, such as chondrocyte reactions to cold, meningeal responses to ketamine, and state-dependent activity, such as oscillatory ependymal-cell activity during periods of extended motor quiescence. At the organ scale, the method uncovered pulsating traveling waves along the kidney nephron. At the multi-organ scale, we uncovered muscle synergies and independencies, as well as muscle-organ interactions. Integration with optogenetics allowed us to all-optically determine the causal direction of brain-body interactions. At the whole-organism scale, the method captured the rapid brainstem-controlled redistribution of blood flow across the body.Finally, we advanced Whole-Body Expansion Microscopy4 to provide ground-truth molecular and ultrastructural anatomical context, explaining the spatiotemporal structure of activity captured by WHOLISTIC. Together, these innovations establish a new paradigm for systems biology, bridging cellular and organismal physiology, with broad implications for both fundamental research and drug discovery.

View Publication Page
08/26/25 | RABGAP1 is a sensor that facilitates the sorting and processing of amyloid precursor protein
Eden J, Kaufman JG, Pereira C, Fox E, Cattin-Ortolá J, Benedetti L, Nieuwenhuis B, Owen DJ, Lippincott-Schwartz J, Munro S, Gershlick DC
The EMBO Journal. 2026 Aug 26:1-20. doi: 10.1038/s44318-025-00530-0

A hallmark of Alzheimer’s disease (AD) is the accumulation of extracellular amyloid-β plaques in the brain. Amyloid-β is a 40–42 amino acid peptide generated by proteolytic processing of amyloid precursor protein (APP) via membrane-bound proteases. APP is a transmembrane protein, and its trafficking to sites of proteolysis represents a rate-limiting step in AD progression. Although APP processing has been well-studied, its trafficking itinerary and machinery remain incompletely understood. To address this, we performed an unbiased interaction screen for interactors of the APP cytosolic tail. We identified previously characterised APP binders as well as novel interactors, including RABGAP1. We demonstrated that RABGAP1 partially co-localises with APP and directly interacts with a YENPTY motif in the APP cytosolic tail. Depletion or overexpression of RABGAP1 caused mistrafficking and misprocessing of endogenous APP in human and rodent neurons. This effect is dependent on the GAP activity of RABGAP1, demonstrating that RABGAP1 affects the trafficking of APP by modulating RAB activity on endosomal subdomains. This novel trafficking mechanism has implications for other NPXY cargoes and presents a possible therapeutic avenue to explore.

View Publication Page
08/25/25 | Supraspinal commands have a modular organization that is behavioral context specific.
Lau JY, Fitzgerald JE, Bianco IH
Curr Biol. 2025 Aug 21:. doi: 10.1016/j.cub.2025.07.066

Animals generate a range of locomotor patterns that subserve diverse behaviors, and in vertebrates, the required supraspinal commands derive from reticulospinal neurons in the brainstem. Yet how these commands are encoded across the reticulospinal population is unknown, making it unclear whether a universal control logic generates the full locomotor repertoire or if distinct sets of command modules might compose movement in different behavioral contexts. Here, we used calcium imaging, high-resolution behavior tracking, and statistical modeling to comprehensively survey reticulospinal activity and relate single-cell activity to movement kinematics as larval zebrafish generated a broad diversity of swim types. We found that reticulospinal population activity had a low-dimensional organization and identified 8 functional archetypes that provided a succinct and robust encoding of the full range of locomotor actions. Across much of locomotor space, 5 functional archetypes supported multiplexed control of swim speed and independent control of direction, whereas an independent set of 3 functional archetypes controlled the specialized swims that zebrafish use during hunting to orient toward prey. Overall, our study reveals a modular supraspinal control architecture that is partitioned according to behavioral context.

View Publication Page
08/23/25 | Time-deterministic cryo-optical microscopy.
Tsuji K, Yamanaka M, Kumamoto Y, Tamura S, Miyamura W, Kubo T, Mizushima K, Kono K, Hirano H, Shiozaki M, Zhao X, Xi H, Sugiura K, Fukushima S, Kunimoto T, Tanabe Y, Nishida K, Mochizuki K, Harada Y, Smith NI, Heintzmann R, Yu Z, Wang MC, Nagai T, Tanaka H, Fujita K
Light Sci Appl. 2025 Aug 23;14(1):275. doi: 10.1038/s41377-025-01941-8

Fluorescence microscopy enables the visualization of cellular morphology, molecular distribution, ion distribution, and their dynamic behaviors during biological processes. Enhancing the signal-to-noise ratio (SNR) in fluorescence imaging improves the quantification accuracy and spatial resolution; however, achieving high SNR at fast image acquisition rates, which is often required to observe cellular dynamics, still remains a challenge. In this study, we developed a technique to rapidly freeze biological cells in milliseconds during optical microscopy observation. Compared to chemical fixation, rapid freezing provides rapid immobilization of samples while more effectively preserving the morphology and conditions of cells. This technique combines the advantages of both live-cell and cryofixation microscopy, i.e., temporal dynamics and high SNR snapshots of selected moments, and is demonstrated by fluorescence and Raman microscopy with high spatial resolution and quantification under low temperature conditions. Furthermore, we also demonstrated that intracellular calcium dynamics can be frozen rapidly and visualized using fluorescent ion indicators, suggesting that ion distribution and conformation of the probe molecules can be fixed both spatially and temporally. These results confirmed that our technique can time-deterministically suspend and visualize cellular dynamics while preserving molecular and ionic states, indicating the potential to provide detailed insights into sample dynamics with improved spatial resolution and temporal accuracy in observations.

