Filter
Associated Lab
- Ahrens Lab (66) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (5) Apply Freeman Lab filter
- Harris Lab (2) Apply Harris Lab filter
- Jayaraman Lab (2) Apply Jayaraman Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Keller Lab (5) Apply Keller Lab filter
- Lavis Lab (3) Apply Lavis Lab filter
- Liu (Zhe) Lab (1) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Pedram Lab (2) Apply Pedram Lab filter
- Podgorski Lab (3) Apply Podgorski Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Shroff Lab (2) Apply Shroff Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Wang (Shaohe) Lab (2) Apply Wang (Shaohe) Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Publication Date
- 2025 (9) Apply 2025 filter
- 2024 (6) Apply 2024 filter
- 2023 (4) Apply 2023 filter
- 2022 (4) Apply 2022 filter
- 2021 (2) Apply 2021 filter
- 2020 (4) Apply 2020 filter
- 2019 (5) Apply 2019 filter
- 2018 (4) Apply 2018 filter
- 2017 (2) Apply 2017 filter
- 2016 (7) Apply 2016 filter
- 2015 (3) Apply 2015 filter
- 2014 (3) Apply 2014 filter
- 2013 (5) Apply 2013 filter
- 2012 (1) Apply 2012 filter
- 2011 (1) Apply 2011 filter
- 2010 (1) Apply 2010 filter
- 2008 (3) Apply 2008 filter
- 2006 (2) Apply 2006 filter
Type of Publication
66 Publications
Showing 21-30 of 66 resultsBiophysically accurate multicompartmental models of individual neurons have significantly advanced our understanding of the input-output function of single cells. These models depend on a large number of parameters that are difficult to estimate. In practice, they are often hand-tuned to match measured physiological behaviors, thus raising questions of identifiability and interpretability. We propose a statistical approach to the automatic estimation of various biologically relevant parameters, including 1) the distribution of channel densities, 2) the spatiotemporal pattern of synaptic input, and 3) axial resistances across extended dendrites. Recent experimental advances, notably in voltage-sensitive imaging, motivate us to assume access to: i) the spatiotemporal voltage signal in the dendrite and ii) an approximate description of the channel kinetics of interest. We show here that, given i and ii, parameters 1-3 can be inferred simultaneously by nonnegative linear regression; that this optimization problem possesses a unique solution and is guaranteed to converge despite the large number of parameters and their complex nonlinear interaction; and that standard optimization algorithms efficiently reach this optimum with modest computational and data requirements. We demonstrate that the method leads to accurate estimations on a wide variety of challenging model data sets that include up to about 10(4) parameters (roughly two orders of magnitude more than previously feasible) and describe how the method gives insights into the functional interaction of groups of channels.
Calcium imaging with protein-based indicators is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Understanding how neural circuits give rise to behavior requires comprehensive knowledge of neuronal morphology, connectivity, and function. Atlas platforms play a critical role in enabling the visualization, exploration, and dissemination of such information. Here, we present FishExplorer, an interactive and expandable community platform designed to integrate and analyze multimodal brain data from larval zebrafish. FishExplorer supports datasets acquired through light microscopy (LM), electron microscopy (EM), and X-ray imaging, all co-registered within a unified spatial coordinate system which enables seamless comparison of neuronal morphologies and synaptic connections. To further assist circuit analysis, FishExplorer includes a suite of tools for querying and visualizing connectivity at the whole-brain scale. By integrating data from recent large-scale EM reconstructions (presented in companion studies), FishExplorer enables researchers to validate circuit models, explore wiring principles, and generate new hypotheses. As a continuously evolving resource, FishExplorer is designed to facilitate collaborative discovery and serve the growing needs of the teleost neuroscience community.
Differentiable simulations of optical systems can be combined with deep learning-based reconstruction networks to enable high performance computational imaging via end-to-end (E2E) optimization of both the optical encoder and the deep decoder. This has enabled imaging applications such as 3D localization microscopy, depth estimation, and lensless photography via the optimization of local optical encoders. More challenging computational imaging applications, such as 3D snapshot microscopy which compresses 3D volumes into single 2D images, require a highly non-local optical encoder. We show that existing deep network decoders have a locality bias which prevents the optimization of such highly non-local optical encoders. We address this with a decoder based on a shallow neural network architecture using global kernel Fourier convolutional neural networks (FourierNets). We show that FourierNets surpass existing deep network based decoders at reconstructing photographs captured by the highly non-local DiffuserCam optical encoder. Further, we show that FourierNets enable E2E optimization of highly non-local optical encoders for 3D snapshot microscopy. By combining FourierNets with a large-scale multi-GPU differentiable optical simulation, we are able to optimize non-local optical encoders 170× to 7372× larger than prior state of the art, and demonstrate the potential for ROI-type specific optical encoding with a programmable microscope.
When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states.
The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.
Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
All cells in an animal collectively ensure, moment-to-moment, the survival of the whole organism in the face of environmental stressors1,2. Physiology seeks to elucidate the intricate network of interactions that sustain life, which often span multiple organs, cell types, and timescales, but a major challenge lies in the inability to simultaneously record time-varying cellular activity throughout the entire body.We developed WHOLISTIC, a method to image second-timescale, time-varying intracellular dynamics across cell-types of the vertebrate body. By advancing and integrating volumetric fluorescence microscopy, machine learning, and pancellular transgenic expression of calcium sensors in transparent young Danio rerio (zebrafish) and adult Danionella, the method enables real-time recording of cellular dynamics across the organism. Calcium is a universal intracellular messenger, with a large array of cellular processes depending on changes in calcium concentration across varying time-scales, making it an ideal proxy of cellular activity3.Using this platform to screen the dynamics of all cells in the body, we discovered unexpected responses of specific cell types to stimuli, such as chondrocyte reactions to cold, meningeal responses to ketamine, and state-dependent activity, such as oscillatory ependymal-cell activity during periods of extended motor quiescence. At the organ scale, the method uncovered pulsating traveling waves along the kidney nephron. At the multi-organ scale, we uncovered muscle synergies and independencies, as well as muscle-organ interactions. Integration with optogenetics allowed us to all-optically determine the causal direction of brain-body interactions. At the whole-organism scale, the method captured the rapid brainstem-controlled redistribution of blood flow across the body.Finally, we advanced Whole-Body Expansion Microscopy4 to provide ground-truth molecular and ultrastructural anatomical context, explaining the spatiotemporal structure of activity captured by WHOLISTIC. Together, these innovations establish a new paradigm for systems biology, bridging cellular and organismal physiology, with broad implications for both fundamental research and drug discovery.
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.