Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Schreiter Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

68 Publications

Showing 1-10 of 68 results
08/06/25 | An expanded palette of bright and photostable organellar Ca2+ sensors
Moret A, Farrants H, Fan R, Zingg KG, Silva B, Roselli C, Oertner TG, Gee CE, Hadjieconomou D, Rangaraju V, Schreiter ER, de Juan-Sanz J
eLife. 2025 Aug 26:. doi: 10.7554/elife.107845.1

The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources has been hindered by the lack of bright, photostable, and multiplexed measurements in different organelles, limiting our ability to define how Ca2+ shapes cell physiology across fields of biology. Here we introduce a new toolkit of chemigenetic organellar Ca2+ indicators whose color is tunable by reconstituting their fluorescence with different exogenous rhodamine dye-ligands, which significantly expand the capacity for multiplexing organellar Ca2+ measurements. These sensors, which we named ER-HaloCaMP and Mito-HaloCaMP, are optimized to report Ca2+dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons, and show significantly improved brightness, photostability and responsiveness when compared to current best-in-class alternatives. Using either red or far-red dye-ligands, both ER-HaloCaMP and Mito-HaloCaMP enable visualizing ER and mitochondrial Ca2+ dynamics in neuronal axons, a subcellular location that only contains a few ER tubules and small mitochondria, structural limitations that have impaired measurements with previous red sensors. To show the expanded multiplexing capacities of our toolkit, we measured interorganellar Ca2+ fluxes simultaneously in three different subcellular compartments in live cells, revealing that the amplitude of ER Ca2+release controls the efficacy of ER-mitochondria Ca2+ coupling in a cooperative manner. Organellar HaloCaMPs enable also measuring Ca2+ dynamics in intact brain tissue from flies and rodents, demonstrating their versatility across biological models. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling across fields of biology in health and disease.

View Publication Page
07/10/25 | Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons During Novel Exploration
Chen E, Chen T, Schreiter ER, Lin B
eLife. 2025 Jul 10:. doi: 10.7554/elife.96718.4

Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (∼25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with contralateral ripple oscillations but were instead phase-locked to theta waves recorded in the contralateral CA1 region. Moreover, the subthreshold membrane potentials of neurons exhibited coherent intracellular theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.

 

View Publication Page
06/06/25 | In vivo multiplex imaging of dynamic neurochemical networks with designed far-red dopamine sensors
Zheng Y, Cai R, Wang K, Zhang J, Zhuo Y, Dong H, Zhang Y, Wang Y, Deng F, Ji E, Cui Y, Fang S, Zhang X, Zhang K, Wang J, Li G, Miao X, Wang Z, Yang Y, Li S, Grimm J, Johnsson K, Schreiter E, Lavis L, Chen Z, Mu Y, Li Y
Science. 2025 Jun 05:. doi: 10.1126/science.adt7705

Neurochemical signals like dopamine (DA) play a crucial role in a variety of brain functions through intricate interactions with other neuromodulators and intracellular signaling pathways. However, studying these complex networks has been hindered by the challenge of detecting multiple neurochemicals in vivo simultaneously. To overcome this limitation, we developed a single-protein chemigenetic DA sensor, HaloDA1.0, which combines a cpHaloTag-chemical dye approach with the G protein-coupled receptor activation-based (GRAB) strategy, providing high sensitivity for DA, sub-second response kinetics, and an extensive spectral range from far-red to near-infrared. When used together with existing green and red fluorescent neuromodulator sensors, Ca2+ indicators, cAMP sensors, and optogenetic tools, HaloDA1.0 provides high versatility for multiplex imaging in cultured neurons, brain slices, and behaving animals, facilitating in-depth studies of dynamic neurochemical networks.

View Publication Page
04/01/25 | Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration.
Bei-Jung Lin , Tsai-Wen Chen , En-Li Chen , Eric R. Schreiter
eLife. 2025 Apr 1:. doi: 10.7554/elife.96718.2

Synchronous neuronal ensembles play a pivotal role in the consolidation of long-term memory in the hippocampus. However, their organization during the acquisition of spatial memory remains less clear. In this study, we used neuronal population voltage imaging to investigate the synchronization patterns of CA1 pyramidal neuronal ensembles during the exploration of a new environment, a critical phase for spatial memory acquisition. We found synchronous ensembles comprising approximately 40% of CA1 pyramidal neurons, firing simultaneously in brief windows (∼25ms) during immobility and locomotion in novel exploration. Notably, these synchronous ensembles were not associated with ripple oscillations but were instead phase-locked to local field potential theta waves. Specifically, the subthreshold membrane potentials of neurons exhibited coherent theta oscillations with a depolarizing peak at the moment of synchrony. Among newly formed place cells, pairs with more robust synchronization during locomotion displayed more distinct place-specific activities. These findings underscore the role of synchronous ensembles in coordinating place cells of different place fields.

