Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
bioRxiv. 2021 Dec 07;. doi: 10.1101/2021.12.07.471629
Image-based representation of massive spatial transcriptomics datasets. Scientific Computing Software

Preibisch Stephan, Karaiskos Nikos, Rajewsky Nikolaus
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
We present STIM, an imaging-based computational framework for exploring, visualizing, and processing high-throughput spatial sequencing datasets. STIM is built on the powerful ImgLib2, N5 and BigDataViewer (BDV) frameworks enabling transfer of computer vision techniques to datasets with irregular measurement-spacing and arbitrary spatial resolution, such as spatial transcriptomics data generated by multiplexed targeted hybridization or spatial sequencing technologies. We illustrate STIM’s capabilities by representing, visualizing, and automatically registering publicly available spatial sequencing data from 14 serial sections of mouse brain tissue.
node:body | entity_field
Previous bioRxiv PrePrint https://doi.org/10.1101/2021.12.07.471629
janelia7_blocks-janelia7_biblio_authors | block
Janelia Authors
janelia7_blocks-janelia7_biblio_tools | block