Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2773 Janelia Publications

Showing 1101-1110 of 2773 results
10/31/25 | From perception to valence: a pair of interneurons that assign positive valence to sweet sensation in <I>Drosophila</I>
Christie KW, Dadyala TS, Sinakevitch IT, Chung P, Ito M, Shao L
bioRxiv. 2025 Oct 31:. doi: 10.1101/2025.10.31.685871

Assigning valence—appeal or aversion—to gustatory stimuli and relaying it to higher-order brain regions to guide flexible behaviors is crucial to survival. Yet the neural circuit that transforms gustatory input into motivationally relevant signals remains poorly defined in any model system. In Drosophila melanogaster, substantial progress has been made in mapping the sensorimotor pathway for feeding and the architecture of the dopaminergic reinforcement system. However, where and how valence is first assigned to a taste has long been a mystery. Here, we identified a pair of subesophageal zone interneurons in Drosophila, termed Fox, that impart positive valence to sweet taste and convey this signal to the mushroom body, the fly’s associative learning center. We show that Fox neuron activity is necessary and sufficient to drive appetitive behaviors and can override a tastant’s intrinsic valence without impairing taste quality discrimination. Furthermore, Fox neurons transmit the positive valence to specific dopaminergic neurons that mediate appetitive memory formation. Our findings reveal a circuit mechanism that transforms sweet sensation into a reinforcing signal to support learned sugar responses. The Fox neurons exhibit a convergent–divergent “hourglass” circuit motif, acting as a bottleneck for valence assignment and distributing motivational signals to higher-order centers. This architecture confers both robustness and flexibility in reward processing—an organizational principle that may generalize across species.

View Publication Page
04/01/23 | From primordial clocks to circadian oscillators
Warintra Pitsawong , Ricardo A. P. Pádua , Timothy Grant , Marc Hoemberger , Renee Otten , Niels Bradshaw , Nikolaus Grigorieff , Dorothee Kern
Nature. 2023 Apr 01:. doi: 10.1038/s41586-023-05836-9

Circadian rhythms play an essential role in many biological processes and surprisingly only three prokaryotic proteins are required to constitute a true post-translational circadian oscillator. The evolutionary history of the three Kai proteins indicates that KaiC is the oldest member and central component of the clock, with subsequent additions of KaiB and KaiA to regulate its phosphorylation state for time synchronization. The canonical KaiABC system in cyanobacteria is well understood, but little is known about more ancient systems that possess just KaiBC, except for reports that they might exhibit a basic, hourglass-like timekeeping mechanism. Here, we investigate the primordial circadian clock in Rhodobacter sphaeroides (RS) that contains only KaiBC to elucidate its inner workings despite the missing KaiA. Using a combination X-ray crystallography and cryo-EM we find a novel dodecameric fold for KaiCRS where two hexamers are held together by a coiled-coil bundle of 12 helices. This interaction is formed by the C-terminal extension of KaiCRS and serves as an ancient regulatory moiety later superseded by KaiA. A coiled-coil register shift between daytime- and nighttime-conformations is connected to the phosphorylation sites through a long-range allosteric network that spans over 160 Å. Our kinetic data identify the difference in ATP-to-ADP ratio between day and night as the environmental cue that drives the clock and further unravels mechanistic details that shed light on the evolution of self-sustained oscillators.

View Publication Page
Romani LabFitzgerald Lab
11/01/24 | From the fly connectome to exact ring attractor dynamics
Biswas T, Stanoev A, Romani S, Fitzgerald JE
bioRxiv. 2024 Nov 01:. doi: 10.1101/2024.11.01.621596

