Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4072 Publications

Showing 1-10 of 4072 results
05/13/25 | Quantitative spatial analysis of chromatin biomolecular condensates using cryoelectron tomography.
Zhou H, Hutchings J, Shiozaki M, Zhao X, Doolittle LK, Yang S, Yan R, Jean N, Riggi M, Yu Z, Villa E, Rosen MK
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2426449122. doi: 10.1073/pnas.2426449122

Phase separation is an important mechanism to generate certain biomolecular condensates and organize the cell interior. Condensate formation and function remain incompletely understood due to difficulties in visualizing the condensate interior at high resolution. Here, we analyzed the structure of biochemically reconstituted chromatin condensates through cryoelectron tomography. We found that traditional blotting methods of sample preparation were inadequate, and high-pressure freezing plus focused ion beam milling was essential to maintain condensate integrity. To identify densely packed molecules within the condensate, we integrated deep learning-based segmentation with context-aware template matching. Our approaches were developed on chromatin condensates and were also effective on condensed regions of in situ native chromatin. Using these methods, we determined the average structure of nucleosomes to 6.1 and 12 Å resolution in reconstituted and native systems, respectively, found that nucleosomes form heterogeneous interaction networks in both cases, and gained insight into the molecular origins of surface tension in chromatin condensates. Our methods should be applicable to biomolecular condensates containing large and distinctive components in both biochemical reconstitutions and certain cellular systems.

Preprint: https://www.biorxiv.org/content/10.1101/2024.12.01.626131v2

View Publication Page
Integrative Imaging
05/06/25 | Challenges of microscopy technology dissemination to resource-constrained communities.
Aaron JS, Jacobs CA, Malacrida L, Keppler A, French P, Fletcher DA, Wood C, Brown CM, Wright GD, Ogawa S, Maina M, Chew T
Nat Methods. 2025 May 06:. doi: 10.1038/s41592-025-02690-7

No abstract available.

View Publication Page
05/06/25 | History of hypoxia exposure aids future cell invasion according to cell type and collagen density.
Almeida JA, Avila DB, Longmore GD, Pathak A
Mol Biol Cell. 2025 May 06:mbcE24120580. doi: 10.1091/mbc.E24-12-0580

In cancer progression, tumor microenvironments progressively become denser and hypoxic, and cell migrate toward higher oxygen levels as they invade across the tumor-stromal boundary. While cell invasion dependence on optimal collagen density is well appreciated, it remains unclear whether past oxygen conditions alter future invasion phenotype of cells. Here, we show that normal human mammary epithelial cells (MCF10A) and leader-like human breast tumor cells (BT549) undergo higher rates of invasion and collagen deformation after past exposure to hypoxia, compared to normoxia controls. Upon increasing collagen density by ∼50%, cell invasion under normoxia reduced, as expected due to the increased matrix crowding. However, surprisingly, past hypoxia increased cell invasion in future normoxic dense collagen, with more pronounced invasion of cancer cells. This culmination of cancer-related conditions of hypoxia history, tumor cell, and denser collagen led to more aggressive invasion phenotypes. We found that hypoxia-primed cancer cells produce laminin332, a basement membrane protein required for cell-matrix adhesions, which could explain the additional adhesion feedback from the matrix that led to invasion after hypoxia priming. Depletion of Cdh3 disrupts the hypoxia-dependent laminin production and thus disables the rise in rates of cancer cell invasion and collagen deformation caused by hypoxia memory. These findings highlight the importance of considering past oxygen conditions in combination with current mechanical composition of tissues to better understand tumor invasion in physically evolving tumor microenvironments.

View Publication Page
05/02/25 | Chromatix: a differentiable, GPU-accelerated wave-optics library
Deb D, Both G, Bezzam E, Kohli A, Yang S, Chaware A, Allier C, Cai C, Anderberg G, Eybposh MH, Schneider MC, Heintzmann R, Rivera-Sanchez FA, Simmerer C, Meng G, Tormes-Vaquerano J, Han S, Shanmugavel SC, Maruvada T, Yang X, Kim Y, Diederich B, Joo C, Waller L, Durr NJ, Pégard NC, La Rivière PJ, Horstmeyer R, Chowdhury S, Turaga SC
bioRxiv. 2025 May 2:. doi: 10.1101/2025.04.29.651152

