Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Two invasive adelgids are associated with widespread damage to several North American conifer species. Adelges tsugae, hemlock woolly adelgid, was introduced from Japan and reproduces parthenogenetically in North America, where it has rapidly decimated Tsuga canadensis and Tsuga caroliniana (eastern and Carolina hemlocks, respectively). Adelges abietis, eastern spruce gall adelgid, introduced from Europe, forms distinctive pineapple-shaped galls on several native spruce species. While not considered a major forest pest, it weakens trees and increases susceptibility to additional stressors. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects. Whole genome sequencing was performed on both species to aid in development of targeted solutions that may minimize ecological impact. Adelges abietis was sequenced using barcoded linked-reads from 30 pooled individuals, with Hi-C scaffolding performed using data from a single individual collected from the same host plant. Adelges tsugae used long-read sequencing from pooled nymphs. The assembled A. tsugae and A. abietis genomes, pooled from several parthenogenetic females, are 220.75 Mbp and 253.16 Mbp, respectively. Each consists of eight autosomal chromosomes, as well as two sex chromosomes (X1/X2), supporting the XX-XO sex determination system. The genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 12,060 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis of proteins across 29 hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family evolution analysis with CAFE revealed lineage-specific expansions in immune-related aminopeptidases (ERAP1) and juvenile hormone binding proteins (JHBP), contractions in juvenile hormone acid methyltransferases (JHAMT), and conservation of nicotinic acetylcholine receptors (nAChR). These genes were explored as candidate families towards a long-term objective of developing adelgid-selective insecticides. Structural comparisons of proteins across seven focal species (Adelges tsugae, Adelges abietis, Adelges cooleyi, Rhopalosiphum maidis, Apis mellifera, Danaus plexippus, and Drosophila melanogaster) revealed high conservation of nAChR and ERAP1, while JHAMT exhibited species-specific structural divergence. The potential of JHAMT as a lineage-specific target for pest control was explored through virtual screening of drugs and pesticides.
bioRxiv preprint: https://doi.org/10.1101/2024.11.21.624573


