Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

63 Publications

Showing 1-10 of 63 results
05/15/25 | Norepinephrine changes behavioral state via astroglial purinergic signaling
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
bioRxiv. 2025 May 15:. doi: 10.1126/science.adq5233

Both neurons and glia communicate through diffusible neuromodulators; however, how neuron-glial interactions in such neuromodulatory networks influence circuit computation and behavior is unclear. During futility-induced behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine (NE) drives fast excitation and delayed inhibition of behavior and circuit activity. We found that astroglial purinergic signaling implements the inhibitory arm of this motif. In larval zebrafish, NE triggers astroglial release of adenosine triphosphate (ATP), extracellular conversion of ATP into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. Our results suggest a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in NE-mediated behavioral and brain state transitions and position astroglia as important effectors in neuromodulatory signaling.

 

Preprint: https://www.biorxiv.org/content/early/2024/05/23/2024.05.23.595576

View Publication Page
04/04/25 | Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals.
Mi X, Chen AB, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim J, Ruetten VM, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi S, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G
Cell. 2025 Apr 04:. doi: 10.1016/j.cell.2025.03.012

Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.

Preprint: https://doi.org/10.1101/2024.05.02.592259

View Publication Page
03/30/25 | Whole-brain, all-optical interrogation of neuronal dynamics underlying gut interoception in zebrafish
Chen W, James B, Ruetten VM, Banala S, Wei Z, Fleishman G, Rubinov M, Fishman MC, Engert F, Lavis LD, Fitzgerald JE, Ahrens MB
bioRxiv. 2025 Mar 30:. doi: 10.1101/2025.03.26.645305

Internal signals from the body and external signals from the environment are processed by brain-wide circuits to guide behavior. However, the complete brain-wide circuit activity underlying interoception—the perception of bodily signals—and its interactions with sensorimotor circuits remain unclear due to technical barriers to accessing whole-brain activity at the cellular level during organ physiology perturbations. We developed an all-optical system for whole-brain neuronal imaging in behaving larval zebrafish during optical uncaging of gut-targeted nutrients and visuo-motor stimulation. Widespread neural activity throughout the brain encoded nutrient delivery, unfolding on multiple timescales across many specific peripheral and central regions. Evoked activity depended on delivery location and occurred with amino acids and D-glucose, but not L-glucose. Many gut-sensitive neurons also responded to swimming and visual stimuli, with brainstem areas primarily integrating gut and motor signals and midbrain regions integrating gut and visual signals. This platform links body-brain communication studies to brain-wide neural computation in awake, behaving vertebrates.

View Publication Page
02/06/25 | Live imaging of the extracellular matrix with a glycan-binding fluorophore.
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Pratik Kumar , Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Wang S, Weaver VM, Pedram K
Nat Methods. 2025 Feb 06:. doi: 10.1038/s41592-024-02590-2

All multicellular systems produce and dynamically regulate extracellular matrices (ECMs) that play essential roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small-molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, non-perturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

View Publication Page
12/24/24 | Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits.
Zocchi D, Nguyen M, Marquez-Legorreta E, Siwanowicz I, Singh C, Prober DA, Hillman EM, Ahrens MB
Curr Biol. 2024 Dec 19:. doi: 10.1016/j.cub.2024.11.057

Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.

View Publication Page
12/24/24 | Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits.
Zocchi D, Nguyen M, Marquez-Legorreta E, Siwanowicz I, Singh C, Prober DA, Hillman EM, Ahrens MB
Curr Biol. 12/2024;35(1):163-176.e4. doi: 10.1016/j.cub.2024.11.057

Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.

View Publication Page
12/16/24 | Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance.
Duque M, Chen AB, Hsu E, Narayan S, Rymbek A, Begum S, Saher G, Cohen AE, Olson DE, Li Y, Prober DA, Bergles DE, Fishman MC, Engert F, Ahrens MB
Neuron. 2024 Dec 16(113):1-15. doi: 10.1016/j.neuron.2024.11.011

Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity. After ketamine washout, this circuit exhibits hyposensitivity to futility, leading to long-term increased perseverance. Pharmacological, chemogenetic, and optogenetic manipulations show that norepinephrine and astrocytes are necessary and sufficient for ketamine's long-term perseverance-enhancing aftereffects. In vivo calcium imaging revealed that astrocytes in adult mouse cortex are similarly activated during futility in the tail suspension test and that acute ketamine exposure also induces astrocyte hyperactivation. The cross-species conservation of ketamine's modulation of noradrenergic-astroglial circuits and evidence that plasticity in this pathway can alter the behavioral response to futility hold promise for identifying new strategies to treat affective disorders.

View Publication Page
09/16/24 | Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning
Kawashima T, Wei Z, Haruvi R, Shainer I, Narayan S, Baier H, Ahrens MB
bioRxiv. 2024 Sep 16:. doi: 10.1101/2024.09.15.613083

As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling encoding of action outcomes and filtering out learning-irrelevant visual signals. Using light-sheet microscopy, voltage sensors, and neurotransmitter/modulator sensors, we tracked millisecond-timescale neuronal input-output computations during behavior. Swim commands initially inhibited serotonergic neurons via GABA, closing the gate to spiking. Immediately after, the gate briefly opened: voltage increased consistent with post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin secretion and modulating motor vigor. Ablating GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe, suggesting the existence of similarly fast and precise circuit computations across neuromodulatory nuclei.

View Publication Page
07/16/24 | Closing the Experiment-Modeling-Perturbation Loop in Whole-Brain Neuroscience.
Ahrens MB
Neurosci Bull. 2024 Jul 16:. doi: 10.1007/s12264-024-01253-8
05/20/24 | Astrocyte Calcium Signaling
Ahrens MB, Khakh BS, Poskanzer KE
Cold Spring Harb Perspect Biol. 2024 May 20:. doi: 10.1101/cshperspect.a041353

Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca signaling.

View Publication Page