Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
The study of foraging is central to a renewed interest in naturalistic behavior in neuroscience. Applying a foraging framework grounded in behavioral ecology has enabled probing of the mechanisms underlying cognitive processes such as decision-making within a more ecological context. Yet, foraging also involves myriad other aspects, including navigation of complex environments, sensory processing, and social interactions. Here, we first provide a brief overview of the neuroscience of foraging decisions, and then combine insights from behavioral ecology and neuroscience to review the role of these additional dimensions of foraging. We conclude by highlighting four opportunities for the continued development of foraging as an ethological framework for neuroscience: integrating normative and implementation-level models, developing new tools, enabling cross-species comparisons, and fostering interdisciplinary collaboration.


