Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the wing polyphenism, female progeny develop as either winged or unwinged depending on the extent of crowding or host plant quality experienced by the mother. Males also have the ability to develop as either winged or unwinged, but this is genetically determined by a single locus on the X chromosome and is thus referred to as a wing polymorphism. In order to gain insight into the patterns of gene expression that underlie the wing polyphenism and polymorphism we have used a pea aphid cDNA microarray to examine gene expression in winged and unwinged females and males. Results suggest that winged and unwinged morphs exhibit systemic differences in gene expression and that many of these differences are shared between the wing polyphenism and polymorphism (i.e., between females and males). In addition, adult winged and unwinged males exhibit pronounced differences when compared to adult females and fourth instar males, as well as to each other.