Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4079 Publications

Showing 4061-4070 of 4079 results
Card Lab
08/01/20 | Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies.
Kim H, Horigome M, Ishikawa Y, Li F, Lauritzen JS, Card G, Bock DD, Kamikouchi A
Journal of Comparative Neurology. 2020 Aug 01;528(12):2068. doi: 10.1002/cne.24877

Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies. This article is protected by copyright. All rights reserved.

View Publication Page
01/23/17 | Wiring the Drosophila brain with individually tailored neural lineages.
Lee T
Current Biology : CB. 2017 Jan 23;27(2):R77-R82. doi: 10.1016/j.cub.2016.12.026

A complex brain consists of multiple intricate neural networks assembled from distinct sets of input and output neurons as well as region-specific local interneurons. Within a given anatomical set, there exist diverse neuronal types that can vary in morphology, neural physiology, and modes of neurotransmission. The genetic programs that guide specification of neuronal types during neurogenesis preconfigure the brain. This is best demonstrated in the Drosophila central brain, which is composed of ∼100 pairs of individually tailored neuronal lineages. Each neuronal lineage (the neurons/glia produced from a single stem cell) can contain multiple morphological classes of neurons that can consist of many analogous neuronal types. The detailed patterns of neuronal diversification are lineage-specific and can differ drastically even among neighboring neuronal lineages. Furthermore, the interrelationships between neuronal lineages and neural networks are complex. These phenomena underscore the importance of tracking all neuronal lineages in understanding brain development and evolution.

View Publication Page
06/15/06 | Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning.
Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, Luo L
Neuron. 2006 Jun 15;50(6):883-95. doi: 10.1016/j.neuron.2006.05.013

Axon pruning by degeneration remodels exuberant axonal connections and is widely required for the development of proper circuitry in the nervous system from insects to mammals. Developmental axon degeneration morphologically resembles injury-induced Wallerian degeneration, suggesting similar underlying mechanisms. As previously reported for mice, we show that Wlds protein substantially delays Wallerian degeneration in flies. Surprisingly, Wlds has no effect on naturally occurring developmental axon degeneration in flies or mice, although it protects against injury-induced degeneration of the same axons at the same developmental age. By contrast, the ubiquitin-proteasome system is intrinsically required for both developmental and injury-induced axon degeneration. We also show that the glial cell surface receptor Draper is required for efficient clearance of axon fragments during developmental axon degeneration, similar to its function in injury-induced degeneration. Thus, mechanistically, naturally occurring developmental axon pruning by degeneration and injury-induced axon degeneration differ significantly in early steps, but may converge onto a common execution pathway.

View Publication Page
Tjian Lab
01/06/09 | Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo.
Wright KJ, Tjian R
Proceedings of the National Academy of Sciences of the United States of America. 2009 Jan 6;106(1):55-60. doi: 10.1073/pnas.1100640108

Understanding the diverse activities of the multisubunit core promoter recognition complex TFIID in vivo requires knowledge of how individual subunits contribute to overall functions of this TATA box-binding protein (TBP)/TBP-associated factor (TAF) complex. By generating altered holo-TFIID complexes in Drosophila we identify the ETO domain of TAF4 as a coactivator domain likely targeted by Pygopus, a protein that is required for Wingless-induced transcription of naked cuticle. These results establish a coactivator function of TAF4 and provide a strategy to dissect mechanisms of TFIID function in vivo.

View Publication Page
Fetter Lab
11/01/09 | Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans.
Kennerdell JR, Fetter RD, Bargmann CI
Development. 2009 Nov;136(22):3801-10. doi: 10.1242/dev.038109

Wnt signaling through Frizzled proteins guides posterior cells and axons in C. elegans into different spatial domains. Here we demonstrate an essential role for Wnt signaling through Ror tyrosine kinase homologs in the most prominent anterior neuropil, the nerve ring. A genetic screen uncovered cwn-2, the C. elegans homolog of Wnt5, as a regulator of nerve ring placement. In cwn-2 mutants, all neuronal structures in and around the nerve ring are shifted to an abnormal anterior position. cwn-2 is required at the time of nerve ring formation; it is expressed by cells posterior of the nerve ring, but its precise site of expression is not critical for its function. In nerve ring development, cwn-2 acts primarily through the Wnt receptor CAM-1 (Ror), together with the Frizzled protein MIG-1, with parallel roles for the Frizzled protein CFZ-2. The identification of CAM-1 as a CWN-2 receptor contrasts with CAM-1 action as a non-receptor in other C. elegans Wnt pathways. Cell-specific rescue of cam-1 and cell ablation experiments reveal a crucial role for the SIA and SIB neurons in positioning the nerve ring, linking Wnt signaling to specific cells that organize the anterior nervous system.