View Publication Page
11/15/24 | A novel rhodopsin-based voltage indicator for simultaneous two-photon optical recording with GCaMP in vivo
Villette V, Yang S, Valenti R, Macklin JJ, Bradley J, Mathieu B, Lombardini A, Podgorski K, Dieudonné S, Schreiter ER, Abdelfattah AS
bioRxiv. 2024 Nov 15:. doi: 10.1101/2024.11.15.623698

Genetically encoded voltage indicators (GEVIs) allow optical recording of membrane potential from targeted cells in vivo. However, red GEVIs that are compatible with two-photon microscopy and that can be multiplexed in vivo with green reporters like GCaMP, are currently lacking. To address this gap, we explored diverse rhodopsin proteins as GEVIs and engineered a novel GEVI, 2Photron, based on a rhodopsin from the green algae Klebsormidium nitens. 2Photron, combined with two photon ultrafast local volume excitation (ULoVE), enabled multiplexed readout of spiking and subthreshold voltage simultaneously with GCaMP calcium signals in visual cortical neurons of awake, behaving mice. These recordings revealed the cell-specific relationship of spiking and subthreshold voltage dynamics with GCaMP responses, highlighting the challenges of extracting underlying spike trains from calcium imaging.

View Publication Page
10/16/24 | All-optical reporting of inhibitory receptor driving force in the nervous system
Selfe JS, Steyn TJ, Shorer EF, Burman RJ, Düsterwald KM, Kraitzick AZ, Abdelfattah AS, Schreiter ER, Newey SE, Akerman CJ, Raimondo JV
Nat Commun. 2024 Oct 16;15(1):8913. doi: 10.1038/s41467-024-53074-y

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the nervous system, fast synaptic inhibition is mediated by chloride permeable GABA and glycine receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DF). Here we present a tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID's ability to provide accurate, high-throughput measurements of resting and dynamic DF from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DF, reveals differences in DF between neurons and astrocytes, and affords the first in vivo measurements of intact DF. This work extends our understanding of inhibitory synaptic transmission and demonstrates the potential for all-optical methods to assess ionic driving forces.

View Publication Page
09/20/24 | A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging.
Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER
Nat Methods. 2024 Sep 20:. doi: 10.1038/s41592-024-02411-6

Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca concentration using fluorescence lifetime imaging microscopy (FLIM).

View Publication Page
06/02/24 | Dynamic assemblies of parvalbumin interneurons in brain oscillations.
Huang Y, Chen H, Lin Y, Lin S, Zheng Q, Abdelfattah AS, Lavis LD, Schreiter ER, Lin B, Chen T
Neuron. 2024 Jun 02:. doi: 10.1016/j.neuron.2024.05.015

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

View Publication Page
02/21/24 | Epigenetic repression of cFos supports sequential formation of distinct spatial memories.
Andreas Franzelin , Paul J. Lamothe-Molina , Christine E. Gee , Andrey Formozov , Eric R Schreiter , Fabio Morellini , Thomas Glenn Oertner
bioRxiv. 2024 Feb 21:. doi: 10.1101/2024.02.16.580703

Expression of the immediate early gene cFos modifies the epigenetic landscape of activated neurons with downstream effects on synaptic plasticity. The production of cFos is inhibited by a long-lived isoform of another Fos family gene, ΔFosB. It has been speculated that this negative feedback mechanism may be critical for protecting episodic memories from being overwritten by new information. Here, we investigate the influence of ΔFosB inhibition on cFos expression and memory. Hippocampal neurons in slice culture produce more cFos on the first day of stimulation compared to identical stimulation on the following day. This downregulation affects all hippocampal subfields and requires histone deacetylation. Overexpression of ΔFosB in individual pyramidal neurons effectively suppresses cFos, indicating that accumulation of ΔFosB is the causal mechanism. Water maze training of mice over several days leads to accumulation of ΔFosB in granule cells of the dentate gyrus, but not in CA3 and CA1. Because the dentate gyrus is thought to support pattern separation and cognitive flexibility, we hypothesized that inhibiting the expression of ΔFosB would affect reversal learning, i.e., the ability to successively learn new platform locations in the water maze. The results indicate that pharmacological HDAC inhibition, which prevents cFos repression, impairs reversal learning, while learning and memory of the initial platform location remain unaffected. Our study supports the hypothesis that epigenetic mechanisms tightly regulate cFos expression in individual granule cells to orchestrate the formation of time-stamped memories.

View Publication Page
11/20/23 | All-optical reporting of inhibitory receptor driving force in the nervous system.
Joshua S. Selfe , Teresa J. S. Steyn , Eran F. Shorer , Richard J. Burman , Kira M. Düsterwald , Ahmed S. Abdelfattah , Eric R. Schreiter , Sarah E. Newey , Colin J. Akerman , Joseph V. Raimondo
bioRxiv. 2023 Nov 20:. doi: 10.1101/2023.08.30.555464

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the brain for example, fast synaptic inhibition is mediated by chloride permeable GABAA receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a new tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals novel differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and establishes a precedent for all-optical methods to assess ionic driving forces.

View Publication Page