Modern microscopy methods incorporate computational modeling of optical systems as an integral part of the imaging process, either to solve inverse problems or enable optimization of the optical system design. These methods often depend on differentiable simulations of optical systems, yet no standardized framework exists—forcing computational optics researchers to repeatedly and independently implement simulations that are prone to errors, difficult to reuse in other applications, and often computationally suboptimal. These common problems limit the potential impact of computational optics as a field. We present Chromatix: an open-source, GPU-accelerated differentiable wave optics library. Chromatix builds on JAX to enable fast simulation of diverse optical systems and inverse problem solving, scaling these simulations from single-CPU laptops to multi-GPU servers. The library implements various optical elements (e.g., lenses, polarizers and spatial light modulators) and multiple light propagation models (e.g., Fresnel approximation, angular spectrum and off-axis propagation) that can be flexibly combined to model various computational optics applications such as snapshot microscopy, holography, and phase retrieval of multiple scattering samples. These simulations can be automatically parallelized to scale across multiple GPUs with a single-line change to the modeling code, enabling simulation and optimization of previously impractical optical system designs. We demonstrate Chromatix’s capacity to substantially accelerate optics simulation and optimization on existing methods in computational optics, speeding up optical simulation and optimization from 2-6× on a single GPU to up to 22× on 8 GPUs (depending on the particular system being modeled) compared to the original implementations. Chromatix establishes a standard for wave optics simulations, democratizing access to and expanding the design space of computational optics.i

View Publication Page
05/01/25 | A competitive disinhibitory network for robust optic flow processing in Drosophila
Mert Erginkaya , Tomás Cruz , Margarida Brotas , Kathrin Steck , Aljoscha Nern , Filipa Torrão , Nélia Varela , Davi Bock , Michael Reiser , M Eugenia Chiappe
Nat Neurosci.. 2025 may 1:. doi: 10.1038/s41593-025-01948-9

Many animals navigate using optic flow, detecting rotational image velocity differences between their eyes to adjust direction. Forward locomotion produces strong symmetric translational optic flow that can mask these differences, yet the brain efficiently extracts these binocular asymmetries for course control. In Drosophila melanogaster, monocular horizontal system neurons facilitate detection of binocular asymmetries and contribute to steering. To understand these functions, we reconstructed horizontal system cells' central network using electron microscopy datasets, revealing convergent visual inputs, a recurrent inhibitory middle layer and a divergent output layer projecting to the ventral nerve cord and deeper brain regions. Two-photon imaging, GABA receptor manipulations and modeling, showed that lateral disinhibition reduces the output's translational sensitivity while enhancing its rotational selectivity. Unilateral manipulations confirmed the role of interneurons and descending outputs in steering. These findings establish competitive disinhibition as a key circuit mechanism for detecting rotational motion during translation, supporting navigation in dynamic environments.

Preprint: https://doi.org/10.1101/2023.08.06.552150

View Publication Page
05/01/25 | Cellpose-SAM: superhuman generalization for cellular segmentation
Pachitariu M, Rariden M, Stringer C
bioRxiv. 2025 May 1:. doi: 10.1101/2025.04.28.651001

Modern algorithms for biological segmentation can match inter-human agreement in annotation quality. This however is not a performance bound: a hypothetical human-consensus segmentation could reduce error rates in half. To obtain a model that generalizes better we adapted the pretrained transformer backbone of a foundation model (SAM) to the Cellpose framework. The resulting Cellpose-SAM model substantially outperforms inter-human agreement and approaches the human-consensus bound. We increase generalization performance further by making the model robust to channel shuffling, cell size, shot noise, downsampling, isotropic and anisotropic blur. The new model can be readily adopted into the Cellpose ecosystem which includes finetuning, human-in-the-loop training, image restoration and 3D segmentation approaches. These properties establish Cellpose-SAM as a foundation model for biological segmentation.

View Publication Page
Card Lab
04/30/25 | Comparative connectomics of Drosophila descending and ascending neurons.
Stürner T, Brooks P, Serratosa Capdevila L, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Marin EC, Schlegel P, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu S, McKellar CE, Sterling A, Seung HS, Murthy M, Tuthill JC, Lee WA, Card GM, Costa M, Jefferis GS, Eichler K
Nature. 2025 Apr 30:. doi: 10.1038/s41586-025-08925-z

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and an information bottleneck connecting the brain and the ventral nerve cord (an analogue of the spinal cord) and comprises diverse populations of descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Here, by integrating three separate electron microscopy (EM) datasets, we provide a complete connectomic description of the ANs and DNs of the Drosophila female nervous system and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions are matched across hemispheres, datasets and sexes. Crucially, we also match 51% of DN cell types to light-level data defining specific driver lines, as well as classifying all ascending populations. We use these results to reveal the anatomical and circuit logic of neck connective neurons. We observe connected chains of DNs and ANs spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analyses of selected circuits for reproductive behaviours, including male courtship (DNa12; also known as aSP22) and song production (AN neurons from hemilineage 08B) and female ovipositor extrusion (DNp13). Our work provides EM-level circuit analyses that span the entire central nervous system of an adult animal.