View Publication Page
04/15/25 | Wnt/β-catenin signalling assists cell fate decision making in the early mouse embryo
Lilao-Garzón J, Corujo-Simon E, Vinyoles M, Fischer SC, Guillén J, Balayo T, Muñoz-Descalzo S
bioRxiv. 2025 Apr 15:. doi: 10.1101/2025.04.09.647220

Cell fate choice is a key event happening during preimplantation mouse development. From embryonic day 3.5 (E3.5) to E4.5, the inner cell mass (ICM) differentiates into epiblast (Epi, NANOG expressing cells) and primitive endoderm (PrE, GATA6, SOX17 and/or GATA4 expressing cells). The mechanism by which ICM cells differentiate into Epi cells and PrE cells remains partially unknown. FGF/ERK has been proposed as the main signalling pathway for this event, but it does not explain co-expression of NANOG and GAT6 or how the cell fate choice is initiated.

In this study, we investigate whether Wnt/β-catenin signalling also plays a role. To this end, we use two in vitro models based on inducible GATA6 expression: one in 2D, and another in 3D, namely ICM organoids. By combining these in vitro models with in vivo mouse embryos, chemical and classical genetics, and quantitative 3D immunofluorescence analyses, we propose a dual role for Wnt/β-catenin signalling.

We find that β-catenin, acting alongside FGF/ERK signalling, helps to guide the cell fate choice towards PrE. Additionally, by regulating GATA6 and GATA4 stability, β-catenin further facilitates this choice. To summarise, we observe that pathway activation promotes PrE differentiation, while its inhibition stalls it.

SUMMARY STATEMENT Wnt/β-catenin signalling promotes PrE fate in mouse preimplantation embryos.

View Publication Page
10/14/14 | Word length effect in free recall of randomly assembled word lists.
Katkov M, Romani S, Tsodyks M
Frontiers in Computational Neuroscience. 2014 Oct 14;8:129. doi: 10.3389/fncom.2014.00129

In serial recall experiments, human subjects are requested to retrieve a list of words in the same order as they were presented. In a classical study, participants were reported to recall more words from study lists composed of short words compared to lists of long words, the word length effect. The world length effect was also observed in free recall experiments, where subjects can retrieve the words in any order. Here we analyzed a large dataset from free recall experiments of unrelated words, where short and long words were randomly mixed, and found a seemingly opposite effect: long words are recalled better than the short ones. We show that our recently proposed mechanism of associative retrieval can explain both these observations. Moreover, the direction of the effect depends solely on the way study lists are composed.

View Publication Page
Baker Lab
11/01/04 | X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males.
Fagegaltier D, Baker BS
PLoS Biology. 2004 Nov;2(11):e341. doi: 10.1371/journal.pbio.0020341

It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and MSL-2, to a set of 35-40 X chromosome "entry sites" that serve to nucleate mature complexes, termed compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site. Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical affinities of individual binding sites.

View Publication Page
12/11/99 | Y do we drink?
Tecott LH, Heberlein U
Cell. 1998 Dec 11;95(6):733-5
06/16/95 | Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway.
Rebay I, Rubin GM
Cell. 1995 Jun 16;81(6):857-66. doi: 10.1186/gb-2007-8-7-r145

Drosophila yan has been postulated to act as an antagonist of the proneural signal mediated by the sevenless/Ras1/MAPK pathway. We have mutagenized the eight MAPK phosphorylation consensus sites of yan and examined the effects of overexpressing the mutant protein in transgenic flies and transfected S2 cultured cells. Our results suggest that phosphorylation by MAPK affects the stability and subcellular localization of yan, resulting in rapid down-regulation of yan activity. Furthermore, MAPK-mediated down-regulation of yan function appears to be critical for the proper differentiation of both neuronal and nonneuronal tissues throughout development, suggesting that yan is an essential component of a general timing mechanism controlling the competence of a cell to respond to inductive signals.

View Publication Page