A cognitive compass enabling spatial navigation requires neural representation of heading direction (HD), yet the neural circuit architecture enabling this representation remains unclear. While various network models have been proposed to explain HD systems, these models rely on simplified circuit architectures that are incompatible with empirical observations from connectomes. Here we construct a novel network model for the fruit fly HD system that satisfies both connectome-derived architectural constraints and the functional requirement of continuous heading representation. We characterize an ensemble of continuous attractor networks where compass neurons providing local mutual excitation are coupled to inhibitory neurons. We discover a new mechanism where continuous heading representation emerges from combining symmetric and anti-symmetric activity patterns. Our analysis reveals three distinct realizations of these networks that all match observed compass neuron activity but differ in their predictions for inhibitory neuron activation patterns. Further, we found that deviations from these realizations can be compensated by cell-type-specific rescaling of synaptic weights, which could be potentially achieved through neuromodulation. This framework can be extended to incorporate the complete fly central complex connectome and could reveal principles of neural circuits representing other continuous quantities, such as spatial location, across insects and vertebrates.

View Publication Page
04/23/20 | Frontline science: dynamic cellular and subcellular features of migrating leukocytes revealed by in vivo lattice lightsheet microscopy.
Manley HR, Potter DL, Heddleston JM, Chew T, Keightley MC, Lieschke GJ
Journal of Leukocyte Biology. 2020 Apr 23:. doi: 10.1002/JLB.3HI0120-589R

Neutrophil and macrophage (Mϕ) migration underpin the inflammatory response. However, the fast velocity, multidirectional instantaneous movement, and plastic, ever-changing shape of phagocytes confound high-resolution intravital imaging. Lattice lightsheet microscopy (LLSM) captures highly dynamic cell morphology at exceptional spatiotemporal resolution. We demonstrate the first extensive application of LLSM to leukocytes in vivo, utilizing optically transparent zebrafish, leukocyte-specific reporter lines that highlighted subcellular structure, and a wounding assay for leukocyte migration. LLSM revealed details of migrating leukocyte morphology, and permitted intricate, volumetric interrogation of highly dynamic activities within their native physiological setting. Very thin, recurrent uropod extensions must now be considered a characteristic feature of migrating neutrophils. LLSM resolved trailing uropod extensions, demonstrating their surprising length, and permitting quantitative assessment of cytoskeletal contributions to their evanescent form. Imaging leukocytes in blood vessel microenvironments at LLSM's spatiotemporal resolution displayed blood-flow-induced neutrophil dynamics and demonstrated unexpected leukocyte-endothelial interactions such as leukocyte-induced endothelial deformation against the intravascular pressure. LLSM of phagocytosis and cell death provided subcellular insights and uncovered novel behaviors. Collectively, we provide high-resolution LLSM examples of leukocyte structures (filopodia lamellipodia, uropod extensions, vesicles), and activities (interstitial and intravascular migration, leukocyte rolling, phagocytosis, cell death, and cytoplasmic ballooning). Application of LLSM to intravital leukocyte imaging sets the stage for transformative studies into the cellular and subcellular complexities of phagocyte biology.

View Publication Page
Menon Lab
11/01/11 | Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
Lim J, Menon V, Bitzer M, Miller LM, Madrid-Aliste C, Weiss LM, Fiser A, Angeletti RH
Analytical biochemistry. 2011 Nov 1;418(1):78-84. doi: 10.1016/j.ab.2011.06.045

Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SI(N)) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SI(N) values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.

View Publication Page
11/08/17 | Fully integrated silicon probes for high-density recording of neural activity.
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S, Okun M, Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun W, Svoboda K, Carandini M, Harris KD, Koch C, O'Keefe J, Harris TD
Nature. 2017 Nov 08;551(7679):232-236. doi: 10.1038/nature24636

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca(2+) imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.

