Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
During brief, intermittent “replay” events, hippocampal activity can express navigational trajectories disconnected from both when and where they originally occurred. While replay biased toward immediate future goals has been observed, there is no evidence yet linking replay to planning beyond the next action. Here, we designed a sequential spatial working memory task which required rats to utilize information across multiple temporally separated actions. Remote replay events matched the animal’s future navigational choices made after completing an intervening subtask. Critically, this occurred only when the replayed information was useful for reducing memory load, consistent with it being an active process. Our findings suggest these remote replay events are a neural correlate of episodic forethought, allowing animals to use memories to plan beyond their immediate surroundings.