View Publication Page
08/08/25 | Aurora 2.0: A Fluorogenic Dye Library for Expanding the Capability of Protein-Adaptive Differential Scanning Fluorimetry (paDSF).
Charvat AF, Mason-Chalmers K, Grabinska-Rogala A, Shivakumar S, Gale-Day Z, Wu T, Millbern Z, Grimm J, Carroll EC, Nilsson P, Lavis L, Vinueza NR, Gestwicki JE
SLAS Discov. 2025 Aug 8:100259. doi: 10.1016/j.slasd.2025.100259

Differential Scanning Fluorimetry (DSF) is a biophysical assay that is used to estimate protein stability in vitro. In a DSF experiment, the increased fluorescence of a solvatochromatic dye, such as Sypro Orange, is used to detect the unfolding of a protein during heating. However, Sypro Orange is only compatible with a minority of proteins (< 30%), limiting the scope of this method. We recently reported that protein-adaptive DSF (paDSF) can partially solve this problem, wherein the protein is initially pre-screened against ∼300 chemically diverse dyes, termed the Aurora collection. While this approach significantly improves the number of targets amenable to DSF, it still fails to produce protein-dye pairs for some proteins. Here, we report the expansion of the dye collection to Aurora 2.0, which includes a total of 517 structurally diverse molecules and multiple new chemotypes. To assess performance, these dyes were screened against a panel of ∼100 proteins, which were selected, in part, to represent the most challenging targets (e.g. small size). From this effort, Aurora 2.0 achieved an impressive success rate of 94%, including producing dyes for some targets that were not matched in the original collection. These findings support the idea that larger, more chemically diverse libraries improve the likelihood of detecting melting transitions across a wider range of proteins. We propose that Aurora 2.0 makes paDSF an increasingly powerful method for studying protein stability, ligand binding and other biophysical properties in high throughput.

View Publication Page
08/03/25 | Design of Orthogonal Far-Red, Orange and Green Fluorophore-binding Proteins for Multiplex Imaging
Tran L, Sharma S, Klein S, Jurgens D, Decarreau J, Liu B, Wang Y, Bera AK, Kang A, Woods J, Joyce E, Vafeados DK, Roullier N, Chen W, Lee GR, Mahamid J, Lavis LD, An L, Baker D
bioRxiv. 2025 Aug 03:. doi: 10.1101/2025.08.03.668343

Fluorescent proteins have transformed biological imaging, yet their limited photostability and brightness restrict their applications. We used deep learning-based de novo protein design methods to design binders to three bright, stable and cell-permeable dyes spanning the imaging spectrum: JF657 (far red), JF596 (orange-red) and JF494 (green). We obtain highly specific dye-binding proteins with low nanomolar affinities for the intended target; a crystal structure of one binder confirms close resemblance to the design model. Simultaneous labeling of mammalian cells expressing three dye-specific binders at different subcellular compartments demonstrates the utility in multiplex imaging. We further expand the functionality of the binder by incorporating an active site that carries out nucleophilic aromatic substitution to form a covalent linkage with the dye, and develop split versions which reconstitute fluorescence at subcellular locations where both halves are present towards monitoring in-cell protein interactions and chemically induced dimerization. Our designed high affinity and specificity dye binders open up new opportunities for multiplexed biological imaging.

View Publication Page
08/06/25 | PEELing: an integrated and user-centric platform for cell-surface proteomics analysis
Xi Peng , Jody Clements , Zuzhi Jiang , Stephan Preibisch , Jiefu Li
Bioinformatics. 2025 Aug 6:. doi: 10.1093/bioinformatics/btaf439

Summary: Molecular compartmentalization is vital for cellular physiology. Spatially-resolved proteomics allows biologists to survey protein composition and dynamics with subcellular resolution. Here we present PEELing, an integrated package and user-friendly web service for analyzing spatially-resolved proteomics data. PEELing assesses data quality using curated or user-defined references, performs cutoff analysis to remove contaminants, connects to databases for functional annotation, and generates data visualizations-providing a streamlined and reproducible workflow to explore spatially-resolved proteomics data.

Availability and implementation: PEELing and its tutorial are publicly available at https://peeling.janelia.org/ (Zenodo DOI: 10.5281/zenodo.15692517). A Python package of PEELing is available at https://github.com/JaneliaSciComp/peeling/ (Zenodo DOI: 10.5281/zenodo.15692434).

Contact: Technical support for PEELing: peeling@janelia.hhmi.org.

bioRxiv Preprint: https://doi.org/10.1101/2023.04.21.537871

View Publication Page