View Publication Page
10/29/18 | Fully-automatic synapse prediction and validation on a large data set.
Huang GB, Scheffer LK, Plaza SM
Frontiers in Neural Circuits. 2018 Oct 29;12:87

Extracting a connectome from an electron microscopy (EM) data set requires identification of neurons and determination of synapses between neurons. As manual extraction of this information is very time-consuming, there has been extensive research effort to automatically segment the neurons to help guide and eventually replace manual tracing. Until recently, there has been comparatively less research on automatically detecting the actual synapses between neurons. This discrepancy can, in part, be attributed to several factors: obtaining neuronal shapes is a prerequisite first step in extracting a connectome, manual tracing is much more time-consuming than annotating synapses, and neuronal contact area can be used as a proxy for synapses in determining connections.
However, recent research has demonstrated that contact area alone is not a sufficient predictor of synaptic connection. Moreover, as segmentation has improved, we have observed that synapse annotation is consuming a more significant fraction of overall reconstruction time. This ratio will only get worse as segmentation improves, gating overall possible speed-up. Therefore, we address this problem by developing algorithms that automatically detect pre-synaptic neurons and their post-synaptic partners. In particular, pre-synaptic structures are detected using a Deep and Wide Multiscale Recursive Network, and post-synaptic partners are detected using a MLP with features conditioned on the local segmentation.
This work is novel because it requires minimal amount of training, leverages advances in image segmentation directly, and provides a complete solution for polyadic synapse detection. We further introduce novel metrics to evaluate our algorithm on connectomes of meaningful size. These metrics demonstrate that complete automatic prediction can be used to effectively characterize most connectivity correctly.

View Publication Page
Sternson Lab
08/22/16 | Functional and anatomical dissection of feeding circuits.
Atasoy D, Sternson SM
Neuroendocrinology of Appetite:112-133. doi: 10.1002/9781118839317.ch6

This chapter reviews the application of new genetically encoded tools in feeding circuits that regulate appetite. Rapid activation and inhibition of agouti related peptide (AgRP) neurons conclusively established a causal role for rapid control of food intake. Chemogenetic activation of AgRP neurons using hM3Dq avoids the invasive protocols required for ChR2 activation. ChR2 distributes into axons, and selective optogenetic activation of AgRP neuron axon projection fields in distinct brain areas was used to examine their individual contribution to feeding behavior. Some of the brain areas targeted by AgRP neuron axon projections have been examined further for cell type specific control of appetite. Rodents with bed nucleus of stria terminalis (BNST) lesions show hyperphagia and obesity, indicating that reduced BNST output promotes feeding. pro-opiomelanocortin (POMC) neurons regulate feeding over longer timescales. parabrachial nucleus (PBN) neurons have a powerful inhibitory role on food intake, but their inhibition does not strongly elevate food intake.

View Publication Page
Bock Lab
05/21/19 | Functional and anatomical specificity in a higher olfactory centre.
Frechter S, Bates AS, Tootoonian S, Dolan M, Manton JD, Jamasb AR, Kohl J, Bock D, Jefferis GS
Elife. 2019 May 21;8:. doi: 10.7554/eLife.44590

Most sensory systems are organized into parallel neuronal pathways that process distinct aspects of incoming stimuli. In the insect olfactory system, second order projection neurons target both the mushroom body, required for learning, and the lateral horn (LH), proposed to mediate innate olfactory behavior. Mushroom body neurons form a sparse olfactory population code, which is not stereotyped across animals. In contrast, odor coding in the LH remains poorly understood. We combine genetic driver lines, anatomical and functional criteria to show that the LH has ~1400 neurons and >165 cell types. Genetically labeled LHNs have stereotyped odor responses across animals and on average respond to three times more odors than single projection neurons. LHNs are better odor categorizers than projection neurons, likely due to stereotyped pooling of related inputs. Our results reveal some of the principles by which a higher processing area can extract innate behavioral significance from sensory stimuli.

View Publication Page
12/06/21 | Functional architecture of neural circuits for leg proprioception in Drosophila.
Chen C, Agrawal S, Mark B, Mamiya A, Sustar A, Phelps JS, Lee WA, Dickson BJ, Card GM, Tuthill JC
Current Biology. 2021 Dec 06;31(23):5163. doi: 10.1016/j.cub.2021.09.035

To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.

View Publication Page