View Publication Page
04/29/25 | Molecular organization of central cholinergic synapses.
Rosenthal JS, Zhang D, Yin J, Long C, Yang G, Li Y, Lu Z, Li W, Yu Z, Li J, Yuan Q
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422173122. doi: 10.1073/pnas.2422173122

Synapses have undergone significant diversification and adaptation, contributing to the complexity of the central nervous system. Understanding their molecular architecture is essential for deciphering the brain's functional evolution. While nicotinic acetylcholine receptors (nAchRs) are widely distributed across metazoan brains, their associated protein networks remain poorly characterized. Using in vivo proximity labeling, we generated proteomic maps of subunit-specific nAchR interactomes in developing and mature brains. Our findings reveal a developmental expansion and reconfiguration of the nAchR interactome. Proteome profiling with genetic perturbations showed that removing individual nAchR subunits consistently triggers compensatory shifts in receptor subtypes, highlighting mechanisms of synaptic plasticity. We also identified the Rho-GTPase regulator Still life (Sif) as a key organizer of cholinergic synapses, with loss of Sif disrupting their molecular composition and structural integrity. These results provide molecular insights into the development and plasticity of central cholinergic synapses, advancing our understanding of synaptic identity conservation and divergence.

View Publication Page
04/23/25 | Whole-body simulation of realistic fruit fly locomotion with deep reinforcement learning
Roman Vaxenburg , Igor Siwanowicz , Josh Merel , Alice A Robie , Carmen Morrow , Guido Novati , Zinovia Stefanidi , Gwyneth M Card , Michael B Reiser , Matthew M Botvinick , Kristin M Branson , Yuval Tassa , Srinivas C Turaga
Nature. 2025 Apr 23:. doi: 10.1038/s41586-025-09029-4

The body of an animal influences how its nervous system generates behavior1. Accurately modeling the neural control of sensorimotor behavior requires an anatomically detailed biomechanical representation of the body. Here, we introduce a whole-body model of the fruit fly Drosophila melanogaster in a physics simulator. Designed as a general-purpose framework, our model enables the simulation of diverse fly behaviors, including both terrestrial and aerial locomotion. We validate its versatility by replicating realistic walking and flight behaviors. To support these behaviors, we develop new phenomenological models for fluid and adhesion forces. Using data-driven, end-to-end reinforcement learning we train neural network controllers capable of generating naturalistic locomotion along complex trajectories in response to high-level steering commands. Additionally, we show the use of visual sensors and hierarchical motor control, training a high-level controller to reuse a pre-trained low-level flight controller to perform visually guided flight tasks. Our model serves as an open-source platform for studying the neural control of sensorimotor behavior in an embodied context.

 

Preprint: www.biorxiv.org/content/early/2024/03/14/2024.03.11.584515

View Publication Page
04/22/25 | TEMI: Tissue Expansion Mass Spectrometry Imaging
Zhang H, Ding L, Hu A, Shi X, Huang P, Lu H, Tillberg PW, Wang MC, Li L
Nat Methods. 2025 Apr 22:. doi: 10.1101/2025.02.22.639343

The spatial distribution of diverse biomolecules in multicellular organisms is essential for their physiological functions. High-throughput in situ mapping of biomolecules is crucial for both basic and medical research, and requires high scanning speed, spatial resolution, and chemical sensitivity. Here, we developed a Tissue Expansion method compatible with matrix-assisted laser desorption/ionization Mass spectrometry Imaging (TEMI). TEMI reaches single-cell spatial resolution without sacrificing voxel throughput and enables the profiling of hundreds of biomolecules, including lipids, metabolites, peptides (proteins), and N-glycans. Using TEMI, we mapped the spatial distribution of biomolecules across various mammalian tissues and uncovered metabolic heterogeneity in tumors. TEMI can be easily adapted and broadly applied in biological and medical research, to advance spatial multi-omics profiling.

Preprint: 10.1101/2025.02.22.639343

View Publication Page